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SOME METRICAL THEOREMS
IN NUMBER THEORY

WALTER PHILIPP

In this paper some metrical theorems on Diophantine
approximation, continued fractions and ¢-adic expansions are
proved.

In the first part some of the common properties of the
following transformations from the unit interval onto itself
are investigated. Denote by {a} the fractional part of x,

A, T:a-{aa} a >1 integer

which describes the expansion of «a in the scale a

B. T:a—»{l}
a

which describes the continued fractions
C. T:a—{0a} 0 >1 noninteger

which describes the expansion of a as a f-adic fraction.
The main theorem of the first part (Theorem 2) gives an
estimate of the number of solutions of the system of inequalities

Trac I, lsk=n

where 7 is an integer, T is any of these three transforma-
tions and (I;) is an arbitrary sequence of intervals contained
in the unit interval.

It generalises and refines well known theorems on the distribution
function of the sequence (7*a). Theorem 2 follows from a very
general theorem—a quantitative Borel-Cantelli Lemma.

It is also shown that T is strongly mixing (Theorem 1). The
gsecond part of the paper deals with the metric theory of continued
fractions, Theorems of LeVeque and Bernstein are refined.

1. Frequently a real number « is represented in one of the
following ways :

A. in the scale @, where ¢ > 1 is an integer,

B. as a continued fraction,

C. as a @-adic fraction, where # > 1 is a noninteger.

Let us recall some of the properties of these representations :

A. If a > 1 denotes an integer then every a € [0, 1) can be written
as

< Cr < Cr yn+1
o — — = PN S
kgi a* kz=; ak a”
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where the digits ¢, are nonnegative integers less than e and 0 < y, <1.
The representation can be made unique.
Define on [0, 1) the transformation T

T:a— {aa}
Clearly for » = 0 we have
yn+1 - yn+l(a) - Tna - {ana} .

As is well known T preserves the Lebesgue-measure and T is ergodic.
(For definitions and theorems in ergodic theory see Halmos [5] pp.

5-37).
B. Every a e (0, 1] can be expressed as a simple continued fraction

(1) a:[alya27“']

where the partial quotients a; = a,(«) are positive integers. Again,
the representation can be made unique. If « is given by (1) then
the finite continued fraction

[a’ly Ay =0y a’%] :&'
qn

is called the n-th convergent. It is in its lowest terms.
Define on (0, 1] the transformation 7'

rea-f2)
or else
T([as(a), ax(@), «--]) = [ax(@), aa), ---].
Then clearly for n» = 0 we have
Wpia(@) = a:(T)
and
Zopi(@) = T = [@,,.(@), Qpus(@), -+ -] .
Define on (0, 1] a measure p by setting

1 dx

F) = —
HE) logzgyl—{—x

for every Lebesgue-measurable set E. Knopp [13] proved that T is
ergodic with respect to the Lebesgue-measure. Ryll-Nardzewski [21]
showed that T preserves p and that p is equivalent to the Lebesgue-
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measure (i.e. both are absolutely continuous to each other).
C. For a fixed noninteger 6 > 1 define the transformation 7T on

[0, 1)

T: a — {fa} .
Put
ml - aa Ly = {0931}, M) xn—:—l - {6xn}y et
>\11 f [0&], ceey >\/n — [6;1?%]’ e

For n =0 we have 2,., = 2, ,(®) = T"a. Clearly 0 =\, <6, 0=2,<1
and

o = k:il"i—)—_—_x”"“

k =1 010 07&

M8
col;/

k=1

Rényi [19] proved that there exists a unique measure p invariant
under T and equivalent to the Lebesgue measure and furthermore
that T is ergodic with respect to .

Write A,(1) = A, and z,(1) = ¢,. Denote by @,{t) the characteristic
function of [0, v). Put (Gel’fond [4])

|78
r—1 °

o(t) = —i—i Purl?) T = ; .

= T gt

Cigler [3] showed that this unique measure g is defined by setting
W(E) = S o(a)de
B

for every measurable set £ [0, 1).

The explicit formula for the invariant measure has been also
found, independently by Parry [17] who additionally remarked that T
is even weakly mixing.

Now it is necessary to say a few words about the notation. In
the remainder of the §1 and in §4 T always means any one of the
three transformations and g always stands for the invariant measure
associated with 7T as described in Sections 1 ABC. For example
Theorem 2 ABC in fact consists of three theorems and should be in-
terpreted to mean that Theorem 2 holds for each of the three trans-
formations and further that in Theorem 2A u(I) — where I = (a, b)
is an interval—stands for b — @, that in Theorem 2B p(I) means

18” dx

1
= log (L + b) — log (1
log2Jal + 2 log2(0g< +0) —log (1 +a))

and ;that likewise in Theorem 2C y(I) denotes Sba(t)dt. Throughout
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the paper ‘‘almost all’”’ always means all except a set of Lebesgue-
measure 0.

In the first part of this paper some of the common properties of
these transformations are investigated. I shall prove:

THEOREM 1 A, B, C. T is strongly mixing.

Theorem 1A is well known. It holds even for a compact con-
nected abelian group (Hartman, Ryll-Nardzewski [9], p. 169).

This paper was already typed when Professor Krickeberg in a
letter kindly called my attention to a paper of Rohlin [20]. Rohlin
showed that a wide class of transformations are—what he calls—exact
endomorphisms and consequently that they are mixing of every degree
which implies strongly mixing. Since the proof I give is different
from Rohlin’s proof and since Theorem 1 is a straightforward applica-
tion of some lemmas used to prove Theorem 2, I did not withdraw
Theorem 1. Furthermore its proof can be easily extended to show
the mixing property of every degree.

In analogy to some results on Diophantine approximation we get:

THEOREM 2A, B, C. Let T be any of the three transformation
associated with its invariant measure (1t as described in A, B, C. Let
(I,) be an arbitrary sequence of intervals contained im the unit
interval. For any positive integer N and < [0, 1] denote by A(N, x)
the number of positive integers m = N such that T xecI,. Put

SN) = 3, p(,) .
Then
A(N, %) = ¢(N) + O(¢"*(N) log***¢(N)) &> 0

Sfor almost all xe]0, 1),

LeVeque [15] has proved theorems of the same type as Theorem
2A for arbitrary sequences (a,) of integers instead of (a”) under
certain assumptions on the intervals I,. Recently, his results have
been extended by Walker [26]. The novelty in Theorem 2A is the
arbitrariness of the intervals I,; in particular that we can dispense
the assumption that the sequence (y¢(I,)) is decreasing, This is not a
contradiction to a theorem of Cassels ([1], p. 215) since with Cassels’
notation every subsequence of (a") is again a X-sequence and so the
method of proof of Cassels’ theorem does not apply to our case.

Theorem 2 is a generalization and refinement of some well known
results on distribution functions of certain sequences. p(x) is called
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the distribution function or distribution measure of the sequence
()0=z, =) if forall0 <o =<1
lim = p(x) .

n—>00

A(n, x)
n

Here A(n, x) denotes the number of positive integers k < % such that
2, < x (see Cigler und Helmberg [4], §7). In each of the cases ABC
the individual ergodic theorem implies at once that the sequence (7 "«x)
has the distribution function p(2) for almost all & — p(x) is the measure
of the interval (0, #) — p invariant under 7. These results are well
known (H. Weyl [27], Ryll-Nardzewski [21], Gel’fond [7]). The case
A follows also from the fact that (a"«) is uniformly distributed for
almost all «. Putting in Theorem 2 I, =1 =(0,2) for n =1,2, ---
we get at once

COROLLARY ABC. For 0 = 2 =1 denote by A(n, a, &) the number
of positive integers k < n such that T'a < x. Then for almost all «

Aln, a, x) = np{x) + On"* log¥***n) e>0

where p(x) denotes the p-measure of the interval (0, x) — p invariant
under T.

2. A quantitative Borel-Cantelli Lemma. Throughout the
rest of the paper |E| denotes the measure of F in the underlying
measure-space.

THEOREM 3. Let (E,,n = 1) be a sequence of measurable sets in
an arbitrary probability space. Denote by A(N, x) the number of
integers n = N such that x€ E,. Put

Suppose that there exists a convergent series >, C, with C, = 0 such
that for all integers n > m we have

(2) | E.NE,| = |E,||E,|+|E,|Co.
Then
A(N, z) = ¢(N) + O(¢"*(N) log***+*¢(N)) e>0

for almost all x.

Theorems of this kind have been proved by LeVeque [15] and
W.M. Schmidt [22] for particular sequences of sets on the real line,
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In an earlier draft I obtained the error term O(¢*}(N)log'**¢(N))
using a well known device of H. Weyl [27]. However, it was pointed
out to me that W.M. Schmidt’s [22] modification of Rademacher’s
method for orthogonal sums gives a better estimate. In the following
proof I shall use Schmidt’s method.

Proof. In case that ¢{co) < « the theorem follows from the
convergence part of the Borel-Cantelli lemma even without assuming
(2). So we may assume that ¢(N)— co. Denote by +,(x) the char-
acteristic function of E,. For m < n put

3

Am, ) = 35 @)

)

and

d(m, n) = S A(m, n, 2)dp() .

Then clearly ¢(0, N) = ¢(N) and A(0, N, ) = A(N, ). Using (2) we
obtain '

Jaqm, n, &) — gm, mydp)
=2 S (B0 B+ dm, ) — $m, )
< gom,w) — om0 +2_ S (BB +2 3 | BICo
< dtmm) +2 5 Bl 5 Co _

m<i<J

(3)

= O{g(m, n)) .

For integer u = 0 we define N, to be the largest integer N such
that ¢(N) < u. Denote by L, the set of intervals (u, v] with v =
t:25,v=(t+1)2°< 2 where s=0,t=0 and =1 are integer.
Now

21 9(Nyy N,) = ¢(Nyr) < 2

where the summation is extended over all (u, v]e L, corresponding to
a fixed s since these intervals cover (0, 27] exactly once and thus the
corresponding intervals (N,, N,] cover (0, N,-] exactly once. Clearly
s =7 and so

(4) > (N N,) < (r + 1)27.

(u,v]€L,

Put
Z, = Z(r,x) = >, (A(Ny N, @) — ¢(N,, N,))*.

(u,0] €Ly

Then (3) and (4) imply
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S Z,dp(z) = O(r2)

or
[ 5Zdpte) = 0=y .
27'7,.275
Therefore
(5) Z, = O(2rr**)

for almost all . If w is an integer and 2™ < w =< 2" then (0, w]
can be represented as the union of at most » intervals of L, and thus
so can (0, N,]. Hence

A(va .’B) - é(Nw) - E A(Nm va x) - ¢(Nuy Nv))

where the sum is over at most » + 1 intervals (u, v]e€ L,. This equa-
tion together with (5) and Cauchy’s inequality yields

(A(N,, ) — §(N,)* = O(2rr*+

almost everywhere. Hence the theorem is true for all N= N, If
N is arbitrary find w such that N, < N < N,.,. We obviously have

A(N,, ) = AN, ) = AN, .1, )
and
$(N,) = ¢(N) = ¢(N,o) .
Since
H(Nyii) = ¢(N,) + 0(1)
the result follows.

3. The overlap estimates.

3A. This section deals with the situation as described in Section 1A.

LEMMA 1. Let P >1 be an integer and let E = (z,, x,) be an
interval and F be a measurable set both contained in [0,1]. Then

|ENS-F|=|E||F|+ 2P| F|y

where |7| =1 and S denotes the transformation a— {Paj,

Proof. If p(t) denotes the characteristic function of F with
period 1 we have
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|\ENS-F| = Y"’p(m)dt - P—lgi”p(t)dt
=|E||F|+2P'|F|p |n|=1.

3B. We use now the notation introduced in Section 1B. We
begin with a lemma which is essentially due to Khintchine [10, 11]
(see also [12] p. 89).

LEMMA 2. Let E ={ala(a) =1, -, ar (@) = r,} and let F be a
measurable set. Then'

[ENT*F|=|E[|F|1+0¢™) ¢<lL1.

Proof. For 0 < 2 =1 denote by ¢,(x) the (y#-)measure of the
set—Khintchine used the Lebesgue-measure—

(6) {a ] al(a) =Ty vy, a/lc(a,) = T, Tn+ka < 5(?} .

Then ¢,(x) satisfies the functional equation

(1) 2.0 = 5 (pe(5) — o)) -

In fact, T""*a < x is equivalent with

1 1
0 é Tn+k-—1a _[ Tn-}-k—la] < z

or else with

L o=l

g+ g

for g = 1,2, ---. But this implies (7).
Now we are going to compute @,(x) and its derivatives; o,(x) is
the measure of the set

M:{alal(a) :’i"], "')ak(a) = Irk, Tka< .’X?}.

Consequently M is just the interval with the endpoints 7p,/q;,

(P + Dei®)/(Qy + Q1) Where p,/q, = [r,, -+-, 7,]. This follows from
the fact that a € M is equivalent with

a=|[r, vy, + TFa], T'a < x.
Hence, by computation

1 Throughout the rest of the paper ¢,p and the constant implied by 0 are
absolute constants unless otherwise stated.
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log 2-p,(x) = (—1)k<log <1 + %) _ 1Og<1 +§:_)>

log 2-py(®) = (01 + 9)2 + P(Dr—s + Q)@ + (D1 + €1)Ti—s)
+ Qs (Prey + Qy)@®)
log 2- ¢ (x) =
_ (Pr—s + G + (P + 0 %es + 205 «(Dies + Q1)
((Dr + @) + (Dt + G + (D + Gt + Geos(Pis + Gioy) @)

and

log 2-| E| = (—1)*log (1 b '
og 2-| K| = ( )°g< +(pk+qk)(Qk+Qk—l)>

Write
Pa(®) = [ E|7pu(®) .
Then +,(x) also satisfies (7) and by the last set of formulas we obtain
0<|yix)] =4 and |yi(x)] <32 xe(0,1].
Hence a theorem of Kuzmin yields (see [10] or [12] p. 78)

1 1
log2 1+ «x

=eq’

o) —
where ¢, and ¢ < 1 are absolute positive constants. Integrating from
a to b we obtain

[ YulD) — Yral@) — [Fl S e(b—a)g’ =c|Flq™ .

This proves the lemma for the case that F = (e, b) is an interval,
Now qr,(x) defines a normed measure 4, on [0, 1) in the usual way.
We rewrite the last inequality as

Cipll) = pu(l) = CopiI)

where C! C, are constants. It follows that this inequality holds for
arbitrary measurable sets F'c [0, 1).

Note. If @,(x) is defined to be the Lebesgue-measure of the set
(6) a theorem of Szusz [24] gives a sharper estimate. Strangely
enough the hypotheses of Sziisz’ theorem are not satisfied in our case.

LEMMA 3. Let F be a measurable set and lot E = (p,/qy, Di/2%)
where v,/q,, 0./0, are kth convergents. Then

(ENT-"PF| = |E[[FI(1+0g"™) g¢<1.
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Proof. This is an immediate consequence of Lemma 2 since E
is the union of at most countably many disjoint intervals for which
the partial quotients a,(a), 7 < k are constant,

LEMMA 4. Let E be an interval and F be a measurable set.
Then

| ENTF| = |E[|F|+[F[0g™) ¢<1.

Proof. Put k =[n/2] and let E = (x, y). Then there exist con-
vergents p,/q,, p:/q5 such that « and y are contained in intervals with
endpoints

xe(m pk+pk_1>’ y€<_zi m+p;_1>

N @’ a4, + dh

respectively. Call the intersection of E with these two intervals K,
and FE,. Then E=FE,U FE U E, where E, is of type described in
Lemma 3. Hence by Lemma 3 and using the T preserves p

HENT"F|—|E||F||=C|E||F|q* +|F|(E]|+]|E].
But for i =1, 2
1 _3/2V
< (=
Qi_2<3>

Observing that ¢ < 1 implies ¢>"* < 1 we get the result.
Later we need

PAE

LEMMA 5. Let E = {a|a(a) = M} and F ={a|afa)= N} for
positive integers M, N. Then

|[ENTF|=|E||F|(1+0)¢™) q¢<1.
Proof. This follows at once from Lemma 2 since for example
E :igl{aial(a) =i},

3C. In this section we use the notation introduced in section 1C,
In the next lines M(E) stands for the Lebesgue-measure of E.,

LEMMA 6. (Gel’fond [7]) For t =1 let £ =10,t) be an interval
and let F' be a measurable set. Then

MENTF)=\ME)|F|+ |F|O(p™) 1<p<o.
Proof. Apart from the factor | F'| before the 0 symbol this is
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just formula (12) in Gel’fond’s paper. But inspection of its proof
shows that we may pull out the factor | F'| of the 0-symbol and this
symbol still has the required properties,

LEMMA 7. Let E be an intervel and let F be a measurable set.
Then

(ENT"F|=[E[|[F|+[F|O0(p™) p>1.

Proof, It is enough to show the lemma in case that E = [0, t).
Let f be the characteristic function of F. TUsing Lemma 6 we obtain

BN T-F| = | p/)f(@,.()ola)da

ey
=]

=15 L [ ow@s. ane,@da
T k=1 @ 0

. 1 o 1 min(t,tk) ,

=2 5T S ta)da

=2 F| 5B 4 R0

=|E||F|+ |F|O(™).
4. Proof of Theorem 1 and 2.

4.1 Proof of Theorem 1. We have to show that for every pair
of measurable sets A4, 4,0, 1]

lim [A N T4 =|A]|4].
n—>o0

We approximate 4; (¢ = 1, 2) in measure by a finite union Z; (z = 1, 2)
of disjoint intervals arbitrarily closely: Given ¢ > 0 we can find E,
such that

VA 4E;| <e (t=1,2).
By Lemmas 1, 4, 7 we easily get for all sufficiently large =
WENTE | — [ BB <e.
Using that T preserves pt we have
A NT A — [AlAll =|ANT 4] —[E N T4

+ HEI N T_nA2] - IE1 N T_nEzH
+IENTE| — |E | El + || B Ell — A4l < 5e
for all sufficiently large n.

Rohlin’s theorem that T is mixing of every degree follows in the
same way from:
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LevmmaA 8ABC. Letn, ---,n, be positive integers and let I,, I, -+ -, I,
be intervals all contained in the wnit interval., Then

[ L,NnT™L .- O Toatetnn ]|
=1L +1L106™%)  a<1

where the constant implied by O only depends on r.
For a proof we only have to apply Lemmas 1, 4, 7 several times.

4.2, In order to prove Theorem 2 we put F, = T-"I,. Using
Lemmas 1, 4, 7 and the fact that T preserves y¢ we obtain for n > m

|E.NE,|=|L,nT""™L|
= | L L| + | L]-Og"™)
= |E,||E,| + | E,|-O(g™) ¢<1.

Observing that all the measures involved are equivalent to the
Lebesgue-measure we get Theorem 2 as an application of Theorem 3.

5. Some metrical theorems on continued fractions. In this
section some metrical theorems on continued fractions are proved. I use
the same notation as in sections 1B and 3B. The main result (Theorem
4) is a refinement of a theorem of Khintchine [11]. LeVeque [14] has
outlined a proof of a weaker form of Theorem 4. Several applications
of Theorem 4 are given. Finally a well known theorem (e.g. see [12],
p. 67) of Bernstein is sharpened.

Again it will be illustrated that it is more natural to use the
measure g invariant under 7T rather than the Lebesgue-measure. In
the theorems though ‘‘almost all’”’ always means ‘‘all except a set of
Lebesgue-measure 0.”” But g and the Lebesgue-measure have the
same null-sets and hence-considered from this point of view it makes
no difference which of them we use.

5.1. The general theorem.

THEOREM 4. Let f(u,, ---,u,) be a nonnegative function defined
for all k-tuples (w,, -++, u,) with positive entries and satisfying

(8) | (F@@), -, aye)ides < oo .

Then for integers n =1 and fived k = 1
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LS fa(Ti), -+, au(Ti))
N =0
(9) - i o
=To—g—2§0f<al<m>, e, afa)) 72—+ O~ log?* )

almost everywhere.

If I is not fixed but if instead n and k are linked by
(10) 28 < m o< 28t

then (9) holds with n="*log***n instead of m=*log****n in the error
term.

Proof. Since T preserves ¢ we have for integer 7 = 0
(a | ST D), -, al(Tiadp(o) = o = @ < o
by (8). Further for integers 0 =<+ <j and m =0
16, 3) = | (1572, -+, ay( T m0)- fla(T57), -,
(TN dp(@) = S f(r, -+, 1) S0y + o0, 70)
JEN T-49F|
where the summation is extended over all the »’s and
E={a: a (@) =r, -, () = 1}
and
F={a: afa) =71l -+, ap(a) = 7}}.

By Lemma 2 we obtain for 7 > 1 + k

1, §) = S f(ry, -+, 1) | Bl S70% +oo, 1) | F (L + 0(g¥757)
= @l + 0(g*=7)) .

By (8) we clearly have for j <17 + k&
I(, ) = o .

Hence we obtain by (11)
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=0

S:)Cz—:l.f‘(al(Ti+mx)y cee, @ (T )y — anfd#(x)

12 = 5 | A(Tm), o, (T fla(Tm), o,
au T ra)dp(e) — ant = a0 S ¢'7F) + atkn = O(w)
ilj=0
i>k+i

if k is fixed. If » and k are linked by (10) then we get in (12) only
the estimate O(nlogn). In both cases Theorem 6 (p. 649) of Gal and
Koksma [6] gives the result.

De Vroedt [25] has obtained earlier a result of this type also for
a narrow class of functions only. His theorem and mine have a non-
empty overlap: To see this put in Theorem 4 k=1 and f(u,) =
fu) =logu. We get

COROLLARY 1 (de Vwoedt). Almost everywhere

(ay(@) -+ a, (@) =11 (1 + ;ywnogz + O(n"? log¥***n)
' * asi n* - 2n ’

This is a refinement of a well known theorem of Khintchine [10].

Applying Theorem 1 for the characteristic function of the set {x: a,(x) =p}

we get a refinement of a theorem of Lévy [19] on the frequency of

the digit p.

COROLLARY 2 (de Vwoedt). Denote by hin, p, x) the number of
positive integers k = n such that a,(x) = p. Then for almost all x

1 1
h(n, p, ) = ——log(1 + ————) + O(n™"*log"**n) .
(n, p, ®) Tog 2 og( +p(p+2)>+ (n% log®**°n)
Doeblin [5] using quite different methods sketched a proof of the
law of the iterated logarithm in both cases. Recently, Stackelberg
[23] has announced a proof different from that of Doeblin.
As another application of Theorem 4 I shall prove:

THEOREM 5. Denote by q,(x) the denominator of the nth con-
vergent to ®. Then

7V q.(x) = exp (/12 1og 2) + On " log®**n)

almost everywhere.,

This improves slightly LeVeque’s [14] refinement of a well known
theorem of Khintchine [11] and Lévy [17]. Furthermore the proof
will not depend on Lévy’s result. For this reason we need some
lemmas.
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5.2. Some lemmas. The first one can be proved by induction or
by taking the transposed matrices.

LEMMA 9. If.

a, 1 <a1 1 <O 1 (P Q5
1 0 1 o/\t 0/ \po @
(CLI 1 [¢7% 1 (0 1 - Qi Qi
1 0 1 0/\1 0/ \p 2 °

If we consider a,, ---, @, as partial quotients of a continued frac-
tion then 9,/q, is just the kth convergent. So the lemma describes

the relation between the two fractions [a,, :---, a,] and [a,, ---, a].
This is used in

then

LEMMA 10, Let

E = {a|afa) =1, -, a (@) = 1r}

and
F={alaf@)=r, - 0@ =7
then
|E|=|F]|.
Proof. Put [r, ---, 7] = pi/q, and [ry, -+, 7] = p}/¢;. then
R
log 2-| E| = (—1)f 10g<1 + (pr + q(k)(;Z + qk_1)>

and similarly for |F'| with primes. But Lemma 9 yields ¢, = q,,
P, = Qx_, and q;_, = p,. Hence the result,

LEMmA 11, Define for k=1
Fi@) = ay(@) + [a_i(x), « -+, a;(x)] if

x = [ax), + -+, a(), - -]-trrational
=0 of ® is rational

then

9

e

. 1
lim | log fu@)dpr(a) = g7 "
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Proof. Using Lemma 10 we obtain

Ay = S: log fi(x)d ()
= > . log (7, + [74_y, » =+, miD | @) = 7, + -+, ay(@) = 7.}

Tk
= Zl L IOg (7.1 + [7'2: ccy Irk])#{a’ I a’l(a) =Ty oty ak(“) - 7ﬁk}
rl"."‘rkz

= | Jog (@.(0) + La(a), -+, au(@)dpetz) .

But log (a(x) + [ax(®), ---, a,(x)]) = log (a(x) + 1) which is integrable.
Hence
lim | log fu(@)dp(@) = | lim log (a,(@) + [ax(e), -+, ax()Ddp()

_ 1 S‘l 1 de T*
log 2 8

0 r 1+ 12lg2

5.3. Now we can finish the proof of Theorem 5. Essentially,
we use the argument of Khintchine [11]. Let £ = 1 be an integer.
Define for n = k

FP(@) = a(@) + [ap_i(2), =+, @p_pia(@)] If
x = [a(x), -+, a,(x), ---] irrational
=0 if « is rational.

Then f¥(Tx) = f{¥(x). Hence for n =k
S () = fiP(T* *a) = fi(T" ")

in the notation of Lemma 11.

We observe
2.(%)  _
(13) @) Sa(®) .
For n = k
(14) |log fu(®) — log fi¥(x) | = | fu(®) — fiP(2) | = 2747

by Lemma 4, p. 7 in Cassel’s book [2]. Using again this lemma and
the first part of the proof of Lemma 11 we get

i A —_7rj__|____<_
12 log 2
(15) +1 [ax(x), «« 1) | dp)
= go [[ay(2), « - -, a(x)] — [a(x), -+ -]|dpe()

< 27t

|, llog (@.(2) + [a.(@), -+, ax(@)] — log (a(x)
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From now on % and k are linked by (10). Since
1 k—1 2
S <n1/2 Z_, log f,;(:c)> dx = O(n log*n)
we obtain by the mentioned theorem of G4l and Koksma
(16) 1 Ii‘i log fi(x) = O(n~" log®***)
n i=1

almost everywhere. Hence by Theorem 4, (10), (14), (15), (16)

1 n%—-l 1 f( : 71.2
w+k—1 iz 0g Ji(@) — 1210g21
— 2 k—1 n+lk—1
< k—1 77 € _1_M?_Jogf‘,-(x)'%-l >, |log fi(x)
n  12log 2 n i= n o i=k
— log fiP(x) | + li n+>15‘_1 log f#(2) — Ay | + | N — ___TCZ__
‘ n = : * P 12log 2

= O(n~* log***n)

almost everywhere. Since obviously every positive integer N > 2 can
be written as N =n + k (n, k subject to (10)) (18) yields the result.
It might be interesting to remark that Khintchine-Lévy’s theorem,
namely that ##"¢,(x) — exp (7%/12 log 2) almost everywhere, is another
interesting application of the individual ergodic theorem. The proof
is apart from a few simplifications the same as that of Theorem 2.

COROLLARY. If p.(x) denotes the numerator of the nth conver-
gent to x then almost everywhere

V(@) =% -exp (7%/12 log 2) + O(n™*log** n)

This follows from the inequality

[V D) — 7V 2q.(%) | é%
for 0 < 2 < 1.

5.4, I shall prove now a refinement of a well known theorem of
Bernstein (e.g. see [12] p. 67). However, Doeblin [5] states with
some misprints that even the law of the iterated logarithm holds in
case that @(n) — .

THEOREM 6. Let (p(n)) be any sequence of positive integers and
denote by A(N, x) the number of positive integers n < N such that
a,(x) = p(n). Put
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Then for almost all x
A(N, @) = 6(N) + O(¢"*(N) log**** $(N)) .
Proof. Put
E,={ala,(a) =z pn)} and U, =T"""E,.
Then
U, = {afa(a) = p(n)} .

Using Lemma 5 and the fact that T preserves p we get for n > m

|E.NE,|=|U,NT"™U,| =|U,||U,|(1+ O(g"==))
=|E,||E,|[(1+ O(qg"=m)).

But

1 (e dy 1 1
E,|=|U,|= S - log(1 + —).
[ Enl =10 log 2 Jo 1+ log 2 0g< @(n))

Since /¢ is equivalent to the Lebesgue-measure Theorem 6 follows from
Theorem 3.
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