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COMPLETE DISTRIBUTIVITY IN
LATTICE-ORDERED GROUPS

RICHARD D. BYRD

Throughout this note let G be a lattice-ordered group
("1-group"). G is said to be representable if there exists an
1-isomorphism of G into a cardinal sum of totally ordered
groups ("o-groups") The main result of § 3 establishes five
conditions in terms of certain convex 1-subgroups each of
which is equivalent to representability. In §4 it is shown
that there is an 1-isomorphism of G onto a subdirect product
of 1-groups where each 1-group is a transitive 1-subgroup of
all o-permutations of a totally ordered set and that this 1-
isomorphism preserves all joins and meets if and only if G
possesses a collection of closed prime subgroups whose inter-
section contains no nonzero 1-ideal. Both theorems lead to
results concerning complete distributivity.

G is completely distributive if

Λ V f c = V τ A ffifu)
iei jej fβJ1 ΐei

where giβ e G and provided the indicated joins and meets exist. Weinberg
[12] has given an equivalent condition to complete distributivity involving
arbitrary joins of elements of G (see Proposition 3.5). In [4] Conrad
shows that a representable 1-group G is completely distributive if and only
if the ideal radical L(G) is zero (in this paper it was denoted by R{G)).
Using this result we are able to show (Proposition 3.8) that for
representable 1-groups the Weinberg condition may be reduced to a
condition involving only the joins of pairs of elements. This has been
shown by Bernau ([1], Theorem 8) fo1* Archimedean 1-groups. Holland
[7] has shown that each 1-group is 1-isomorphic to a subdirect product
of 1-groups {Aλ I λ e A} where each Aλ is a transitive 1-subgroup of
the 1-group of all o-permutations of a totally ordered set. Theorem
4.6 generalizes the known result for representable 1-groups (see [12]
or [4]).

2, Notation and terminology • For the standard definitions and
results concerning 1-groups the reader is refered to [2] and [5]. A
convex 1-subgroup M of G is called prime if whenever a and b belong
to G+ and not M, then a Λ b > 0. A convex 1-subgroup (1-ideal) that
is maximal with respect to not containing some g in G is called a
regular subgroup (regular 1-ideal). Let Γ{Γ^ be an index set for
the collection Gy(Iλ) of regular subgroups (regular 1-ideals) of G. We
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shall frequently identify these subgroups with their indices. For each
TGΓfλGA) there exists a unique convex 1-subgroup Gy (1-ideal Jλ)
of G that covers G7(/λ). If g belongs to Gy but not Gy (Iλ but not
7λ), then v(λ) is said to be a value (ideal value) of g. Each regular
subgroup is prime. For completeness we state the following theorem,
a proof of which may be found in [3],

THEOREM 2.1. For a convex 1-subgroup M of G the following
are equivalent.

(1) M is prime.
(2) If a and b belong to G+ but not M, then a Λ b belongs to

G+ but not M.
(3) / / I 3 i f l B, where A and B are convex 1-subgroups of

G, then M 3 A or M 3 B.
(4) If A~D M and BZD M, where A and B are convex 1-subgroups

of G, then Af] Bz)M.
(5) The lattice r(M) of right cosets of M is totally ordered.
(6) The convex 1-subgroups of G that contain M form a chain.
(7) M is the intersection of a chain of regular subgroups.
If M is normal, then each of the above is equivalent to
(8) G/M is an o-group.

It follows from (6) that the intersection of a chain of prime
subgroups of G is prime and hence each prime subgroup exceeds a
minimal prime subgroup. If S is a subset of G, then [S] will denote
the subgroup of G generated by S. Again using (6) we state a trivial
observation.

COROLLARY 2.2. Let Ml9 , Mn be convex 1-subgroups of G such
that M1 is prime. Then [U?=i Mt] = [M1 U Mk] for some k, 1 ^ k <̂  n.

For 0 Φ g in G let Rg(Lg) be the subgroup of G that is generated
by the set of all convex 1-subgroups (1-ideals) not containing g. Then
Rg(Lg) is a convex 1-subgroup (1-ideal) of G and we define the radical
and the ideal radical of G respectively to be

R(G) - Γ)R9 (OΦgeG)

L(G) = C\Lg (O^geG) .

Clearly Lg g Rg for all g in G so L(G) Q R(G). A regular subgroup
Gy (regular 1-ideal Iλ) is called an essential subgroup (essential 1-ideal)
if there exists 0 Φ h in G such that Rh S Gy(Lh £ Jλ). In [4] it was
shown that L(G) is the intersection of all essential 1-ideals of G and
a similar proof shows that R(G) is the intersection of all essential
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subgroups of G. In particular R(G) is an 1-ideal of G.
A convex 1-subgroup C of G is said to be closed if whenever

{ga \aeA}QC such that V 9 a exists, then y gaeC. If a e G, then
the polar of a is defined to be p(a) = {x e G \ \ x | Λ | a | == 0}. p(a) is
a closed subgroup of G. If S £ G, then we define the polar of S to
be p(S) = Π ί>(α)(αe S). If C is a convex 1-subgroup of G, then r(C)
will denote the set of right cosets of C and this set is partially
ordered by C + x ^ C + y if c + x ^ | / for some c in C Then r(C)
is a distributive lattice and C + x\/C + y = C + x\/y and dually.
The empty set will be denoted by D, A\B denotes the set of elements
in A but not in B, and A a B denotes that A is a proper subset of B.

3* Representable 1-groups* Sik [11] proved that an 1-group is
representable if and only if all polars are normal. Also in [10] Sik
has announced the equivalence of (1) and (4) of Theorem 3.1. The
author wishes to thank A. H. Clifford who read a rough draft of
this paper and made several valuable suggestions. In particular
Clifford noted that in the proof of (1) implies (3), (2) had been proven.

THEOREM 3.1. For an 1-group G the following are equivalent.
(1) G is representable.
(2) If M is a prime subgroup of G, then the maximal 1-ideal

of G contained in M is prime.
(3) M and g + M — g are comparable for all prime subgroups

M of G and for all g in G.
(4) Each minimal prime subgroup is normal.
(5) M and g + M — g are comparable for all regular subgroups

M of G and for all g in G.
(6) Each regular subgroup M of G contains a prime subgroup

N such that N is normal in G.

Proof. (1) implies (2). Let M be a prime subgroup and let J
be the subgroup generated by the collection of all 1-ideals of G that
are contained in M. Then J is an 1-ideal of G. Since M is prime,
p(a) £ M for each a e G+\M. Suppose (by way of contradiction) that
J is not prime. Then there exists 6, c in G+\J such that b A c = 0.
Therefore b,ceM. Choose 0 < α e G\M. b$J implies a A b > 0 and
c e p(a A b) implies p(a A b)\J Φ D. Since J is maximal in M, there
exists 0 < z e p(a A b)\M and since M is prime, a A z e G+\M. But
then b e p(a A z) £ J, a contradiction. Therefore J" is a prime sub-
group of G.

(2) implies (3). Let M be a prime subgroup of G and let g e G.
By (2) the maximal 1-ideal J of G contained in M is prime. Therefore
J = g + J - g g g + M - g. By (6) of Theorem 2.1 it follows that
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M and g + M — g are comparable.
(3) implies (4) since inner automorphisms of G preserve minimal

primes.

(4) implies (5). Let M be a regular subgroup and let N be a
minimal prime subgroup such that N£ M. Then N = g + N — g £
g + M — g. Thus g + M — g and M are comparable by (6) of Theorem
2.1.

(5) implies (6). Let M be a regular subgroup of G. By (5)
J V = n { # + ^ — # l # G £ } i s the intersection of a chain of regular
subgroups, hence by Theorem 2.1 is prime. Clearly N is normal in
G and is contained in M.

(6) implies (1). For each 0 Φ aeG, let Ma be a value of α. By
(6) there exists a prime 1-ideal Na such that iVα £ Jlfα. By (8) of
Theorem 2.1, G/ΛΓα is an o-group. The mapping x —> ( , ΛΓα + x, •)
is an 1-isomorphism of G into the cardinal sum of the o-groups
G/Na(0 Φ aeG). Thus G is representable.

COROLLARY 3.2. If G is a representable 1-group, then N(Gy) =
N(Gy) for each j e Γ, where N(X) denotes the normalizer of X in G.
Hence Gy is normal in Gy for each y e Γ.

Proof. For γ in Γ and x in G, x + Gy — x covers x + Gy — x.
Thus if x e N(Gy) it follows that x + Gy - x = Gy. Conversely if
x e N(Gy), Gy = x + Gy - x covers x + Gy - x. By the theorem Gy and
x + Gy — x are comparable. Thus x + Gy — x = Gγ.

COROLLARY 3.3. Lβί G be a representable 1-groupand let 0 ^ geG.
Then the mapping Gy—>Iy=f\{x + Gy — x\xeG} is a one to one
mapping of the set of all values of g onto the set of all ideal values
of g. Moreover, Iy is prime and is the largest 1-ideal of G contained
in Gy. Iy = U {x + Gy - x \ x e G}, hence Iy £ GyczGy S Iy. Finally
Gy is an essential subgroup if and only if Iy is an essential 1-ideal,
and if Iy is essential, then Gλ is essential for all λ 6 Γ such that

Proof. The first part of this corollary follows trivially from
Theorem 2.1 and 3.1. We prove only the last sentence. Suppose Gy

is an essential subgroup. Then Gy^2Rh^ Lh for some 0 < h in G.
Since Lh is an 1-ideal of G, Lh £ Iy. Hence Iy is an essential 1-ideal.
Conversely suppose Iy is an essential 1-ideal. Then Lh £ Iy for some
0 < h in G. Let Iβ be an ideal value of h.

Case 1. Iβ = Iy. Then h has only one value, namely Gβf and Gλ

is essential for all xeΓ such that Gλ a Gβ. If Iβ^Gλc:Gβ, then
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pick 0 < x e Gλ\Gλ. Since Gλ is prime, x A he Gλ\Gλ and x A h has
Gλ for its only value. Thus RxAh g Gλ and so Gλ is essential.

Case 2. Iβ c I v . Then Iβ^Gβ(zIβ g J7. Therefore 2ίΛ g /7 and
Gλ is essential for all λ e f such that Gλ 2 /γ.

COROLLARY 3.4. i^or a representable 1-group G, R(G) — L(G).

Proof. As observed in § 2, L(G) g -R(G). Let 0 ̂  # e G. If #
has at least two values, then by the preceding corollary we have
Ia<^ Gaa Lg where a is a value of 0. Thus R(G) ^ Rg ^ Lg. Suppose
that g has only one value, say a. Then Lg = Ia and Ia is an essential
1-ideal. Thus Gλ is essential for all xeΓ such that Gλ 2 Iα by
Corollary 3.3. Moreover L, = fl {Gλ | Gλ 2 L) 2 -R(G), as J2(G) is the
intersection of all essential subgroups of G. Thus R(G) S L^ for all
0 ^ 0 in G and it follows that i2(G) S ί/(G).

It was pointed out in [4] that in general these radicals are not
the same. Also in [4] Conrad showed that an 1-group is representable
if and only if each regular 1-ideal is prime. It is easy to construct
examples to show that the converse to Corollary 3.2 and the converse
to Corollary 3.4 are not true.

PROPOSITION 3.5. (Weίnberg [12]). An 1-group G is completely
distributive if and only if for each 0 < g in G there exists 0 < g* in
G such that g — \f ga(a e A), ga e G+ implies g* g ga for some ae A.

For g in G let L(g) denote the 1-ideal of G generated by g. We
shall call h in G ^-subordinate to g if whenever \g\ = g1 V g2, 0 ^ gt e G,
then h e L{gι) for i = 1 or i = 2. We shall use the notation h < g to
signify that h is ^-subordinate to g. Let T(G) = {geG\h < g implies
h — 0}. In [6] Fuchs defines h to be subordinate to g if whenever

9 I = 0i V V ^ , 0 g ^ 6 G implies A e L(^) for some i. There he
shows {g e G \ h is subordinate to g implies h — 0) — L(G). A proof
of this given by a trivial modification of the proof of the next lemma.
The hypothesis of representability enables us to cut n down to 2.

LEMMA 3.6. Let G be a representable 1-group and let 0 Φ h e G.
Then h is not t-subordinate to g in G if and only if g e Lh.

Proof. Suppose h is not ̂ -subordinate to g. Then there exists
0 ^ gu g2 in G such that | g \ = gx V g2 and h $ L(g^ U L(g2). Therefore
g e [L(#i) U L(gz)] £ Lfe. Conversely suppose g e Lh. Let J be the set
of ideal values of h. Then Lh = [(J {/δ | S e J}] and so g e Lh implies
g G [U?=i {Isi I ^ G }̂] ^ Corollary 3.3 each IB. is prime. Thus by
Corollary 2.2, flf e f/δ]L U /βfc] for some k, I ^ k k n, say A: = 2. Then
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\g\ = g1 v g2 ([4], Lemma 4) where 0 ^ f^elβ. Since the 7θ's are
ideal values of h we have h g 78l U 7θ2 a T/^) U 7v(g2). Therefore & is
not ί-subordinate to g.

PROPOSITION 3.7. If G is a representable 1-group, then T(G) =

Proo/. Let # e T(G). Then for each 0 Φ h in G, Λ, is not ί-
subordinate to #. Thus ^ e L A for all 0 Φ h e G and so ge L(G).
Conversely if g e L(G), then g e Lh for all 0 Φ h in G. Therefore h
is not ^-subordinate to g for all 0 Φ h e G and so g e T(G).

PROPOSITION 3.8. Let G be a representable 1-group. Then G is
completely distributive if and only if for each 0 < g in G there exists
0 < g* in G such that whenever g — g1y g2j g. e G+, then g* <£ & or
0* ^ ff2.

Proof. Suppose the condition is satisfied. Then for each 0 < g
in G, g* is ί-subordinate to g. Therefore 0 = T(G) = L(G). By the
theorem in [4], G is completely distributive. The converse follows
trivially from the Weinberg condition stated in Proposition 3.5.

4* The Holland representation* For each λ e A let Γ λ be a
totally ordered set and let P(Tλ) be the o-permutation group on T λ.
Let H= Tί P(Tλ)(\ e A) be the large cardinal product of the P( ϊ\)
and let σλ denote the projection map of H onto the 1-group P(T λ).
The pair (σ, JBΓ) is an H-representation of an 1-group G if σ is an
1-isomorphism of G into H such that Gσσλ acts transitively on Γλ

for all λ in A. The main result of [7] is that each 1-group has an
H-representation. A set {Cλ | λ e A} of prime subgroups of G is an
H-kernel if Π {Cλ I λ e Λ} contains no nonzero 1-ideal of G. The iϊ-
representation (σ, H) is called complete if σ preserves all joins and
meets that exist in G. In the 1-groups P(Tλ) it is convenient to use
multiplicative notation for the group operation since composition of
function is the group operation and feP( Tλ) is defined to be positive
if tf ^ t for all t in Tλ.

To prove a convex 1-subgroup is closed it is not difficult to show
it suffices to consider only positive elements. Clearly the intersection
of closed subgroups is closed.

PROPOSITION 4.1. If Gγ is an essential subgroup of an 1-group
G, then Gy is closed.

Proof. Suppose (by way of contradiction) that there exists
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{9a e Gf I a e A} such that g = V 9a$Gy. Let λ be a value of g such
that Gy £ Gλ.

Case 1. There exists 0 < ft in G such that Rh £ Gv and ft 6 Gv.
Then Gκ — h + g — ga = Gλ + g — ga > Gλ for all α and λ is a value
of — h + g — ga. Let <5 be any other value of —h + g — ga. Then
ft e Gδ, for otherwise Gδ g Rh^Gy^ Gλ and so <5 = λ. Thus

Gδ - ft + 0 - 9a = Gδ + £ - #α > Gδ .

Therefore -ft + g - ga> 0 ([3], p. 114) for all a. This implies
— h + g^:\/ga = g, a contradition.

Case 2. For all ft > 0 such that Rh g G y , ^ Gy. Thus 7 is the
only value of ft. Now 0 ^ h A ga&Gy for all α: in A. Suppose
0 < ft A ga for some a and let Gβ be a value of h A ga- Then ft g Gβ

so Gβ £ G7. Since ft Λ flr« e Gy we have Gβ c Gy. Thus i2AΛgfl> £ Gy.
But this is impossible by our assumption. Thus 0 = ft Λ ga for all a
in A. 0 < g, ft g G7 implies 9 A h > 0 as Gy is prime. But then
0 = V (ft Λ 0α) = ft Λ (V 0«) = h Λ ^ > 0, a contradiction. This com-
pletes the proof of the proposition.

COROLLARY 4.2. For an l-group G, i2(G) is closed.

Proof. R(G) is the intersection of all essential subgroups of G.

COROLLARY 4.3. If G is a representable l-group and if Iy is an
essential 1-ideal, then Iy is closed.

Proof. By Corollary 3.3, Gλ is an essential subgroup of G for
all λ e Γ such that Gλ 3 Iy and Iy = Γi {Gλ | Gλ a Iy}.

If L and 1/ are lattices and π is a mapping of L into 1/ such
that (α V b)π — aπ V bπ and (α Λ b)π — aπ A bπ for all a, be L, then
π is called a lattice homomorphίsm. If, in addition, π preserves all
joins and meets that exist in L, then π is said to be complete. If π
is the natural mapping of G onto the lattice r(C) of right cosets of
C, where C is a convex 1-subgroup of G, then π is a lattice homo-
morphism. The following lemma was proven in [12] for 1-ideals.

LEMMA 4.4. Let C be a convex 1-subgroup of G and let π be the
natural mapping of G onto r(C). Then π is complete if and only
if C is closed.

Proof. Suppose C is closed and let {ga | a e A} £ G such that
9 = V 9a exists in G. Then C + g ^ C + ga for all a. Suppose (by
way of contradiction) that there exists y in G such that
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for all a. Then

C + g = C + g \ / C + y = C + g y y > C + y ,

so g V y — y g C. On the other hand C ^ C + ga — y so

for all a. Thus (ga - y) V OeC for all a. Therefore

(9 V y) - y = ( V ga) V y - y = ( V (ga - 2 / ) ) V 0 = Y ((<?„ - 2/) V 0 ) .

Since C is closed, g V y — y eC, a contradiction. The converse is
trivial.

The next lemma can be proven by a direct application of Propo-
sition 3.5 and the proof will be omitted.

LEMMA 4.5. Let H= Π Hλ(Xe A) be the large cardinal product
of the 1-groups Hλ. Then H is completely distributive if and only
if Hλ is completely distributive for all X e A.

THEOREM 4.6. For an 1-group G, the following are equivalent.
(1) G has a complete H-representation.
(2) G has an H-kernel {Cλ | X e A} where each Cλ is closed.

Proof. (1) implies (2). Suppose (σ, H) is a complete if-represen-
tation of G, where H, σ and σλ are as in the beginning of this section.
For each xe A pick ί λ e Tλ and let Cλ = {ge G\ tλgσσλ = ίλ}. Then Cλ

is a prime subgroup (see [7], Theorem 3). Suppose 0 < f e e f | {Cλ | X e A}.
Then hσσλ > θλ for some λ, where θλ denotes the identity in P(Tλ). Then
there exists s in Γλ with s =£ fλ and s < shσσλ. Since Gσσλ acts transi-
tively on 7\, there exists ^ in G such that tλgσσλ = s. Therefore
ίλ(# + λ — Q)GG\ Φ tλ. Thus Π {Cλ I λ e J} contains no nonzero 1-ideal
of G and hence {Cλ | λ e 1̂} is an ίf-kernel. Since polars are closed
the projection map of H onto a cardinal summand is complete. Suppose
{ga \ae A} ξz Cλ such that V 9a exists. Then

ίχ(V 9a)σσκ = ίλ(V (ί7«^x)) = λ̂

by a theorem of J. T. Lloyd ([8], Theorem 1.3). Therefore V gaeCλ

and hence each Cλ is closed.
(2) implies (1). Let {Cλ \Xe A} be as in (2). For each xe A let

P(r(Cλ)) be the o-permutation group on the totally ordered set r(Cλ)
of right cosets of Cλ. For g in G and λ in J we define a mapping
crλ from G into P(r(Cλ)) by (Cλ + x)gσλ = Cλ + x + g. It is easy to



COMPLETE DISTRIBUTIVITY IN LATTICE-ORDERED GROUPS 431

verify (or see [7]) that crλ is an 1-homomorphism of G onto a transi-
tive 1-subgroup of P(r(Cλ)). Let H= Π P(r(Cλ))(Xe A) be the large
cardinal product of the 1-groups P(r(Cλ)). We define a mapping σ of
G into H by gσ = (•••, #tfλ, •••)• Then <τ is an 1-homomorphism of
G into H and the kernel of σ,

K(σ) = {geG\x + g-xeCλ for all x e G, λ e A) g f | C λ ( λ e Λ) .

Since this intersection contains no nonzero 1-ideals, σ is an 1-isomor-
phism. Therefore (σ, H) is an ίf-representation of G. Let {ga \ a e A} g G
such that V 0« exists. Since the Cλ's are closed we have by Lemma
4.4 that for each λ in A,

(Cλ + x)(V g a ) σ λ = Cλ + x + \/ ga = C λ + y (x + ga)

= y (Cλ + χ + ga) = V ((Cλ + χ)^ α σ λ ) .

For h in i ϊ the following are equivalent, h ^ gaσ for all α; (h)λ ̂  flrαo"λ

for all a and all λ; (fe)λ ^ V (ί«<7λ) = (V 9a)σλ for all λ; fe ̂  (V ̂ «)^.
Therefore cr is complete. This concludes the proof of the theorem.

COROLLARY 4.7. // G satisfies (1) and (2) o/ ίfce theorem, then
G is completely distributive.

Proof. J. T. Lloyd has proven ([8], Theorem 1.1) that for an
ordered set T, P(T) is completely distributive. Thus by Lemma 4.5, H
(as above) is completely distributive. Since the iϊ-representation is
complete, joins and meets in G "agree" (i.e., under 1-isomorphism) with
those in H. Thus G is completely distributive.

COROLLARY 4.8. R(G) = 0 implies (2) of the theorem. Thus
R(G) — 0 implies G is completely distributive.

Proof. R(G) = Π {Gy IGΊ is an essential subgroup of G). By
Proposition 4.1, each essential subgroup of G is closed and an essential
subgroup, being regular, is prime. Thus {Gy \ Gy is an essential sub-
group of G} is an iϊ-kernel as R(G) = 0, all of whose members are
closed.

In [4] Conrad observed that R(G) = 0 implies G is completely
distributive and gives an example to show that the converse is false.
Also it is shown in [4] that for representable 1-groups the converse
to Corollary 4.7 is true. The answer to this question is not known
for arbitrary 1-groups. Finally, Corollary 4.8 shows that the H-
representation used in [9] (Theorem 2.1) is complete, as the possession
of a basis for an 1-group G implies R(G) = 0.
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