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RECIPROCITY AND JACOBI SUMS

JOSEPH B. MUSKAT

Recently N. C. Ankeny derived a law of ~th power
reciprocity, where 7 is an odd prime:

q is an rth power residue, modulo p =1 (mod r), if and
only if the rth power of the Gaussian sum (or Lagrange
resolvent) z(x), which depends upon p and 7, is an rth power
in GF(q*), where ¢ belongs to the exponent f (mod 7).

(x)" can be written as the product of algebraic integers
known as Jacobi sums. Conditions in which the reciprocity
criterion can be expressed in terms of a single Jacobi sum
are presented in this paper.

That the law of prime power reciprocity is a generalization of the
law of quadratic reciprocity is suggested by the following formulation
of the latter:

If » and ¢ are distinct odd primes, then ¢ is a quadratic residue
(mod p) if and only if (—1)*9p = z()* is a quadratic residue
(mod q). Here + denotes the nonprincipal quadratic character modulo
p (the Legendre symbol) and

T(§) = 3 p(mee

is a Gaussian sum,

A complete statement of Ankeny’s result is the following:

Let » be an odd prime. Q({,) will denote the cyclotomic field
obtained by adjoining {, = ¢ to the field of rationals Q.

Let p be a prime = 1(mod 7). Let y denote a fixed primitive rth
power multiplicative character (mod p). Define the Gaussian sum

o) = S, vk

Let ¢ be a prime distinet from », belonging to the exponent
f(mod 7). Then

()7 = (1" = @7 (mod q) .

Consequently, if q is any one of the prime ideal divisors of the ideal
(¢) in @), ¢ is an rth power (mod p) if and only if z())" is an rth
power in Q(C,)/q, a field of ¢’ elements; i.e.,

(1) x(¢) = 1 if and only if z(y)" = B(mod q)
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for some Be @) [1, Th. 2].

The following properties of the Gaussian sums are well known:
Assume k = O0(mod 7).

(2) (™) =p
(X" € (&), but z(x")*/z(x") € Q(E,) .
In particular,
(") e Q&) .

During the nineteenth century several people worked on special
cases of the problem solved by Ankeny. C.G.J. Jacobi treated » =3
in [3]. Using Cauchy’s result that

()/z(x*) = 1(¢)~«mod g), [6, p.108]

T. Pepin showed that if ¢ = + 1(mod r), then ¥(q) = 1 if and only if
() /z(®)" is an rth power residue (mod q), ([6, pp. 117, 120]).
Define the Jacobi sums

Qe A = S 1)L —mn) = gcjéi .
If » does not divide a, b, or a + b,
m(x*, 1) = ()@ (")
so by (2)
(3) (", X L) =D
(For information on Jacobi sums see [2, Ch. 20])

()" can be expressed as a product of Jacobi sums, as follows:
() = <) I e(e()e(*) = p Wa(y, 1), by (2) .

For » = 3, ©(x)" = »pr(%, 1), so that knowing z(y, x) gives complete
information about reciprocity. For » > 3, however, it is often necessary
to consider products of Jacobi sums. Some cases where 7(y, ) itself
gives complete information about reciprocity are described in the follow-
ing two theorems:

Notation. For brevity, let z[t] = n(y}, y!). Let x[l] = Sohe,li.
Then

r—1

wlt] = Z_‘,O e;Cit .
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Let 2 belong to the exponent s(mod 7).
LEMMA. ﬁ[t]qh = n[tq"*)(mod q).

Proof.

r—1

r—1 L4 r—1
i} = [z et | = Serant = Sielin = zltg'](mod ) .

THEOREM 1. Assume 2" == 1(mod v%). If there exists an integer
w such that ¢* = 2(mod ») , then t(x)" is an rth power in Q,.)/q f
and only tf w(x, %) 1.

Proof. By an identity attributed to Cauchy, [6, p. 112]
T = w1 T R2P R[4 - w20 20
= T al2 ™ = T algwp
7=0 7=0

s—1

(4) = B 11 x[q®]*“™77", for some Bec Q) .

J=0

To the jth factor of the product in (4) apply the lemma with
=1 and % = uy:

T(X)zs"‘l = Brs_]:[l 77_.[qo]qu(s--l) = Brn[l]squ(s—l)
i=0
= v'r[1]2°"s(mod ¢), for some veQ(,) .

Since /2 — 1, r}f(2° — 1)/r. Also, r}y2's, It follows that
z(x)” is an rth power in Q({,)/q if and only if w(y, %) is.

EXAMPLE, r=T,¢q=3. s=3,u =2,

() = n[1)z[2]z[4] = Fr[1F'z[3* " [3
= B[P = 1] (mod 3) .

(A different treatment of the example was given in [5, p. 351].)

THEOREM 2. Assume 2 = 1(mod 7, » > 8, and s = 2 (mod 4).
If there exists an integer v such that q° = 4 (mod r), then T(})" is an
rth power in Q)/q if and only if w(y, %) is.

Proof.

/2—1

T(X)2$-1 — SH 77:[22]-]23—1—2]7[[22j+1]zs—'2~2j

7=0
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s/2—1

= I =g a2

i=o

(5) — g slﬁ_l Z[q T [ 2gr |
=0

for some £e Q(Z,),

(6) = Trlg P xl2g 1 P (mod g),

by applying the Lemma with 2 = vj and ¢ = 1, then 2, to the jth
factor of (5). Now apply the Lemma to the second factor of (6) with
t =2, h=vs— 2)4:

T(X)zs_1 = Br[ﬂ[l]gqv(slz—l)ﬂ_[zqv(3_2)/4]qv(s—2)/4]5/2
= B’r[ﬁ[]-]m]’l’(slz_l)ﬂ[z.4(3—-2)/4]41”(3—2)/4]5/2
= 'YT[TL'[1]23_175[23/2]2312—1]5/2 ,

for some ve Q(,),
= vIr[1F [ -1 7] (mod g) .
By (3)
()t = [P E[PT — 2P (mod q) .
Since r > 3, ¢ # 1(mod r), so p is an rth power in Q((,)/q.

2s=1 — 282~ = J(mod 7), S0
(=t = oa{1]mod a) ,

for some 6e Q). »t(2° — 1)/r,rts/2, and the theorem follows.

In Theorem 3 of [5] the above results were proved for the follow-
ing values of ¢, under the restriction 2! % 1(mod 7?%):

(a) ¢ = 2(mod 7).

(b) »>3, ¢ = —2(mod 7).

Part (a) is included in Theorem 1. Part (b) has three cases:

If s is odd, (—2)**' = 2:.2 = 2(mod »). Theorem 1 applies, with
u=s+1.

If s =2(mod 4), (—2)* = 4. Theorem 2 applies, with » = 2,

If s =0 (mod 4), (—2)**** = — (2)**(2) = 2(mod 7). Theorem 1 applies,
with u = s/2 + 1.

For certain small values of ¢ and » it is possible to characterize
when %(9) =1 in terms of the coefficients of z|1] (mod p). Pepin
gave the following three (the first not quite correctly).

Let » = 5. x(3) =1 if and only if ¢, = ¢, (mod 3) and

¢, = ci(mod 3) [6, p.132].
Let r=17. 2(3) =1 if and only if ¢, = ¢, = ¢, (mod 3) and
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¢ = ¢, = cy(mod 3) [6, pp. 145-146] .

2(2) = 1 if and only if ¢, is odd [6, p.122].

Analogous criteria for » =5, ¢ =7 and » = 7, ¢ = 5 can be found
in [5, p.349].

A more general result, which yields only a sufficient condition,
however, was suggested by Emma Lehmer [4], who proved it for
r =5,

THEOREM 3: Assume 2!z 1(mod %), and r > 3. Let g be a
primitive root, modulo r. If ¢, =c¢p=c¢p= -+ =c¢,~2(mod q) and
cl=cp=cp= -+ =c(mod q), then q is an rth power residue

(mod D).

=3 r—3

e N
Proof. Let n = S,(% p= S 0"
=0 7=0

w1} = gc‘j@ = 2 (¢; — e)li = (¢, — e\ + (¢, — ¢) £ (mod q).

Similarly,
n[g] = (e, — et + (¢4 — €o) N (mod q) .
If 2 is a quadratic residue, modulo 7,

s—

o = H:ﬂ[2f]23'j"1 = E [0 — e + (e, — e~

i=

= [(e; — e\ + (¢ — 00)/"]28—1(m0d q) .
If 2 is a quadratic nonresidue, modulo 7,

s s[2=1 o S—1—23
9S__1 — 22] 2
e = i w2

= [(61 - 00)7\, + (Cg - Co)#]2<2s_1)/3[(01 - Co)# + (Cg - 00)7\’](23_1)/3
(mod q) .

71.[225+1]28-2—2J

In both cases z(y)*' has been shown to be an rth power in
Q)/q. Since ry(2° —1)/r,z(yx)" is an rth power in @({.)/q, and
applying (1) yields the theorem.

COROLLARY. Assume 2= l(mod 3. If ¢, =c¢c =--- =¢,,
(mod ¢q), then q is an rth power residue (mod p).

Proof. If » >3, apply Theorem 3. If » =3, z(%)® = (¢, — ¢.)®
(mod q).

A computation by John Brillhart shows that 1093 and 3511 are
the only primes r less than 2* for which 2! = 1(mod 7?%).
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