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THE INVERSION OF A CLASS OF LINER OPERATORS

JAMES A. DYER

Let QL denote the set of all quasi-continuous number
valued functions on a number interval [a, b] which vanish at
a and are left continuous at each point of (a,b]. Every linear
operator, Jzf, on QL which is continuous relative to the sup
norm topology for QL has a unique representation of the form

= \bf(t)dL(tfs), feQL, a ^ s ^ 6, where all integrals
Ja

are taken in the <7-mean Stieltjes sense, and L is a function
on the square a S o ^ b, satisfying the conditions of Definition
1.2. This paper is concerned primarily with those linear
operators, the P-operators, which are abstractions from that
class of linear physical systems whose output signals at a
given time do not depend on their input signals at a later
time; and with a sub-family of the P-operators, the Pi-opera-
tors which include all stationary linear_ operators. The P-
operators are the Volterra operators on QL. Necessary condi-
tions and sufficient conditions for a P-operator to have an
inverse which is a P-operator are found; and a necessary and
sufficient condition for a Pi-operator to have an inverse which
is a P-operator is given in Theorem 3.1. In addition it is
shown that if Sf is a Pi-operator and JS^"1 is a P-operator
then JS^"1 may be written as the product of two operators
whose generating functions may be found by successive ap-
proximation techniques. An analogue of Lane's inversion
theorem for stationary operators on QCOL is found as a special
case of these results.

In [1] subspaces of the space of functions which are quasi-
continuous on an interval [α, b] for which every linear operator £f
may be written as a σ-mean Stieltjes integral of the form J*ff(s) =

f(t)dL(t, s) are investigated. In this paper we will be concerned
with one such subspace, Q£, and with a class of linear operators on
QLi the P-operators, which are essentially the abstractions from that
class of linear physical systems whose output signals at a given time
do not depend on their input signals at a later time. In particular
we shall be concerned with determining conditions which will guarantee
that a P-operator has an inverse which is a P-operator.

In §2 some of the basic properties of P-operators are developed
and in § 3 a subfamily of these operators, the Px-operators, are intro-
duced. The Pj-operators have the property that if a PΓoperator, 3ίΓ,
has an inverse which is a P-operator then the generating function for

may be determined by successive approximation techniques. In
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Theorem 3.1 necessary and sufficient conditions for a Pi-operator to
have an inverse which is a P-operator are given. The inversion
theorems obtained in §2 and §3 are related to some of Lane's results
on stationary linear operators ([3] and [4]), and this relationship is also
discussed in § 3. The author is grateful to the referee for his com-
ments and suggestions in connection with this paper.

1. Preliminary theorems* In the main body of this paper it
will be assumed that [α, 6] is a given number interval and that the
statement " / i s a left-continuous function on [a, b]" means that / is
a quasi-continuous function on [α, 6]; i.e. / is the limit of a uniformly
convergent sequence of step functions on [α, 6]; and/is left-continuous
at each point of (α, 6], All integrals referred to will be σ-mean
Stieltjes integrals and the reader is referred to [2] or [5] for a defini-
tion. We will need the following lemma which is a trivial consequence
of Corollaries 1.1 and 1.2 of [5] and the definition of the cr-mean
Stieltjes integral.

LEMMA 1.1. Suppose f is a bounded function on [α, 6] and g a
fdg exists then

a

s:
exists and

The symbol QL will denote the set of functions on [α, 6] to which
a function / belongs if, and only if, / is left-continuous on [α, b] and
/(α) = 0. If / is in QL then the norm of / is taken to be sup \f(s) \
for s in [α, δ]. It follows immediately from the properties of quasi-
continuous functions that QL is a Banach space. The following addi-
tional definitions will also be used.

DEFINITION 1.1. Suppose t is a number, a S t < b. The statement
that τ-t is a test function means that τι is that function in QL defined
by Tj(s) — — JL{s — t), a ^ s ^ 6, where JL denotes the function defined
by JL(s) = 0, s ^ 0, JL(s) = 1, s > 0.

It is clear that the span of the set of all test functions is dense
in QL.

DEFINITION 1.2. The statement that A is a generating function

means that A is a function on the square a t=k σ S b and that
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( i) A(b, s) = 0, a ^ s ^ δ,
(ii) for each number s, a <: s ^ 6, A(ί, s) is of bounded variation

on [α, 6],
(iii) for each number t, a ^ £ < 6, l/2[A(ί, s) + A(t + , s)] is in

QL, and
(iv) there exists a positive number Λf, such that if s is in [α, 6],

Vt

b

=aA(t, s) ^ ikf. The smallest such number M will be denoted by VA.
It is clear from this definition that any finite linear combination of
generating functions is also a generating function.

If A is a generating function, then A will denote the function
defined by

(A(b, s) t = b9 a^s^b

While the space QL introduced here differs from the space QL

studied in [1], it is easy to show that the basic results of [1] can also
be developed for the space QL. In particular, Theorem 1.1, stated
here without proof, can be established by the same techniques used
for the analogous theorem in [1],

For the purposes of this paper, it will be assumed that operator
means a continuous mapping whose domain is QL and whose range is
a subset of QL. The statement that an operator, ^Γ, has an inverse
will mean that the mapping inverse to J%" is an operator.

THEOREM 1.1. If A is a generating function then there exists
a linear operator, j y , on QL such that if s is in [α, 6] and f is in

QL then J*ff{s) = \* f(t)dA(t, s), with \\ JV \\ ^ VΛ. Conversely if ^
is a linear operator on QL then & admits a representation of this
type for some generating function, B, with VB ^ 3 \\&\\. Further-
more B is unique.

COROLLARY 1.11. Suppose J^ is a linear operator on QL, and
that A is the generating function for <Ssf. If t is a number such
that a^t <b, and τ-t is a test function then j^fτ~t{s) = A(t, s), a^s^b.

Proof. By Theorem 1.1, j/τ ? (s) = \\^ξ)dA(ξ9 s) = A(t, s).
Ja

It follows from this corollary that the generating function, J, for
the identity operator, ^ , on QL is given by I(t, s) = — JL(s — t),
a ^ ^ 6. Also, if each of 3ίΓ, £ίf ^ and ^/ί is a linear operator on

s

QL, with generating functions Ky L, and M respectively, and
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then M(t, s) = (*L(£, ξ)dK(ξ, s), a ^ \<> 6.
Jα δ

2* P-operators •

DEFINITION 2.1. Suppose J / is a linear operator on QL. The
statement that s/ is a P-operator means that if / is in QL, and has
the property that for some number c, a < c < 6, /(ί) = 0, ί ^ c then

= 0, 8 ^ c.

It follows immediately from the definition that the identity operator,
is a P-operator; and that sums and products of P-operators are

P-operators. A more interesting result however is:

THEOREM 2.1 Suppose SίΓ is a linear operator with generating
function K. A necessary and sufficient condition that J3Γ* be a P-
operator is that K(t, s) — 0, a :g t :g δ, a :g s ^ t.

Proof. Since K(t, s) = 2K(t, s) — K(t + ,s), a ^ t < b, a ̂  s ^ b,
the necessity of this condition follows Corollary 1.11 and the definition
of a test function.

Conversely, if K(t, s) = 0, a g t ^ 6, α ̂  s ^ ί then K(t, s) = 0,
a^t ^b, a^ s ^t, and by Corollary 1.11 ^ n ( s ) = 0, α ̂  s ^ ί.
If r̂ is in Qz, and for some number k, a < k < b, g(t) = 0, t ^ k, then
any sequence of linear combinations of test functions which converges
to g need contain only test functions τ-t for which t >̂ k, therefore
JsΓg(s) = 0, s <L k, and J%Γ is a P-operator.

From Theorem 2.1 and the properties of the mean integral, it is
clear that if 3ίΓ is a P-operator with generating function K and / is

in Qz then J%Γf(s) = 1 f(t)dK(t, s), α <£ s ^ 6; or in other words, a
Jα

P-operator is an operator of Volterra type.
Throughout the remainder of this section it will be assumed that

JsΓ denotes a P-operator with generating function K. If 3iΓ has an
inverse then the generating function for 3ίΓ~γ will be denoted by K{~1].

The remaining theorems of this section are concerned with necessary
conditions and sufficient conditions for JίΓ to have an inverse which
is a P-operator.

THEOREM 2.2. Suppose there exists a number t, a ̂  t < δ, such
that J%Γτ-t(t + ) = K(t, t + ) — 0. Then J%Γ does not have an inverse
which is a P-operator.

Proof. If J Γ has an inverse then ^r~1STτ-t{t + ) = - 1 . If ^f

is a P-operator then £f^Γτ-t{s) = ysΓτι(ξ)dL(ξ, s). Hence from
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Lemma 1.1, | ̂ 3Γτ~t{s) \ ̂  sup,e[ϊff] | JTrKf) | VZt and SfJίΓτjβ +) = 0.
If t in Theorem 2.2 is α, then <_^ not only does not have an

inverse which is a P-operator, J%Γ does not have an inverse. This
follows because JTτα(α+) = 0 implies that for any fe QL, Jff(a+) = 0,
since for any P-operator %%^9 J?Γτ-t(a+) = 0, a < t < b. If t is not
α then 3ίΓ may have an inverse. As an example, suppose that [α, b]
is [0,1] and let Sf be the P-operator defined by:

= τm)t, O^t^ 1/2; j ^ τ , - τ(1/2)( ί+1), 1/2 < t

Here, .Sf r*(i + ) = 0, 0 < t < 1. However, «Sf has an inverse,
being the linear operator defined by:

= τW)t, 0^t^ 4

1 is clearly not a P-operator.
If Jg^ is a P-operator whose generating function has the property

that for some number t, a ^ t < b and every positive number c, there
exists a positive number d such that if s is in (̂ , ί" + d), F/=* ̂ (ί, β) < c,
then ^r"rϊ(F+) = 0. This follows from Lemma 1.1 since

This condition will be needed in § 3.

THEOREM 2.3. Suppose that <%/ is an operator on QL whose
generating function has the property that for some number h,

o < h <b - a, U(t, s) = 0, a<*s^b, s - h^t^b .

Then Jϊf ~ ^ — W has an inverse and Sf"1 — YJLZ\*2/n, where p
is the smallest integer such that a + ph ^ 6.

Proof. Suppose that g is in QL. Since U(t, s) = 0, a g s ^ 6,
s - h <^t Sb, it follows that

( 1 )
Ό, α g s ^ α + h

hhg(t)dU(t, s), a + h < s ^ b .

By successive applications of equation (1) it can be shown that if q
is an integer, q ^ p, then <%rqg(s) = 0, α ^ s <̂  6. The theorem then
follows.

It should be noted that the hypothesis on ^/ implies that ^ is a
P-operator. Hence Jϊf and £f~x are P-operators.
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THEOREM 2.4. Suppose that K has the property that there exists
a number k, 0 < k < b — a, such that

( i ) K(s — k, s) is a left-continuous function on [a + k, b], and
(ii) the P-operator, J%f, generated by

ί
K(s — fc, s), α + & < s g δ, a ^t ^ s — k

K(t, s), α ̂  8 ̂  α + fc, α g ί ^ 6 or

α -h fc < s g 6, s — k St ^b

has an inverse.
Then 3ίΓ has an inverse, and 3ίΓ~x is a P-operator if, and only if,

γ is a P-operator.

Proof. There exists a unique operator Sf such that
From Theorem 1.1 and its corollary it then follows that if t is a
number in [α, b] then L(t, s) is the unique solution in QL to the
integral equation

K(t, s) - \Άt, ξ)dA(ξ, s), a £ s £ b .
Ja

By direct computation it can be seen that

L(t, s) = - JL(s —t) = L(t, s), if a ^ s ^ a + k, a^

or a + k < s ^ 6, s — k ^t ^b. Hence, Jf — «Ŝ  satisfies the hy-
potheses of Theorem 2.3 and Sf has an inverse. Therefore t_$r~"~1 =

" 1J^~ 1 . The remaining assertions follow immediately since £f and
~1 are P-operators. This completes the proof.

If there exists an integer q such that (^ — Ssf)q \\ < 1, then K
satisfies the hypotheses of Theorem 2.4, and in this case, for each
number t in [a, b] A{~1] is the successive approximations solution to
the integral equation

- JL(s - ί ) = g ( t , s) - j V t , ξ ) d [ - J L ( s - £ ) - A ( ξ , 8)1 a ^ l ^ b ,

and L is the successive approximations solution to

K(t, s) = /(ί, 8) - jV(*, 5 M - Λ(β - ί) - A(f, 8)], α ̂  ^ b

the approximating sequences converging in both cases uniformly in s
on [a, b] for each number t in [a, b]. Consideration of the approximating
sequence for A{~1] shows that in this case J ^ " 1 , and hence J%Γ~λ, is
a P-operator. In particular, if it is true that
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( 2 ) F t U - Ms - ί) - A(t, 8)] g M < 1, a ^ s S b ,

it can be shown that these two approximating sequences are in fact

uniformly convergent on the square a S S b.

If K is right continuous in t for each number s in [α, 6] and A
satisfies equation (2) one would have usable computational techniques
for the determination of K{~1\ since if K has this right continuity
property then so does A. It can then be shown from the approximating
sequences for Ά{~X) and L that they are also right continuous in t for
each number s in [α, 6]. Hence, in this case, A{~1) = A(-1) and L = L.
One would still have the problem of obtaining K{~1] from K{~x\ but
for the solution of many operator problems knowledge of K{~X) would
suffice. The PΓoperators to be considered in §3 will have this right
continuity property.

3. Properators* In this section we will consider a class of P-
operators that are of interest in the study of electrical networks.

DEFINITION 3.1. The statement that a linear operator, ^ , on QL

is a stationary operator means that if each of / and g is in QL and
for some number k, 0 < k < b — α,

(0, a ^ t ^ a + k

~ \f(t-k), a + k < t ^ 6,

(0 α < 8 < a + k

W -k), a + k

then

It follows from this definition, Definition 1.1, and Theorem 1.1,
that a linear operator, £*, is stationary if, and only if, S? has a

representation of the form, S^f{s) — \ f(ξ)d[u(s — £)], where
Ja

JO, a~b^t^0

\^τ(t + α), 0 < t S b - a .

Hence, every stationary operator is a P-operator. It is also a trivial
consequence of Definition 3.1 and this representation that ^ is a
stationary operator and that sums and products of stationary operators
are stationary.

It may also be concluded from this representation that the generat-
ing function for a stationary operator is right continuous in t for each
s in [α, δ], and that u is of bounded variation on [a — δ, b — α].
Furthermore if u* denotes the function defined by u*(t) = F|=α_δ^(ί),
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a — b^t^b — a, then the mapping, S**, given by

(8 - f ) , a^s^b

is a stationary operator on QL.
In [3] and [4], Lane has developed the theory of a class of linear

operators, T0L, on the set, QC0Z, of functions on the real line, which
are quasi-continuous on each closed bounded interval, are everywhere
left continuous, and vanish for negative values of their argument.
A linear operator, £f, is in T0L if, and only if, there exists a function,
u, in QCQL, of bounded variation on each closed bounded interval, such

S CO

f(s — t)du(t).
0

Using the properties of the integral this condition can be rewritten
0, s ^ 0

Thus, the stationary operators on QL are analogous to Lane's T0L

operators.

DEFINITION 3.2. The statement that a bounded linear operator,
JΓ\ on QL is a Pi-operator means that there exists a stationary opera-
tor, £f, such that if each of τp and τq is a test function then

- τq){s) \, a^s^b.

From Corollary 1.11, an equivalent form of Definition 3.2 is

\K(p,8)-K(q,8)\£\φ-p)-u(8-q)\£\u*(8-p)-u*(s-q)\ .

Therefore if 5Z~ is a Px-operator, K—K. Also if ^ dominates
then so does ^ * . From this it may be shown by direct compu-

tation that if each of J3?[ and ^ J is a P^operator with dominating
stationary operators &[ and £^ respectively then ^?* + <pf* dominates
J ^ + J?ί and ^*^f* dominates ^gT^ί.

In the remainder of this section it will be assumed that Jg^ denotes
a Pi-operator, with generating function K, and that & is a dominating
stationary operator for

THEOREM 3.1. 3ίΓ has an inverse which is a P-operator if, and
only if, inf | K(s—, s) \ for s in (α, b] is not zero. Furthermore if
limβ_>β+ JBΓ(s—, β) = 0 then 3ίΓ has no inverse.

Proof. It can be shown from Definition 3.2 that if h, 0<h<b — a,
is a point of continuity of u, then K(s — hy s) is a left continuous
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function on [a + h, b]. It then follows that if / is a function on
[α, b] such that f(s) — K(s—, s), a < s ^ b then / is a left continuous
function on [α, &]. Suppose that f(a) Φ 0 and infs6u,δ] I K(s—, s) | =
L > 0. If Λf is a number, 0 < M < 1, and ft is a point of continuity
of u such that u*(h) — %*(0 + ) ^ ML, then it follows from Definition
3.2 that for every number s in [α, 6],

VU- Ms - ί) ~ [- /(sXTiφ, β)} ̂  ilf ,

where ε is the larger of a and s — h. Let J^~* denote the P-operator
defined by 3T*g{p) = [- / ( s ) ] " 1 ^ ^ ^ , α ̂  s S δ, ίίeQ z. Then J Γ *
satisfies the hypotheses of Theorem 2.4, since ^ — J ^ * is a contrac-
tion mapping. Hence, J ^ * " 1 exists and is a P-operator. It then
follows immediately from Theorems 1.1 and 2.1 that J ^ " 1 exists, and
JK"(-1}(ί, s) = [- / ( s ) ] - 1 ^ " 1 ^ , β) so that J T " 1 is also a P-operator.

If infe6(a,&] \K(s—, s) I = 0 then either there exists a number q in
[α, 6) such that lims_g+ K(s —, s) = 0 or a number p in (α, 6] such that
K(p — , p) = 0. In the first case it can be shown from Definition 3.2
that if c is a positive number there exists a positive number eZ such
that Vi=q K(ξ, s)< c, g < s < gr + d. Hence ίΓ(g, g+ ) = 0, J Γ does not
have an inverse which is a P-operator, and if q = α, ̂ Γ" has no inverse.

In the second case, it can be shown in a similar manner that if
c is a positive number, there exists a positive number d such that
if s and t are in (p — d, p], t < s, then F/=i ίΓ(f, s) < c. Hence
I ̂ fτt(s) I < c for t in (p — d, p] and ί < s ^ p by Lemma 1.1. From
this it follows that there exists a strictly increasing sequence of
numbers, {ίn};u, ί» < p, w = 1, 2, 3, , such that if for each positive
integer n, gn is defined by

α ' P

then the sequence {gn}Z=i converges uniformly to zero on [α, 6], Suppose
now that J^ has an inverse and J ^ " 1 is a P-operator. Since J^""1

is bounded, {^~ιgn}n=ι is also uniformly convergent on [α, 6], But
(flrn ~ ^*" t n)(s) = 0, α ̂  s ^ p, if J T " 1 is a P-operator. Or,
gjβ) = rίn(s), α ̂  s ^ p, and {τίw}χ=1 is not uniformly convergent

on [a, p]. This completes the proof.
If 3ίί is a stationary operator then Theorem 3.1 yields a stronger

result, because in this case K(s—, s) = JΓX(α+), α < s ^ 5. There-
fore either K(s — , s) = 0 or inf | JBL(S—, s) | > 0 on (α, &]. Consequently
a necessary and sufficient condition that a stationary operator, JίΓ,
have an inverse is that SΓτa(a + ) Φ 0. Furthermore the inverse of
a stationary operator must be a P-operator, and it can be shown by
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applying the construction used in the proof of Theorem 2.4, and the
remarks following Theorem 2.4, to a stationary generating function
that the inverse must be stationary also. This is analogous to Lane's
result for the operators in T0L [3].

From Theorem 3.1 and its special form for a stationary operator,
it may be concluded that if J^* is a Pi-operator and there exists a
stationary operator, S*, which has no inverse and dominates J%Γ,
then JΓ" has no inverse, since | J%Γτa(s) | ^ | <9*τa{s) |, a g s S b, from
Definition 3.2.
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