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THE INVERSION OF A CLASS OF LINER OPERATORS

JAMES A. DYER

Let Q; denote the set of all quasi-continuous number
valued functions on a number interval [a,b] which vanish at
a and are left continuous at each point of (a, b]. Every linear
operator, &, on Q; which is continuous relative to the sup
norm topolt;gy for Q; has a unique representation of the form
Zf(s) = S f)AL(t,s), feQr, a <s <b, where all integrals
are taken in the g-mean Stieltjes sense, and L is a function
on the square a = z < b, satisfying the conditions of Definition
1.2. This paper is concerned primarily with those linear
operators, the P-operators, which are abstractions from that
class of linear physical systems whose output signals at a
given time do not depend on their input signals at a later
time; and with a sub-family of the P-operators, the P;-opera-
tors which include all stationary linear operators. The P-
operators are the Volterra operators on Q:. Necessary condi-
tions and sufficient conditions for a P-operator to have an
inverse which is a P-operator are found; and a necessary and
sufficient condition for a P,-operator to have an inverse which
is a P-operator is given in Theorem 3.1. In addition it is
shown that if & is a P;-operator and <! is a P-operator
then .&<°! may be written as the product of two operators
whose generating functions may be found by successive ap-
proximation techniques, An analogue of Lane’s inversion
theorem for stationary operators on QC,; is found as a special
case of these results,

In [1] subspaces of the space of functions which are quasi-
continuous on an interval [, b] for which every linear operator &~
may be written as a g-mean Stieltjes integral of the form .&f(s)=

’ f()dL(t, s) are investigated. In this paper we will be concerned

with one such subspace, Q;, and with a class of linear operators on
Q., the P-operators, which are essentially the abstractions from that
class of linear physical systems whose output signals at a given time
do not depend on their input signals at a later time. In particular
we shall be concerned with determining conditions which will guarantee
that a P-operator has an inverse which is a P-operator.

In §2 some of the basic properties of P-operators are developed
and in § 3 a subfamily of these operators, the P,-operators, are intro-
duced. The P,-operators have the property that if a P,-operator, o7,
has an inverse which is a P-operator then the generating function for
27 may be determined by successive approximation techniques. In
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Theorem 3.1 necessary and sufficient conditions for a P,-operator to
have an inverse which is a P-operator are given. The inversion
theorems obtained in §2 and §3 are related to some of Lane’s results
on stationary linear operators ([3] and [4]), and this relationship is also
discussed in §3. The author is grateful to the referee for his com-
ments and suggestions in connection with this paper.

1. Preliminary theorems. In the main body of this paper it
will be assumed that [a, b] is a given number interval and that the
statement ‘‘f is a left-continuous function on [a, b]”’ means that f is
a quasi-continuous function on [e, b]; i.e. f is the limit of a uniformly
convergent sequence of step functions on [a, b]; and f is left-continuous
at each point of (a,b]. All integrals referred to will be ¢-mean
Stieltjes integrals and the reader is referred to [2] or [5] for a defini-
tion. We will need the following lemma which is a trivial consequence
of Corollaries 1.1 and 1.2 of [5] and the definition of the o¢-mean
Stieltjes integral.

LemMA 1.1. Suppose f is a bounded function on [a,b] and g a
b
Sunction of bounded wvariation on [a,bd]. If S fdg exists then

NECIEAE)

extsts and
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The symbol @, will denote the set of functions on [a, b] to which
a function f belongs if, and only if, f is left-continuous on [a, b] and
fla) =0. If fis in @, then the norm of f is taken to be sup |f(s)|
for s in [a, b]. It follows immediately from the properties of quasi-
continuous functions that @, is a Banach space. The following addi-
tional definitions will also be used.

DEFINITION 1.1. Suppose % is a number, a < ¢ < b. The statement
that 7; is a test function means that z; is that function in @ defined
by 7:i(s) = — Ji(s — t), a < s < b, where J, denotes the function defined
by Jiu(s) =0, s=0, J(s) =1, s> 0.

It is clear that the span of the set of all test functions is dense
in Q.

DErFINITION 1.2. The statement that A is a generating function
means that 4 is a function on the square a = Zg b and that
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(i) A(b,s)=0,a=s=

(ii) for each number 7,
on [a, b],

(iii) for each number 7,a < T < b, 1/2[A(Z,s) + A(T+,s)] is in
Q;, and

(iv) there exists a positive number M, such that if 5 isin [a, b],
Vi, A(t,5) < M. The smallest such number M will be denoted by V.
It is clear from this definition that any finite linear combination of
generating functions is also a generating funection.

If A is a generating function, then A will denote the function
defined by

b,
a <35 =0, A(t, 5) is of bounded variation

_ A(b,s) t=0b a=s=bD
Alt, 5) = %{A(t,s)—l—A(t—[—,s)], a<t<b a<s=bh.

While the space @, introduced here differs from the space Q;
studied in [1], it is easy to show that the basic results of [1] can also
be developed for the space @,. In particular, Theorem 1.1, stated
here without proof, can be established by the same techniques used
for the analogous theorem in [1].

For the purposes of this paper, it will be assumed that operator
means a continuous mapping whose domain is @, and whose range is
a subset of @;. The statement that an operator, .%#", has an inverse
will mean that the mapping inverse to .9 is an operator.

THEOREM 1.1. If A is a generating function then there exists
a linear operator, 57, on Q; such that if s is in [a, b] and f is in
Q, then o7 f(s) = S f()dAR, 5), with ||.o7 || < V.. Conversely if &
is a linear opemtofr on Q, then <& admits a representation of this
type for some gengrating function, B, with Vz <3 || <& ||. Further-
more B is unique.

COROLLARY 1.11. Suppose .&7 is a linear operator on @, and
that A is the generating function for &7 . If t is a mumber such
that a < T <b, and t; is a test function then 7 ty(s) = A(f,s),a <s=<b.

Proof. By Theorem 1.1, .o/ 7y(s) = Sbfg(é)dA(é, s) = AT, 5).

It follows from this corollary_that thae generating function, I, for
the identity operator, ., on @, is given by I(f,s) = — Ji(s — ©),
a = g =b. Also, if each of 9, &, and _# is a linear operator on
Q;, with generating functions K, L, and M respectively, and o &< = _#
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then M(t, s) = Sbl—/(t, E)AK(E, s), a < Z =b.

2. P-operators.

DEFINITION 2.1. Suppose .%7 is a linear operator on @,. The
statement that .o is a P-operator means that if f is in @, and has
the property that for some number ¢,a < ¢ < b, f(t) =0,¢t < ¢ then
S f(s)=0,8s = c.

It follows immediately from the definition that the identity operator,
7, is a P-operator; and that sums and products of P-operators are
P-operators. A more interesting result however is:

THEOREM 2.1, Suppose 5 is a linear operator with generating
function K, A mnecessary and sufficient condition that 9% be a P-
operator is that K(t,s) =0, a =t=<b, a =s=t.

Proof. Since Ki(t,s) = 2K(t,s) — K(t+,s), a=t<b, a<s=b,
the necessity of this condition follows Corollary 1.11 and the definition
of a test function.

Conversely, if K(t,s) =0, a<t=<b a=s=t then K(t, s)=0,
a<t=<b, a=s=t, and by Corollary 1.11 . S77y«s) =0, a < s < ¢.
If g is in Q,, and for some number k, @ < k < b, g(t) = 0, t < k, then
any sequence of linear combinations of test functions which converges
to ¢ need contain only test functions z; for which # = %, therefore
#9(s) =0, s< k, and .97 is a P-operator.

From Theorem 2.1 and the properties of the mean integral it is
clear that if .97 is a P-operator with generating function K and f is
in Q; then .27 f(s) = sz(t)dK(t, s), a =s=b; or in other words, a
P-operator is an operataor of Volterra type.

Throughout the remainder of this section it will be assumed that
2¢" denotes a P-operator with generating function K. If .2 has an
inverse then the generating function for 97 ' will be denoted by K™,

The remaining theorems of this section are concerned with necessary
conditions and sufficient conditions for .9 to have an inverse which
is a P-operator.

THEOREM 2.2. Suppose there exists a number t,a < T < b, such
that 27 ty(t+) = K(t,t+) = 0. Then 2% does mot have an inverse
which is a P-operator.

Proof. If 2 has an inverse then o ' ¥ ri(f+) = —1. If &
is a P-operator then 9% ri(s) = Sﬁ*f Ti(E)dL(E, s). Hence from
t
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Lemma 1.1, | % 7i(s) | < SUDiegi o) | 2 7€) | Vi, and o T:(T+) = 0.

If 7 in Theorem 2.2 is @, then .2 not only does not have an
inverse which is a P-operator, .2~ does not have an inverse. This
follows because .% 7, (a+) = 0 implies that for any fe Q,, 2 f(a+) =0,
since for any P-operator 5%, ¥ ti(a+) =0, a<t<b. If ¢ is not
o then 2 may have an inverse. As an example, suppose that [a, b]
is [0, 1] and let & be the P-operator defined by:

LT = Tapey, 0 S 6= 1/2; 2T, = Tamesn, 12<E <1

Here, ¥ 7,(t+)=0, 0 <t <1l. However, ¥ has an inverse, &
being the linear operator defined by:

LT = Ty 0SS 2 F =, S <<,
<~ is clearly not a P-operator.

If 97 is a P-operator whose generating function has the property
that for some number , ¢ < ¥ < b and every positive number ¢, there
exists a positive number d such that if sis in (Z, T + d), Vi; K(&,s) < ¢,
then S7°7i(t+) = 0. This follows from Lemma 1.1 since

o) | = |[wuorike, o), Tss<b.
This condition will be needed in §3.
THEOREM 2.3. Suppose that 7/ is am operator on Q; whose
generating function has the property that for some number h,
o<h<b—a, Ut,s)=0,a<s=b,s—h=t=b.

Then & = _ 7 — 2 has an inverse and &' = S22 7/", where p
is the smallest integer such that a + ph = b.

Proof. Suppose that g is in Q. Since U(t,s) =0, a <s =< b,
s —h=t=0b, it follows that

0, a=s=sa+nh

(1) o) = {Ss_hg(t)dU(t, 9, a+h<ssb.

By successive applications of equation (1) it can be shown that if ¢

is an integer, ¢ = p, then Z/%(s) =0, a < s = b. The theorem then
follows.

It should be noted that the hypothesis on %/ implies that % is a
P-operator. Hence .&¥ and &~ are P-operators.
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THEOREM 2.4. Suppose that K has the property that there exists
a number k, 0 < k < b — a, such that

(1) K(s —k,s) is a left-continuous function on [a + k, b], and

(ii) the P-operator, .o, generated by

Kis—Fk,s),a+k<s=b a=t=s—k
A(t, s) = {K(t, s), a=s=a+k a=t=bor
e+ k<s<b s—k=<t<bh

has an inverse.
Then 2¢ has an inverse, and 7' is a P-operator if, and only if,
7' is a P-operator.

Proof. There exists a unique operator & such that &% = 97",
From Theorem 1.1 and its corollary it then follows that if ¢ is a
number in [a,b] then L(%,s) is the unique solution in @, to the
integral equation

R, 5) = | i, 944, 5), ass5b.
By direct computation it can be seen that
L, s)=—Jy(s—t) =L({t,s),ifa<s<a+k a<t=<bh,

ora+k<s=<b s—k=<t%t=<b Hence, 7 — & satisfies the hy-
potheses of Theorem 2.8 and &¥ has an inverse. Therefore %' =
Lo, The remaining assertions follow immediately since & and
<! are P-operators. This completes the proof.

If there exists an integer ¢ such that (7 — .o)?|| <1, then K
satisfies the hypotheses of Theorem 2.4, and in this case, for each
number ¢ in [a, b] A" is the successive approximations solution to
the integral equation

»n <k

=b

’

~Jis — ) = 9(t,9) — |'9(t, [~ Tufs — &) — A&, 9)], 0 =
and L is the successive approximations solution to
Kt 5) = fit,5) = | 1, = Jus — 9 — A 9)], a <[5 b;
the approximating sequences converging in both cases uniformly in s
on [a, b] for each number ¢ in [a, b]. Consideration of the approximating

sequence for A" shows that in this case %', and hence .2, is
a P-operator. In particular, if it is true that
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(2) Vid—Jus —t) — At, 8| = M<1 a<s=bh,

it can be shown that these two approximating sequences are in fact
uniformly convergent on the square a = z =b

If K is right continuous in ¢ for each number s in [a, b] and A
satisfies equation (2) one would have usable computational techniques
for the determination of K", since if K has this right continuity
property then so does A. It can then be shown from the approximating
sequences for A" and L that they are also right continuous in ¢ for
each number s in [a, b]. Hence, in this case, A = AP and L = L.
One would still have the problem of obtaining K" from KV, but
for the solution of many operator problems knowledge of K would
suffice. The P;-operators to be considered in § 3 will have this right
continuity property.

3. P.-operators. In this section we will consider a class of P-
operators that are of interest in the study of electrical networks.

DEeFINITION 3.1. The statement that a linear operator, .5, on Q;
is a stationary operator means that if each of f and g is in @, and
for some number k, 0 < k < b — a,

(t)_{O, e=t=a+k
TO= e —k), a+k<t=b,

then

0 a=s=a-+k

yg(s):{yf(s_k),a+k<séb.

It follows from this definition, Definition 1.1, and Theorem 1.1,
that a linear operator, .&“, is stationary if, and only if, <& has a

representation of the form, .&7f(s) = S: F@&)d[u(s — &)], where

0, a—b=<t=<0

u(t):{yfa(t+a), 0<t=b—a.

Hence, every stationary operator is a P-operator. It is also a trivial
consequence of Definition 3.1 and this representation that .7 is a
stationary operator and that sums and products of stationary operators
are stationary.

It may also be concluded from this representation that the generat-
ing function for a stationary operator is right continuous in ¢ for each
s in [a,b], and that w is of bounded variation on [a — b,d — a].
Furthermore if u* denotes the function defined by u*(¢t) = Vi_,_,u(?),
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¢ —b=t=0b— a, then the mapping, .°*, given by
) = sz(@d“*@ —§,a=s=b

is a stationary operator on Q.

In [3] and [4], Lane has developed the theory of a class of linear
operators, Ty, on the set, QC,;, of functions on the real line, which
are quasi-continuous on each closed bounded interval, are everywhere
left continuous, and vanish for negative values of their argument.
A linear operator, .&#, is in T, if, and only if, there exists a function,
%, in QC,;, of bounded variation on each closed bounded interval, such

o

that if f is in QC,; and s is a number then &2 f(s) = S f(s — t)ydu(t).
0
Using the properties of the integral this condition can be rewritten

0, s=0

Zf(s) = {S:f(g)d[~ us — &), s>0.

Thus, the stationary operators on @, are analogous to Lane’s T,
operators.

DEFINITION 3.2. The statement that a bounded linear operator,
9%, on @, is a P-operator means that there exists a stationary opera-
tor, .7, such that if each of 7, and 7, is a test function then

|5, — T )| £ | Lo, —T)E) |, aSs=<b.
From Corollary 1.11, an equivalent form of Definition 3.2 is
| K(p,s)— K(g, s)| = |u(s —p) —u(s —q) | = |u*(s —p) —u*(s—q) | .

Therefore if .9# is a P,-operator, K = K. Also if & dominates
9 then so does .*. From this it may be shown by direct compu-
tation that if each of .9¢; and .%; is a P,-operator with dominating
stationary operators .&4 and .&; respectively then .&4* + .%4* dominates
Fr+ F; and A*S45* dominates 97 .

In the remainder of this section it will be assumed that .22~ denotes
a P-operator, with generating function K, and that .57 is a dominating
stationary operator for o7 .

THEOREM 3.1. 9% has an inverse which is a P-operator if, and
only if, inf | K(s—, s)| for s in (a,b] is mot zero. Furthermore if
lim,_,, K(s—, s) = 0 then 5% has mo inverse.

Proof. It can be shown from Definition 3.2 that if », 0 <k <b—a,
is a point of continuity of %, then K(s — h,s) is a left continuous
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function on [¢ + k,b]. It then follows that if f is a function on
[a, b] such that f(s) = K(s—, s), @ < s < b then f is a left continuous
function on [a, d]. Suppose that f(a) # 0 and inf,e;,; | K(s—,s)| =
L>0, If Mis a number, 0 < M <1, and % is a point of continuity
of u such that u*(h) — u*(0+) < ML, then it follows from Definition
3.2 that for every number s in [a, b],

Viel— Juls —8) — [ f(IITK(E, )} = M,

where ¢ is the larger of o and s — h. Let .7 * denote the P-operator
defined by % *g(s) = [— f(8)]""F 9(s), a < s=<b, ge Q. Then . *
satisfies the hypotheses of Theorem 2.4, since _# — & * is a contrac-
tion mapping. Hence, .o *' exists and is a P-operator. It then
follows immediately from Theorems 1.1 and 2.1 that 2 " exists, and
K9(t, s) = [— f()|T'K*"(¢, s) so that .9 ' is also a P-operator.

If inf,e,., | K(s—, s)| = 0 then either there exists a number ¢ in
|e, b) such that lim,. ,+ K(s—,s) = 0 or a number p in (a, b] such that
K(p—,») = 0. In the first case it can be shown from Definition 3.2
that if ¢ is a positive number there exists a positive number d such
that Ve, K(&,s)<e¢, ¢ <s<q-+d. Hence K(q,qg+) =0, .2 does not
have an inverse which is a P-operator, and if ¢ = a, .2~ has no inverse.

In the second case, it can be shown in a similar manner that if
¢ is a positive number, there exists a positive number d such that
if s and ¢ are in (p—d,p], t<s, then Vi, K(& s)<c. Hence
| 7 Ts)| < ¢ for t in (p —d,p] and ¢t < s = p by Lemma 1.1. From
this it follows that there exists a strictly increasing sequence of
numbers, {t,}r0, ¢, <p, =1,2,3, ..., such that if for each positive
integer u, g, is defined by

ET,(8), a =s=D

gn(s):{oypqéb,

then the sequence {g,};=; converges uniformly to zero on [a, b]. Suppose
now that 9 has an inverse and .27 ' is a P-operator. Since %
is bounded, { 9% ~'g,}i-: is also uniformly convergent on [a,d]. But
NG — F Ty )8) =0, a=s=p, if " is a P-operator, Or,
F7'9.(8) = 7, (), a = s = p, and {7, }7., is not uniformly convergent
on [a, p]. This completes the proof.

If 5 is a stationary operator then Theorem 3.1 yields a stronger
result, because in this case K(s—, s) = #7t,(a+), a < s =b. There-
fore either K(s—,s) =0 or inf | K(s—,s)| > 0 on (a,b]. Consequently
a necessary and sufficient condition that a stationary operator, .97,
have an inverse is that 2#°z,(a+) # 0. Furthermore the inverse of
a stationary operator must be a P-operator, and it can be shown by
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applying the construction used in the proof of Theorem 2.4, and the
remarks following Theorem 2.4, to a stationary generating function
that the inverse must be stationary also. This is analogous to Lane’s
result for the operators in T, [3].

From Theorem 3.1 and its special form for a stationary operator,
it may be concluded that if .97 is a P,-operator and there exists a
stationary operator, .&”, which has no inverse and dominates .9,
then .97~ has no inverse, since | . 7,(s)| = | .7,(8)], ¢« = s =< b, from
Definition 3.2.
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