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MODULAR PAIRS IN ORTHOMODULAR LATTICES

ERIK A. SCHREINER

Call an orthomodular lattice L M-symmetric if M(e, f)
implies M(f,e) for all e¢,fe L and O-symmetric if Me, f)
implies M(f7,e’). To check for these properties it is sufficient
to consider only those modular pairs in which the two elements
are complements, Every O-symmetric lattice is //-symmetric.
In an atomic orthomodular lattice, M-symmetry is equivalent
to the atomic exchange property.

The orthomodular lattice L(H) of closed subspaces of a Hilbert
space H satisfles both symmetries but apparently for separate reasons.
G. W. Mackey has shown [4, Theorem III-6] that two closed subspaces
of H form a dual modular pair in L(H) if and only if their vector
sum is a closed subspace. Thus the natural symmetry, M-symmetry,
depends on the topology of H. O-symmetry arises in L(H) as a
consequence of properties of bounded linear operators on H with closed
ranges. It is the purpose of this paper to investigate these symmetries
in arbitrary orthomodular lattices. Recent results of A. Ramsay [8]
and M. D. MacLaren [7] have shown M-symmetry to be of importance
in the study of locally finite dimension lattices. The Baer x-semigroup
coordinatization theory for orthomodular lattices, developed by D. J.
Foulis [2], enables us to adapt the idea of an operator with a closed
range and conveniently and naturally introduce O-symmetry into
arbitrary orthomodular lattices. '

Confining our attention to orthomodular lattices, we first establish
certain general properties of modular pairs. Using these results we
develop characterizations of M-symmetric lattices and O-symmetric
lattices in Theorem 7 and Theorem 8. That O-symmetry implies
M-symmetry is established in Theorem 9. In §4, atomic orthomodular
lattices satisfying the atomic exchange property introduced by MacLane
[5] are considered. Using specializations of the approach and procedure
used by Ramsay in [8] it is shown that M-symmetry is equivalent to
the atomic exchange property.

The author would like to express his appreciation to Professor
D. J. Foulis for the many helpful suggestions he has made during the
writing of this paper,

2. Modular pairs. In order to establish certain properties of
modular pairs in orthomodular lattices, we shall make use of the
Baer x-semigroup approach as defined and developed in [1, 2, 3]. We
shall restrict our resume of definitions and results to a minimum of
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chiefly notational conventions. An orthomodular lattice is a lattice L
with 0 and 1 which is equipped with an orthocomplementation ': L — L
which satisfies the orthomodular identity e = f=f=eV (f A\ €).
Recall that an orthocomplementation maps each element e¢c L onto a
complement ¢’ of e in L in such a way that ¢’ = ¢ and e = f=f'= ¢
for all ¢, fe L. Examples and basic properties of orthomodular lattices
may be found in [1, 2, 3]. While some of the following concepts make
sense in arbitrary lattices we shall make the following restriction; L
will always represent an orthomodular lattice.

If ¢, fe L, the ordered pair (¢, f) is called a modular pair, written
Me, f), if ge L with g =< f implies g V(e Af)=(9 Ve) Af. For
e, fe L, we say that e commutes with f, written eCf, if e = (e A f) V
(eNf). If e<f, the interval L(e, f) ={geL:e =g = f} is an
orthomodular lattice with orthocomplementation g—g* = eV (f A ¢) =
(eVg)Af.

In a Baer *-semigroup S, P’ = P'(S) denotes the set of all closed
projections, i.e., ec P’ if e=¢* =¢* and e=¢". In S one may
generalize the concept of a bounded linear operator on a Hilbert space
with closed range as follows: [1, p. 890] €S is range-closed if
ge P'(S), g = 2" and (ga*)” = (x*)” imply g = «”. This is equivalent
to the condition [(ex*)'z]” = ¢ A a” for all ee P’. We shall use the
following result of Foulis |3, Theorem 28].

THEOREM 1. Let S be a Baer *-semigroup and e, f elements of
the orthomodular lattice P'(S). Then M(e, f) in P'(S) if and only
if €'f is range closed in S.

In P'(S) one has e A\ f = (¢f)'f and e¢Cf if and only it e¢f = fe
in S.

LEMMA 2. Let S be a Baer *-semigroup, x,y€S. Then zy
range-closed implies 2"y is range-closed. Conversely, if x and 2"y
are range-closed, then xy ts range-closed.

Proof. Suppose xy is range-closed and g€ P'(S) with g = (2"y)”
and (gy*e")"” = (y*«"”)". Theng = (vy)” and (gy*x*)"” = ((gy*z*)"2*)" =
(y*a"x*)" = (y*x*)”. Hence g = (xy)”’ = (#"'y)” so "'y is range-closed.

Conversely, let 2 and 2"y be range-closed. Then

(oY ayl” = [((ey™)"a*Ya} "y} = [((ey”) A a")yl"
— [(ey*xll)’xlly]ll — 6I /\ (my)ll
for all ee P’(S) so zy is range-closed.

Applying Theorem 1 and Lemma 2 one has for ec P'(S) and a
range-closed element x € S that xe is range-closed if and only if M(2/, ¢).
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Therefore, if 2 is range-closed and xe = ex, xe must be range-closed,
for xe = ex implies that x'e = ex’, so #'Ce and hence M(z', e).

THEOREM 3. Let e, f,ge L = P'(S). If M, f), gCe and gCf,
then:

(i) M(eVyg, fVg).

(1) Me Ag, fA9).

(ii) M, f A g).

(iv) MV g, f).

Proof. By Theorem 1, ¢'f is range-closed. The hypothesis on g¢
implies that ¢ and ¢’ permute with ¢ and f and thus with ¢'f. Now
eV ) (fVg) =eg(fg) =e(fAg)=efg which is range-closed by
the preceeding remark. Thus M(e \/ g, £V g). The other three cases
may be proved in a similar manner or by direct lattice theoretical
arguments,

Of the four other possible alterations of the pair (e, f) using g,
the pairs (e V g, f A g) and (e A g, f A g) are automatically modular
sinece the elements are comparable, The pairs (¢, £V g) and (¢ A g, f)
are not necessarily modular.

One may derive another result as a consequence of Lemma 2
which amounts to an essential simplification of part of a theorem due
to Foulis [1, Theorem 10].

THEOREM 4. The orthomodular lattice L = P'(S) 1s modular f
and only if S, the sub-Baer *-semigroup generated by the closed
projections in S is range-closed.

Proof. We point out that for an arbitrary orthomodular lattice
L there are, unfortunately, many Baer *-semigroups that coordinatize
L. However, there is a unique (up to isomorphism) minimum one,
namely S,, coordinatizing L. If S, is range-closed, that is, if every
element of S, is range-closed, then for all ¢, fe L, ¢'f is range-closed
so M(e, f) and L is modular. Conversely, suppose L is modular, We
use induction on the number of closed projection factors in the element
vxeS,. If x=ec P’(S) then z is range-closed. Now assume that all
products of % closed projections are range-closed and let 2z =
€05+ * €,8,41, ¢; € P(S) Since e, - - - ¢, is range-closed and M((¢.e, « - - ¢,),
€,+1), Dy the remark following Lemma 2, z is range-closed

The pair (e, f) is not modular if there is a ¢g < f with
gVeNnf)<(gVe Nf Letting h=gV(eAf) one has 2V
(enNf)<(hVe)AN[f wheree A f<h <f. Asa result, the pair (e, f)
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is modular in L if and only if it is modular in L(e A f, e \V f).
More generally, if e, fe L(a, b), then (¢, f) is modular in L if and
only if (e, f) is modular in L(a,b). This observation simplifies our
considerations.

The ordered pair (e, f) is said to be a dual modular pair, written
M*(e, f), if h= f implies R A(eV f)=(h Ae)V f. As the final
result of this section, we collect a number of facts about modular and
dual modular pairs.

THEOREM 5. Let e, fe L. Then:

(1) M*(e, f) if and only if M(, f’).

(ii) If e, fe L(a,b), M*(e, f) in L if and only if M*(e, f) in
L(a, b).

(ili) Mde, f) for all fe L if and only if M*(e, f) for all fe L.

(iv) Mde, f) for all fe L if and only if M(e', f) for all fe L.

(V) M, f) for all ec L if and only if M(c, f) for all comple-
ments ¢ of f im L.

(Vi) If e Nf=0, e, <e, fi=Ff, then Mle,f) implies M, f.).

3. Symmetries of modular pairs. In this section we consider
some general properties of two symmetry conditions on modular pairs.

DEFINITION. An orthomodular lattice L is said to be M-symmetric
if for all e, fe L, M(e, f) implies M(f, e).

An M-symmetric lattice is sometimes said to be semi-modular.
Referring to the remark following Theorem 3, if L is M-symmetric,
we do have M(e, f), gCe and ¢gCf imply M(e, f\V g) and M(e A g, f).
However, these implications do not imply that L is M-symmetric.

If P is any lattice property, then a lattice is relatively P if every
interval L(a,b) satisfies P. Since we have for e, fe L(a,b) that
Me, f) in L if and only if Me, f) in L(a, b), it follows that an
M-symmetric lattice is relatively M-symmetric.

The second type of symmetry to be considered considered concerns
the ordered pairs (e, f) and (f’, ¢’). In terms of coordinatizing Baer
*-semigroups this arises in the following natural manner, In the
semigroup of all bounded operators on a Hilbert space, it is known
that an operator is range-closed if and only if its adjoint is range-
closed. Thus if ¢’ and f are projections, then e'f is range-closed if
and only if (¢'f)* = fe' is range-closed. Using Theorem 1, this trans-
lates into M(e, f) if and only if M(f’, ¢’). The orthocomplementation
involved is reflected in the following terminology.

DEFINITION. An orthomodular lattice L is said to be O-symmetric
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if for all ¢, fe L, M(e, f) implies M(f', e).

The third possible symmetry, connecting (e, f) and (¢, f'), will
not be considered since there seems to be no natural way in which it
occurs. Morever, it is a composite of M-symmetry and O-symmetry.

Now, using the fact that the relative orthocomplement of g € L(a, b)
is g = (¢ Ab) V o and Theorem 3, we derive the following result,

THEOREM 6. If e, fe L(a,b) then M(f* e) of and only if
M(f', ). Thus an O-symmetric lattice is relatively O-symmetric.

Proof. Assume M(f? ¢f). Since f* and ¢! both commute with
o, M(f% ¢) implies M(f* A o', ¢ A a/). Since these two elements
commute with &' we obtain M((f* A o) V ¥, (¢ Na’) V). But
(ENAVVY =([(f"Ab)Va] Aa) VI =f and FAd)VY=2¢
so we have M(f’, ¢’). Conversely, since f’ and ¢ commute with b and
since f/ A band ¢’ A b commute with a, M(f', ¢') implies M((f’ A b) V a,
(¢ Ay V o), that is, M(f% e)*. The second conclusion now follows
immediately.

The mapping g—g A o’ is an isomorphism from L(a,b) onto
L(0,b A o) that preserves relative orthocomplements. Denoting this
mapping by o, we have for ¢, fe L(a, b), M(e, f) in L(a, b) if and only
if M(ep, fp) in L(0,5 A a’). Since the first condition is equivalent to
Me, f) in L we see that to investigate L for M-symmetry it is enough
to consider pairs (e, f) such that e A f=0. This establishes the
equivalence of (i) and (ii) in the following characterization.

THEOREM 7. Let L be an orthomodular lattice. The following
conditions are mutually equivalent:

(i) L is M-symmetric.

(ii) For e, fe L with e A f = 0, Mle, ) implies M(f, e).

(ili) For e, fe L with e a complement of f, Mle, f) itmplies M(f, e).

Proof. We need only establish that (iii)— (ii). Thus suppose
that (iii) holds. Let ¢ A f= 0 and Mfe, f). Then eV (eV f) is a
complement of f and since ¢ and f commute with (e \V f), M, f)
implies M(e V (e \/ f), f). By (iii) we obtain M(f,eV (eV f)). Ap-
plying Theorem 5 (vi) we have M(f, e).

For O-symmetry we have a similar result.

THEOREM 8. Let L be an orthomodular lattice. The Sfollowing
conditions are mutually equivalent:

(1) L is O-symmetric.

(ii) For e, fe L with ¢ A f= 0, Mle, f) implies M(f’, ¢').
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(iliy For e, feL with ¢ a complement of f, M(e, f) implies
M(f' €).

Proof. (i) = (ii). By Theorem 6, when considering the pair (e, f)
it is sufficient to consider the interval L(e A f, e \V f). By the remark
preceeding Theorem 7, it is enough to consider only intervals of the
type L(0, g).

(i) = (ii). Suppose M(e, f) where e A f=0. As e and f both
commute with (e \V f), M(eV (e \V f)',f) by Theorem 3. Since
eV (e V f) is a complement of f, we have M(f', ¢ A (e V f)). Now
f and ¢ A (e V f) both commute with (e \/ f) so, again by Theorem
3, we obtain M(f'\V (e f),[¢ A (eV )]V (¢eV f)) which is pre-
cisely M(f', é).

That (ii) = (iii) is clear.

We are now in a position to establish the following connection
between the two symmetries.

THEOREM 9. Ewvery O-symmetric lattice is M-symmetric.

Proof.t Let L by O-symmetric, ¢, fe L with e A f=0. By
Theorem 5, M(e, f) implies M(g, f) for all g < e. Thus, forall g = e,
M(f’, ¢') which is equivalent to M*(f, g). This last statement implies

M7, e).

Whether the converse of this theorem holds is still an open ques-
tion. In addition to the similarities shown in Theorems 7 and 8, both
properties are preserved under the taking of direct products.

4. Atomic orthomodular lattices. For a,be L, if a <b we
say that b covers a if a <c¢ =b implies ¢ =b. An element that
covers 0 is called an atom. L is called atomic if every nonzero
element dominates an atom. In an atomic orthomodular lattice every
nonzero element is the supremum of the atoms it dominates. An
atomic orthomodular lattice is said to satisfy the atomic ewchange
property (AEP) if ¢ and b atoms with a = bV e and a £ ¢ implies
b=aVe.

Prime tools in the coordinatization theory of orthomodular lattices
are the mappings ¢,: L — L defined for each ec L by ap, = (a \VV €') A e.
@, 1s called the Sasaki projection determined by e. Such mappings
are monotone and preserve arbitrary suprema [2]. An atomic lattice
is said to satisfy the atomic projection property (APP) if for all
atoms o and for all ec L, a £ ¢ implies ap, is an atom.

! The author is indebted to the referee for this simple proof.
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LEMMA 10. Let L be an atomic orthomodular lattice. The
Sollowing conditions are mutually equivalent:

(i) a an atom, a A b =0 implies a \/ b covers b.

(i) L satisfies APP.

(i) L satisfies AEP.

(iv) ban atom, x =bV e and x £e imply b = \V e.

(v) For all atoms ac L, M(a, e) for all ec L.

The proof, which is routine, is omitted. If L satisfies AEP it
also satisfies the condition @ and b cover a A b if and only if a Vb
covers a and b, In the sequel we make use of all these conditions.

LEMMA 11, Every M-symmetric, and hence every O-symmetric
atomec lattice L satisfies AEP.

Proof. For all atoms a € L and all ee L. M(e, a) and hence M(a, €).

A nonempty subset A of L is an ideal if a, b€ A implies a V be A
and @€ A, e = a implies ec A. If A and B are ideals, then AV B =
{e:e = a Vb for some ae A, be B} is the smallest ideal containing A
and B. For a,be L, say that o and b are orthogonal, written a L b
if « =0. For orthogonal elements write a@b for a Vb If
{a;:%2 =1,2,---, m} is an orthogonal family, that is, if 7= 7 implies
a; L a; we write a, Pa,P---Pa, for a, Va,V---Va,.

Henceforth, L will always denote an atomic orthomodular lattice,
We shall call be L finite if b = 0 or b is the join of a finite number
of atoms. Let J denote the set of all finite elements in L. Minor
modifications of the proof of [6, Theorem 4.1] enable us to show that
if I satisfies AEP then J is an ideal of L. Moreover, if we define
on J the integer valued function deg (b)) = min {%n:b is the join of =
atoms} then for be J,deg (b)) = n if andonly if b=a, P a.PH - Pa,
where each a; is an atom.

LEMMA 12. If L satisfies AEP and bed then bp,cJ for all
ec L. Moreover, deg (bp,) = deg (b). If ac L has a common comple-
ment with b then aed and deg (a) = deg (b).

Proof. Let b=a,P--- Pa,,a; atoms. Then bp, =a.p,V -+ V
a,p. and each nonzero a,p, is an atom by APP. Thus deg (bp,) =deg (b).
Now if ¢ is a complement of both o and b, then bp, =¢€ so eeJ
with deg(¢) = deg (b). Since ¢’p, = b, deg (b) = deg(¢’). Since é'p, = a
and ap, =¢€,aecJ and deg (a) = deg (¢/) = deg (b).

THEOREM 13. Let L satisfy AEP. Then beJ implies M(c,b)
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and M, c) for all ce L. Therefore J is a modular sublattice of L.

Proof. Since the modularity of the pair (b, ¢) depends only on
the interval L(b A ¢, b \/ ¢) we may assume b A ¢ = 0. Let deg(b) =n
sob=a,d---Pa,, a; atoms, Let e =c. To show M(b, c) we must
proves = (eV b ANcAe =0 Assumer+0. SincerhLe h=a, Ve
implies a, < % V e < ¢ contradicting b A¢=0. Thus 2 ZLa, Ve If

h&a,V---Va; Ve then A=a V -+ Va;Ve imple a;=
V- -Va,VhVe=a V- Va_ Ve Let

d:a1®"'@aj—l@aj+l@...@an

and join d VV ¢ \V (b \V ¢)’ to both ends of the last inequality. This
yields 1=dVeVv (Ve Since dAfeV dVe)l=0cV©OVec)
is a common complement of b and d. But then n — 1 =deg(d) =
deg () =n by Lemma 12. This contradiction establishes that
ht&a V-V a;Ve By induction, 4+ 0 implies 2 £ bV e. How-
ever, h = (¢ V b) A ¢ A ¢ so we must have 2 = 0. Thus M(@,c) for
all ce L,

By Theorem 5, to test M(c, b) for all ce L it is sufficient to
consider only complements of b. If ¢ is a complement of b such that
(¢, b) is not modular, there exists e < b with ¢ < (¢ V¢) A b. Since
(eVe)Abed and ¢ have the common complement ¢ V (e V ¢,
deg (¢ V ¢) A b) = deg (¢) < deg ((¢ \V ¢) A b). This contradiction es-
tablishes the theorem.

Note that by Theorems 5 and 13, if beJ we also have M*(c, b)
for all ce L.

A subset A of L is called join-dense in L if every element of L
is the join of some subset of A. In an orthomodular lattices this is
equivalent to the condition b # 0 implies A N L(0, b) contains a nonzero
element. We point out that completeness of L is not necessary for
this equivalence. If L satisfies AEP, J is a join-dense modular ideal
of L. For nonzero be L, let J(b) = J N L(0,b). If L satisfies AEP,
since L(0, b) and J are ideals of L, J(b) is an ideal of L as well as
an ideal of L(0, b).

We now generalize the theorem of Mackey mentioned in the
introduction. Note that for A, Be L(H), A + B is closed and therefore
equals A \/ B if and only if there are no one-dimensional subspaces
contained in 4 \/ B but not in A + B. We first treat the analog of
a finite dimensional subspace, in which case A + B= A \/ B always
holds.

LEMMA 14, Let L satisfy AEP. If acL and bed, then
J(a V b) = J(a) \/ J(b).
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Proof. Clearly J(a) \V J(b) C J(a \V b). Now let ec J(a \/ b). Since
evbed, Vb ANacda) and Ma,e\Vbd) so ((eVvd) Aa)Vb=
eV b, Thus e\ beJ(a) Vv J(b) and since e < e \V b, ec J(a) \/ J(b).

THEOREM 15. Let L be an atomic orthomodular lattice satisfying
AEP. Then for a,be L the following conditions are mutually equiva-
lent;

(1) Ja v b) = Ja) Vv JO).

(i) J(a) Vv J(b) s join-dense in L(0, a \/ b).

(iii) M*(, a).

Proof. That (i) = (ii) is clear.

@)= (i), Let a=¢=<aVvbd To show c=aV (bAc), it is
enough to show J(a) V J(b A ¢) is join-dense in L(0,c). Thus let
ec L(0,c) with e = 0. Since L(0, ¢) C L(0, @ \/ b) there is an fe J(a)
and ge J(b) with (f\Vg) Ae=0. Sete, = (fV g) Ae By Theorem
13, M(g,fVe) so fFV(AN(fVe)=fVe. Since gA (fVe)e
L©,b ANc),fVe and hence e, belongs to J(a) Vv J(b Ac). Since
e, %= 0, J(a) V J(b A ¢) is join-dense in L(0,¢). Thus ¢ =a \V (b A ¢).
That is, M*(b, a).

(iii) = (i). We mneed only show J(a Vv bd)cJ(a)V J(b). Let
ecdaVb),g=ep,and f=(eV a) A\ a'p,. Since M*(b, a),f\V g =1.
As fNg=0,9 is a common complement of g and f. Thus, by
Lemma 12, ecJ implies geJ which in turn implies feJ. Making
use of the orthomodular identity and M*(b, a) we have aV f=
aVaA)Vi=aVvbA(@Ve)=a\Ve Since fed, by Lemma
14, J(aVe)=dJaVv f)=dJ@) Vv J(f). Thus f= b implies

ecd(a Ve cJa) Vv JOb)
so (i) holds,

COROLLARY 16, An atomic orthomoduwlar lattice s M-symmetric
if and only if it satisfies AEP.

Proof. Necessity was established by Lemma 11, By Theorem 5,
M-symmetry is equivalent to the symmetry of dual modular pairs,
Sufficiency thus follows since condition (i) of Theorem 15 is symmetric
in a and b.
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