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For a fixed v > 0 we set

3). 2 = (10— ayen(SE) T — ate)

2”()1 +
where (u + %) = ['(u + =+ n)/F(u + 2) The W.,(n, x) are

the ultraspherical polynomlals of index y normalized so that
W,(n,1)=1, If

T)(n + )l + 2)
2T (,, + )F(2v)n'

2,(dx) =1 — x> Vide , o,(n) =

then the W, (n, x) satisfy the orthogonality relations
S‘ W0, @)W, 2)2,(dx) = (0,(m)"p, m .
—1
Because

Wi, 2)Wim, z) = 3" e.(m, n, KYW.(k, ),(k)
k=0

where the c.(m, n, k) are nonnegative, the [W.(n, )]>_, behave
rather like characters on a compact group. Consequently
certain portions of harmonic analysis, which do not extend to
orthogonal polynomials in general, have interesting analogues
for ultraspherical polynomials,

In the present paper this fact is exploited to study the
moments of the eigenvalues of generalized Toeplitz matrices
constructed using ultraspherical polynomials,

Statement of results. Since we will always work with a fixed v
we will drop the subscript and write

W.(n, ) = Wn, ), 2(de) = 2Adz), o.(n)= o).

For f(x)e LY(2) we set

(1) f@) ~ 3b(3) W, @)
if
(2) b(i) = 0| F@) W, 2)2(dz) .

73
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For f(x)e LY(Q) let
(3)  a(m,m) = [omam)]” Wn, =) Wn, ©)f(#)2(d2) .

The Toeplitz matrix of index N associated with f, Ax[f], is defined by
AN[f]:[a(n’m)] n,m:o,l,"’,N.

Let [ME, N)], k=1, .-+, N+ 1, be the eigenvalues of the symmetric
matrix Ay[f]. We will show that if

(4) MIIOIES
then
(4) jg Mk, N = 7=i(N + 1)&1_1 F@)y (1 — 2)"2(dz) + o(N) as N — oo

for s=0,1,---. We will show further that if in addition to (4) we
have

(5) B < e,
then
(5) 5 Mk N

= | r@{S om W, 2}0(d)

— S b(E) e b(), S By - B4, 4)

1t Js=
X maX(O, Al, A1+A2, "',A1+ e +As—-1) +0(1)
as N— oo,

Here
W(j, cos 0) = 3 E(A, j)e* .
A=—c0
This is an analogue of a theorem on Toeplitz forms associated with

Fourier series due to Kac [9].
Consider more generally

fla, 7 %) = 35, bla, 7 ) W4, 2)

where b(q, r; j) is a continuous function of q and » for 0 =¢q, r=1
for each = 0,1, --- and where
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(6) S0 <o, (5= max|bg, 7).
Let
a(n, m; N) = [omom)}*=] Wn, o) Wm, 0)f(1%, %; o )e(d)

and let
(7) A.N[f]:(a(n,m;N)) 'ﬂ,m:O,l,"'N.

Then Ay[f] is the ‘‘variable coefficient’’ Toeplitz matrix of index N
associated with f(q, r; ). We will show that if (6) holds then

(6) S0 Ak, N) = 7N + 1)“’ Fry 73 2 (1 — o) Q(dz)dr + o(N)
k=1 0J—1
which is the analogue of a theorem of Kaec, Murdock, and Szego [10].
As is well known, results on moments of eigenvalues can be trans-
lated into global distribution theorems. If f(x)e LYQ) is real then
Ayl f] is a real symmetric matrix and then Mk, N) are real. Let (4)
hold; if we set
ay(B) = (N + 1) 1

Mk, N)EE

and if

a(E) = n*lg _ (1= o)0(da)

fl2)
then it follows from (4’) that
ay—a as N-— oo,

Here —— indicates weak convergence on (—oo, o). This is of course
a very special case of a general result due to Szego [4]. More signifi-
cantly let b(q, r;7) = b(r,q;7) for 0 =r,q <1,7=0,1, --. and let (6)
hold. Then the variable coefficient matrix (7) is Hermitian symmetric
and has real eigenvalues. If a, is the corresponding distribution
function and if

BE) = 71"188 drds |

Sf(r,r;cos0)ER

it follows from (6’) that

ay—pB as N-—oo,

2. Properties of ultraspherical polynomials. The formulas be-
low play a basic role in what follows. Let k,j, n be nonnegative
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integers and let 206 =k+j+n. If k+j+n is even and if
max (k,j, n) < ¢ we set

(1) ek, d,m)

_ ma k! 7! n! (MeiMo—i(M)on (2V), 1
rey (@ —kl(@—5H@—n! @).@2v){2), @) oc+v’

¢.(k,j, n) = 0 otherwise. Here
(@), = '(a + n)/[(a) .
With this definition we have

(2) 3 ek, 4, m) W,(m, w)w,(n) = Wk, ) W.(3, 2) .

See Hsii [8]. We note that this series is only formally infinite since
ek,7,m)=01if n >k + j. Since W.(n,1) =1 we have

(3 3, ek, 4, Wo.(n) = 1.

Because v >0 will be fixed we now drop the subscript and write
ek, 3,n) = c(k,3,n), etec. From (2) we see that

S_ Win, &) Wim, o) W(k, 2)2(dz) = c(n, m, k) .
Hence
| W, 2) W, ) Wik, ) Wi, =)2(d)

= L[5 etm, n, Do) W5, =) | Wik, 2) Wio, 2)2d)

= 3% em, n, old)e(s, k, 9) .

There is no problem interchanging the integration and summation as
the sums are actually finite. It follows that

(4) Win, &)W, 2)W(k, ) = 3,3 c(m, n, o(5)e(d, k, p)o(0) W(p, z) .

p=075=0

Repeating the above argument, we find that

(5) | Wi, oW, ), - Wi, o)
= Z oc(jlij’ k2)w(k2)c(k2’j3y k3)w(k3) s w(ks—2)c(k3—2yjs—lyjs) .

kg e kg_g=

Sinece max_,.,., |W(k, x)| = W(k, 1), see Erdélyi [2], page 206, we
have
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(6) Wk, z)| =1 k=01, -1z =<1.
Let E(h, ) be defined as in §1. Then

(7) =] @~ arwies, w)ie = B0, 2)
—1
This is because
71"151 (1 — o)=L W(2j, w)dw = n_IS”W(Zj, cos 6)d0
—1 0

= o[ {5 B, 2i)em}as
o 535
0

- (2n)—1§ {_z E®, 2j)e“‘"}d¢9
— E(0,2)).

Here we have used the fact that E(h, 2j5) is 0 if & is odd.
We will have occasion to use the following inequality,

(8) | @(k)"*(sin 0)* W(k, cos 0) | = ¢(v) ,

which is given in Szego [12; § 7.32].
Using asymptotic estimates for Jacobi and ultraspherical polynomials,
see Szego [12; §8.21], and adjusting for our normalization we obtain

(9) W, (k,cos?t)

_ 9 revyrk +v) {cos [(E + v)0 — vr/2] + (k sin 0)"10(1)}
reoyrk + 2v) (2 sin 6)*

for 0k~' < 60 <7 — 6k~ (here 0(1) is uniform in § and k if 0 > 0%is
fixed) and

(10)  W.(n,cos0) =2 r@evrn + v) {cos [(n + )0 — vr/2]
ryrn + 2v) (2 sin 0)”
_ D(XJ — 1) sin [(n + Yy — 1)0 _ WT/Z]}
m+v—1) (2 sin )+
+ O(n—7%)
for ¢ fixed, 0 < 0 < m.
We will have occasion to use the following asymptotic formula

(1) r+a)z+aw)---I'z+ a,)
z+B)&+6): -+ I'(z+ 8,
—1+ (2z)~l<n§ al — Bz,) + 0<z-2[§ o P+ | B, |3]> ,

=1

as |z|—co where o, + @, + +++ +a, =B+ L+ - + B, |argz| < 7w
See Erdélyi [2], page 47.
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We further note

4 _ n(n + 2v) B
a2 W, 2) = PR EV W 1,3

We conclude this section by deriving the following limit relation.

THEOREM 2a. With the notations of §1 +f k, k' and j are fixed
integers, j = 0, then

lim (N + k)e(N + k,j, N+ k)= E(k — k,J) .
N —oo

Proof. Let
I; = [w(N + k)o(N + EN]"*e(N + k, 5, N+ k') .
Then

I, = S:{(a)(N 4 k) W(N + k, cos 0) sin® 6}
X {(w(N + E")*W(N +k, cos 0) sin®* 6} W(7, cos 6)do .
We know, see (8) and (9), that
11\}2 {((N))"*W(N, cos 0) sin* § — (2/m)"* cos [(N + v)8 — 7v/2]} = 0
0<o<m

and that there is a constant ¢(v) such that

[ (@(N))"*W(N, cos 0) sin” 0 | < e(v) N=01.--,0=50=m.
Using the Lebesgue limit theorem we see that

lim I, = lim 27~
N—oo N—oco

X Szcos [(N+E+v)0—ny/2]cos[(N+ k' +v)0 —nv/2] W(7, cosb)dl
if the limit on the right exists. We have

cos [(N + k + v)§ — wv/2] cos [(N + k' + v)d — 7v/2]
- % cos [(k — )] + % cos[(@N + k + & + 20)0 — 7] .
By the Riemann-Lebesgue theorem
lim n-IS" cos[(2N + k + k' + 20)0 — 7v] W(J, cos 0)d0 = 0
0

N—oo

while
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n—lS: cos [(k — k)01 W(J4, cos 6)d6 = E(k — k', 5) .

Finally, it is easily checked that

i [N + k) 77
zlvgg[w(N+k’)] =1

Combining these facts we have our desired result.
3. Two basic limit relations.

THEOREM 3a. With the motations of §1 we have
| (sin 6) k§=; (k) W2k, cos ) — m=n + 1)| < A(v)(sin 6)
for 0260, n=0,1, ...,
Proof. Set
Su@) = 3, (k) Wik, o) .
By the Christoffel-Darboux formula, see Erdélyi [3] page 159, we get

101 [P0V Tm D) g
Su(@) = T o (F(ZV) ) T'(n + 1) [W)(n + 1, x) W,(n, x)

— Win, ) W,(n + 1, x)] .

Upon substituting (12) § 2, the above becomes
1 22 /) *I'(n+2v+1)
1 = =
(1) Su@ = ot <F(2v) ) T+ 1)
X [(n + 1)(’"’ + 2v + 1) Wv+1(n, x) Wu(n9 .’l})
—nn + )W, (n — 1L, o)W, (e + 1, 2)] .

Now using the estimate (9) §2 with 6 = 1 we obtain
(sin 6)S, (cos 0) = L {(m + 1) + (sin6)*OL)} n'<O< T —nt.
7

On the other hand it follows from (8) § 2 that
(sin 6)*S, (cos 0) = O(n) 0so0=m.

Combining these results we obtain the desired inequality.

COROLLARY 3b., Under the same assumptions
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lim S |71 — 2%~ — (N + 1)~ g (k) Wk, )*] 2(dz) = 0 .

N—oo J—1

Proof. This follows from the above together with the relations
n—lgl A — o) 2da) = 1,
—1
(2) S (N + 1) kﬁ_o (k) Wk, ©):2(dw) = 1 .

This result implies that if fe L=[—1, 1] then

Sl {kz o,(k) W (k, x)2} F(@)2,(dx) = 2+ Sl (1 — 2?2 f(2)dz + o(n)
—1 k=0 T —1

as n — . The following gives a more precise evaluation, but for a
slightly more restricted class of functions f.

THEOREM 3c. Let f(x) be bounded for —1=x=1 and let
[fQ) — f(@)]A — )% and [ f(x) — F(—1)]Q + x)~°* be integrable. Then

| {5 0w w.i, or}rwe.a

— n+ 1 Sl f(x)(l . x2)~1/2dx + 2v — 181 f(x)(l - xZ)-—1/2dx
T —1 2w —t

— 2L + A=D1+ o)

as n— oo,
Proof. Let
mm=§vw+ﬂ-m—§wm+ﬂ—m.

A simple even-odd argument together with (2) shows that, using the
notation of Theorem 3a,

[_s.@r@eus) = | S.@f@e@) + 2EL@) + £(-1).

It is therefore sufficient to determine the asymptotic behavior of

Sl_ls,,(x) () 2(d) = S (sin 6)*S, (cos 6)f, (cos 6)d6 .

We will show that as n—
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(3) SO (sin )8, (cos 0)f, (cos 0)d0

- % [(n +1) 2 ; 1] Sf (cos 0)d0 + o(1) .
Let us assume for the moment that (3) has been demonstrated. Then

| S @)

= %[n +1 +2u2_1] Sl_lfl(oc)(l — )y + "; 1[f(l) + f(=1)] + o(1),

=2+ + 22| vw - Lirw + s-nna - eyde

+ 2L @) + =01+ o)
2y —1
2

— n -+ lgl f(x)(l _ xZ)-—I/2 da + Sl f(%)(l . xz)—-llzdx
T —1 —1

25 + £(=01+ o)

as desired. It thus remains only to demonstrate (3). Our assumptions
imply that

(4) Sl | £, (cos 0) | sin~* 0d9 < o .
—1
We assert that, if 0 <6 <,

(5) lim {(sin 0)**S,, (cos 6)

_i[(n_}_1)+2v—1+sm(2n+2){+1)0—v7r]}:0.
T 2 . 2sin0

It is evident that Theorem 3a, (4) and (5) together imply (3). Here we

use the Riemann-Lebesgue lemma in order to dispose of the term which

arises from the sin[(2n + 2v + 1)0 — vx]/2sin 0 on the right in (5).
By (10) Section 2 we see that for ¢ fixed, 0 < 0 < 7,

T
r@y) I'n + v) [ cos [(n )0 - ?]
) I'(n + 2v) (2 sin 0)”

. v
w1 sin [(n +v—1)0 — T]J + 0w
n+v—1) (2 sin 0)*** ’

W.(n, cos0) = 2
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inf(n+v+1)0-2L
W,.i(n, cos 0) = 4(2v + 1)['(21)) I'(n+ v+ 1)[ sin [(n ) : ]

) r'n+2v+2)| (2 sin #)*+!
v+ 1y cos [(n + ) — ﬂ]J B
(% + v) @ sin 6) + 0@,

(n+v+ 1)0—371]
W, (n + 1, cosd) = 2 2

@) I'n+ v + 1) [COS[

ry) rim+ 2v+1) (2 sin 6)*
. vr
R o _Z_]J T Ot
(n + v) (2 sin )"+ ’

W,um —1,cos6) =42y + 1)

. T
@) I'n+v) [Sm [(”' 20— 7]
I'v) I'm + 2v + 1) (2 sin )***

cos [(n +v—1)0 —”Tﬂ]

y(v + 1) ]
R rT— @sin 0) + O™
Substituting into (1) we obtain
(sin 6)*S,, (cos 0)
_ 1 I'm+v)I'(n+v+1)
o I'(n+ D)I(n + 2v)
cos| (m+v)0 — X |sin| (n + v + 1)o — 2T
x{(n—kl)‘: [ 2][ 2]
sin 0
vt 1\*
oy + 1) (cos[(n + v)o — .?])
2(n + v) (sin 0)*
. v . v
Cspop T [(n +y—1)f — _2-] sm[(n vt 1)0__2_]
2(n +v —1) (sin 0)°
v . yTT
. cos[(n +v—1) — —2-] sin [(n + v)§ — —2—]
sin 6
yr vTT
Vo1 1) cos[(n+ 1) ~7] cos[(n+ v+1)0 _7]
2(n+v—1) (sin 6)*

_ (sin [(n + v)o — ﬁ])z ‘
B ;((: + B (sin 0)° : } +on-
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Simplification gives

(sin 0)*S, (cos 0)
_1I'n+)'(n+v+1) . 1
T T Tt DIl T 29) [("+1)+” 5t

+ O~
Now, from (11) Section 2,

sin[(2n + 2v +1)0 —vrc]]
2sin 0

=1
I'(n + DI (n + 20) T Tl

I'n+v)['(n+v+4+1) y — + O,

and hence, if 0 < 0 <,

(sin 6)* S, (cos 0) = 1 [(n + 1)+ 1, sin]@n+ 2”, +1)6 — WC]]
T 2 2sin 0

+ O(m~r)

where the O(n~"*) depends upon 6. Our proof is now complete.

4. First order approximation of moments. As in §1 let

(1) f@) = 35, b(0) W, o)
where
(2) S10(0) | < e

Since |W(j,«)| =1 by (6) of §2 it follows that the series defining
f(x) converges absolutely and uniformly for —1 <« <1 so that f(x)
is a continuous funection on —1 <x < 1. Let

(3)  aln, m) = Lo, om)*| Won, o) Wom, 2)7(@)0(da)

and let {\Mk, N)}, k=1,2,--+, N 4+ 1 be the eigenvalues of the Toe-
plitz matrix 4,1f] = la(n, m)], n,m = 0,1, -, N,

THEOREM 4a. Under the above assumptions

(4) S0k, N = (N + I)Sil(f(x))*(l — @) de + o(N)
as N — oo,

Jor s=0,1, .-,

Proof. Note that
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3 M, M) = tr (A1

Substituting (1) in the definition of a(n, m) we get

an, m) = 3, b(3)e(n, j, m)

where the c¢(n, j, m) are defined as in §2. Consequently

(5) trAdrl= 3 all, kak, k) - alk, k)

skgieee kg=

= 3 bab() -+ b(4)
x 5 alb)elh, 4, ko) - - o)k, 5., k) .

Since c(k, j, ) vanishes unless 2max (7, k, 1) =< j + k + [ the above sums
are all finite. Let

K5, N) = | f@y{S oWk, =) o) .

We have

o

(6) K, N) = | {S0G) W, o)f {5 06e) (W, 0) o).

j=0

=, 3 _b) - b4

< 5 [ W YWy 2) - Wiy ) Wik, 2)2(d)
=, 3 b@) e b

x 85 o)l gy k) - o(k)el, 3, k)

Here we have used formula (5) from §2. Comparing (5) and (6) we
see that

tr (Axl ) — K5, N) = — 33 b(5) -+~ b(3.)¥(j, N)
where J = (jly . 'yjs) and ‘
( 7) 'l‘h‘(j, N) :Q(E.Z;VI‘) w(kl)c(kls jls kz)w(k2)c(k2y jz: kS) °e w(ks)c(ksy jn kl) .

Here Q(N) consists of all s-tuples (k,, --+, k,) for which 0 <%, < N,
0=k, =0, 0a=2,3,---,s and k, > N for at least one a =2, -+, s.

It follows from (3) of §2 that 0 < w(k,)e(k,, 7, k.) =< 1. Replacing
w(k)e(ky, Ji, k) by 1 in (7) and summing over 0 =<k, = N, 0 < k, < oo,
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a=23,..-,s we find that
(8) 0=<+(j, N)SN+1,

On the other hand since ¢(ke, Jo, kasr) = 0 if | ko — Koyi| > Jay @ =1,
+++,8 — 1, the fact that some k, > N implies that we may assume

N_(j1+ e +js—1)§k1§N

since otherwise the summand in (7) vanishes. Repeating the argument
above gives

(9) 0=V, N)=g+ -+ +Js.

Using (8) we see that
A0 5 b - AN + DTG N) < 5 (B e [0 |-

As a consequence of (2) the sum of the series on the right here is
finite, On the other hand using (9) we have

(1) lim (N + 1)7p(j, N) = 0.

The relations (10) and (11) together imply that
lim (N + 1)~ {tr [A4fT'] — K(s, N)} = 0.

Finally it follows from Corollary 3b that

lim (N + 1)~K(s, N) = 11&5_ F@) (N + 1)—1{5:; w(le)( Wik, x))ﬁ}g(dx)

N—c0

- z—lgl_ F@y (L — o) ede

and we are done,
Let f(x) be real and Riemann in integrable on [—1, 1] and let (as

in §1)
ay(B)=(N+1)" 3 1,

AEk,N)ER

aE)=1"S (1 —29)de.

flz)ER

Then it follows from (4) by a standard argument, see [4], that
(12) ay(E) — a(E) as N— o,

Conversely (12) implies (4). Results like (12) hold in much greater
generality, Our excuse for the inclusion of Theorem 4a is that its
demonstration shows in a simple setting the basic idea of the present
paper,
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5. Second order approximation of moments. Let us now assume
that

(1) f@) = 3, 0() W4, o)

where
EXN AN
(2)  M=F0)I<=, M=(ZiBGOF) <.
THEOREM 5a. Under the above assumptions we have
N
(3) Sk Ny
1 N o
= r@r{S o &, o)}

5 b@) - bG), B B, ) - Blh, 3)

X max (0, by, by + hoy =+ o, by + <o+ + b, ) + o(1)
as N— o s

Jor s=20,1, .-, and where the E(h,j) are defined by

W(3, cos 0) = h_i E(h, j)e .

Proof. The relation (8) is exact for s = 0, 1. We therefore suppose
s = 2, As in the proof of Theorem 4a we have

(4)  tr(Asf1) — K, N) =~ 3 b(g) ==+ b(g ) (4, N) .

Jpeindg=

Let us set hy=Fk, — k, hy=k, — ky, «++, by =k, — k,_,,h, =k, — k..
If |h,| > 7, then c¢(k,, j;, k) = 0 ete. so that all the terms in Q(N)
which do not give zero are included in those for which |4, | = 7.,
a=1,---,5s. Moreover since k,=Fk, + h, + hy+ +++ + h,_, We see
that as k, > N for some a we must have

key + max (0, b, by + Fay oo by + o0 + hyy) >N

Thus by a very crude estimate
N—3lh]=ks=N.
a=1
Since h, + hy+ +++ +h, =0

8 8 s
3 kel = 35 [ [he [ = 35 |G 11
a=1 @ B=1 @,B=1

aFB a#p
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If we replace w(k)e(k,, 5., k) by 1 in (7) Section 4 and if we replace
Q(N) by all (&, -+, k,) for which

N— 3 |Gl |dsl* <k, =N, 0k <o, =2 +-,8,
dw.ge—'él
we find that

8

0= 90, N) = 2 [4al" 161" .
e
Using
BB 1 1 1 e = L VB Ve Lpeiyelq
[6(5a)b(3e) [ 151" 78 =EI ()| Iyal+5| (76) I 1781

we find that for s = 2

s

(8) YL EARERUEAY ,’; [Go |72 G 11 < *MIM .
§ oy

Jpatts

Returning to +(j, N) let k =k, — N. Then

q!f(j’ N) = ZC()(]C + N)C(k + N,jl) k + N+ h’l)
X ok+N+hy,fo b+ N+hi+hy) s wb-+N+hi+---+h,_,)
X C(k+N+h1+ e +hs—1yjsyk+‘N))

where the summation is extended over those indices k, h,, - -+, h,_, for
which

0=Fk=-—max (0, hy, hy + hyy o++, by + =+ + h,,),

9
() 0=k=—N.

Note however that unless the indices k, k., - - -, h,_, satisfy the conditions

0= k= — > 4" 4",
@, B=1

10 a#p
( ) Ihaléjaya’:l,"',s—l,

the corresponding term in the sum above well be 0. For j, ---, 7,
fixed the restriction 0 = k£ = — N becomes otiose for large N. It fol-
lows from Theorem 2a that

Em ON + k)e(N + k, 3, N+ k + h;) = E(h,, J1)

ete., which implies that

limy(j, N) = 3, E(h,3,) - Eh,J,),
Nooo krhy.eoshg
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the summation being extended over A, ---, h, subject to the restriction
h,+ +++ + h, = 0 and over k satisfying the first condition of (9). Thus

11) limy(j,N)= > EBE(h,3,) -+ Eh,, J,)
N hytecethg=0
X max (0, hyy hy + hyy oo, by + oo + h,y).

We have previously shown that

(12) ; 2‘; 5(3,) + - b(3)v(J, N) < Ej [B(41) + -+ b(37,) | %.lljalwljfsl”2
peredg= Jreeeads w¢5é§
where the series on the right is convergent (its sum not exceeding
s"M?*M;). The relations (11) and (12) together clearly give (3).
Making use of Theorem 3c we obtain the following more explicit result.

COROLLARY 5b. If in addition to (1) and (2) it is assumed that
[f(®) — FQOIA — 2)*2 and [ f(x) — f(—D](x + 1)7°* are integrable then
Jor s=0,1, .-

S, Ny = N[ fapa — atyone + 221 sy — ) v

= FEER G U B S TARRITER

X E E(hn .71) °tt E(hs, js)

Byt thg=0

X max (0, hy, «++, by + +o+ + k) +0(1) as N— oo,

We will now, following a method due to Kac [9], use Theorem 5a
to study the asymptotic behavior of

Dy[f]=det[Ay[fIl =M1, N)--- MN + 1,N).
We define

log G[f1= | llog @IV + 1) w(0) (W, )y} 2(dx) -

Let p be any complex number satisfying |0|||f|l- <1 and let F(x) =
1 — pf(x). Then

DyF] =TI [1 = oMk, NI,

N41
log Dy[F] = 3 log [1 — oMk, NI,

e —pr(Mk, N))*
2% p” ’
=3 = Al 1T

R
1
-

[44
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Similarly, using the notation of Section 4,

log G,F] = | log [1 — pf @IV + {3 @)Wk, )7} 0(dz) ,

k=0

= | S =YW 1 1S5 o (W, 0)}2(da)

—1la=1 k=0

— (N + 1)~ ;Z;l:&"_“x(a, N).

Thus
Dylf] | _ ¢ =" .
13  log{ i} = 35 28 (i (4nd )" ~ Ko M)
It follows from (8) that
(14) |tr (AxLf)" — K(@, N) | = &' Mz~M, az2

uniformly in N. Using (14) and (8) we see that if | 0| M, < 1 then

(15) lim log {E,%[%]T}

= =S S bE) b6, S B0 e Bh, )

CE R R MRy e

x max (0, hy, by + hyy cve, by + o004+ hoy) .

Consider
fleos 0) = 5':', b(5) W(4, cos )
= 33003) 3 B(h, e
=3 g‘,“o(h)e““’
where

o) = 3 b()E, 5) .
It follows that the right hand side of (15) is equal to

—SN O S e(hy) - e e(he) MAX (0, by By A Py e e By e )

a=1 (  hyt-"Fhg=0
We have
E(h,j) =z 0;
see [2, Vol, II, p. 175]. Since
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W(j, cos 0) = 57_‘, E(h, 5)e'®
K==j
it follows on setting # = 0 that

1= 3 Blh,5).

From this one sees that if f(x) is given by (1) and if M, and M, are
finite then

Slem <=,  Sle@Fh< .

It follows that as a econsequence of an important combinatorial identity
discovered by Kac in [9] and later studied by Spitzer and others (a
particularly accessible reference is [14]), the right hand side of (15)
can be written as

2 S BymBy(—nn
where
log F'(cos 0) = 3 By(n)e™™® .

In these connections see [1].
We have thus shown that if |po| M, <1 then

(16) lim _G_f_[lzﬁ[%l; — exp [% 3, BB ~n)'n] .

A moments thought shows that this result can be rephrased as
follows.

THEOREM 5b. Let f(x) = S5 b(3)W.(4, x) satisfy conditions (1)
and (2) and suppose in addition that

150 > 3 16(5) | -
Then

where

log f(cos 0) ~ _5; by(n)ei .
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It is clear that if in addition f satisfies the assumptions of Theorem
3c then this can be written in the simpler form

lim DAL 1) — D e [ £ S b,

Nooo G[ le»)—l 2y 1)/

where

GLf1 = exp| L [ tog @ — a1y rdo].

T
It will be shown by one of us in a subsequent paper that

EOIES AT

can be replaced by the weaker condition
S(x) 0 —1=z2=1.

We thus obtain a complete analogue for Toeplitz forms associated with
ultraspherical polynomials of the best version of the strong Szego limit
theorem for (ordinary) Toeplitz forms. See [13]and |7|. Theorem 5b
is an essential step in the demonstration of this result.

6. Matrices with variable coefficients.
LEMMA 6a. Let p(r) be continuous on 0 <1 <1. Then

lim (N + 1)~ 3% () Wik, .f.;)ﬂrp(j’\%) — (1 — n:g)—”glw(r)dr ,

N—oco k=0

for each x, —1 < a <1,

Proof. Let /A, be the measure on [0, 1] whose mass is concentrated
at the points IN™', k=0, ---, N and for which

Ay({EN"}) = (N + 1)y 'o(k) W(k, x)* .
Then

(N + 1) gow(k) Wik, m)?w(_}vﬂ) - S;@(T)AN(OZT) )

Let (a, b) = |0, 1]; then
Ayl(a, b)] = (N + 1) <I_%}_1<’0)(75) Wik, x)
= O[(N + Db 3 o)Wk, x)

0< /e <bN

— aj{(N + 1)a] ZNa)(lc) Wik, =),

—1
0<k<a
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=Z=b—ar (1l —2)" as N— oo,

by Corollary 8b. The same relation persists if (a,b) is replaced by
(@, b], ete. Our result is an easy consequence of this.
Let

Fla, 7 ) = 3 bla, 73 ) W, o)

be a complex valued function defined for 0 <¢q, r <1, -1 =2 <1,
We assume that the following conditions are satisfied:
A b(q, r; j) is continuous for 0 < ¢, » <1 for each =10,1, --;
S\H(j) = M < o where bY(j) = max|b(g, 7;4)| .
=0 ar

Since |W(j,x)| =<1 by (6), §2, A. implies that the series defining
f(q, r; x) eonverges absolutely and uniformly for —1 < « < 1 and hence
f(q, r; x) is continuous in all variables,

We form the matrix A, f] = (e(n, k; N)n, k= 0,1, .-+, N, where

aln, & N) = [o(ma(@1|_ W, o) Wik, 2)7(2, &; =)o) .

THEOREM 6b. With the above definitions if f satisfies conditions
A. we have

lim (N + 1) tr(A4,[ 1) = n—lg;g;m, r; @) (1 — o) edrda .

Proof. First, as is easily seen from the formulae of § 2, we have

a(n, k; N) = Zw(k)c(k n g)b(l’f] 1’3 )

Using this, a straightforward computation gives
(N + 1) tr(Ax[ fT) = I(s, N)

where

I, =N+ 5 5

31,50 55=0 kq,"e kg=0
< b, g Yo (R, ) - bR, T 5 Yok )

Here,

v(k, J) = o(k)elk,, 5, k)olk)e(ky, 3oy k) -+ - o(k,)e(k, 3o, k)
k= (kly ) ks)yj: (jl, ""js) .
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Let

We wish to show that
(1) }}_rg[l(s,N)-J(s,N)]zO.
We have
Iis, N) = Js, N) = _ _%zod(j, s, N)

where

IS

dGs Ny = N+ 17 & (8 g ). p(l, by )

k, k, . k. .
b(N N) .71) b(‘N‘y ﬁ} j3>}ﬂlf(k, J) .
We need only consider terms for which |k, — Koy | S Joy @ =2, -+, 5,

since if this condition is violated +r(k,j) = 0. Using the uniform
continuity of b(g, r;j) for 5 =10,1, .-+ we see that

o 1) -+ 55 3 ) — 5 ) - o5 )

= 20%(3) -+ - b5(4)n(J, s, N)

= 2=

where

1704, s, N)| =1,
lll’fl??(j, s, N)=0.
N—oo

Thus, by a now familiar argument,
- - - W »
|d(J, s, N)| = 20%J,) + -+ bJ.)0(J, s, N)(N + nTox RAGTR

= 26%(d) - -+ b%(3)7(J, s, N) .

Taken together these facts imply (1).
We next consider

K(s) = ﬂ"ISiS:f (r, r; 2)°(1 — 2®)dr2(dx) .
By Lemma 6a

R'—lg:f(’r, r;x)'(1 — xi)—»dr = 1]}1_!,2 (N + 1)—120(0(1{:) Wik, x)g[f(_zl\c_[, %; .’1:)]8
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for each z, —1 < 2 < 1. Since f is bounded and since by (8) of §2
(N + 1™ 3 (k) Wik, o) = CO)(1 — o)
%=0

the Lebesgue convergence theorem can be applied to show that

(2) K(s) = lim K(s, N)
where

Ko, N)= (N +1" 3| 7(%, £ o) ol Wik, sys) ,

=W S S S b BB Ry k)

J1, G =0k1=0 kg, "+, k=0 N N
We have
[K(s, N) — J(s, N)| = (N + 1) - Z b"(al) - b (g ) (d, N) .

Since, see (8) and (9) of §4,
(N+1)7(,N)=1,
lim (N + 1)y (4, N) = 0,
it follows that
(3) lim [K(s, N) — J(s, N)] = 0.

The relations (1), (2) and (3) combined yield our theorem.

THEOREM 6¢c. Let f satisfy conditions A. and let f(q, r;x) =
flr,q;z) for 0 =r,q =<1, —-1=<2 =1, If (M, b} are the (neces-
sarily real) eigenvalues of Ax(f) and if

ay(B)=(N+1)~ > 1,

All,N)EE

B(E) = 71'“‘“ drds |

f(r,r;cos )€l
then

ay——0B as N— oo,

Proof. We first note that

(AL F) = 33 M, N
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From Theorem 6b we have the convergence of the moments and the
proof then follows standard lines. See [4], page 98.

For other results connected with Toeplitz matrices of the kind
considered here see [6].

7. Second order approximation in the case of wvariable co-
efficients. Let A,|f] = la(m,n; N)], o =0, -+, N be defined as in
§6. Under certain, fairly restrictive assumptions we can show that,
as N — oo,

(1) tr[Ax[fT]

_ S_ S f(% %; z) () Wik, w)0(da)

=— 3 b1, 1;5)) -+ 0, 14, > Bk, g) - -+ Bk, 30)

Jptdg=0 D

X maX(O,hl,hl—i—hz, RN i +hs——1)+0(1)‘

This is the analogue of a theorem of Schmidt and Mejlbo |11]. Since
the demonstration of (1) is rather long and awkward it has seemed
best to us to omit it.
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