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IN n REAL VARIABLES
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We prove the following theorem. Let Jz?x be a homogen-
eous elliptic operator of the second order with constant coef-
ficients. Let / be a Lebesgue integrable solution of

J2^χ[/(X)] - 0

for all X in some neighborhood of the point A in the Euclidean
space En. Let X = (xίf , xn) and H = (hu , fe»). Then for
each p=l, 2, •• the homogeneous polynomial <pp(H;f) defined
by

<n(

VP n! r J W θaί )x= Aί )x=
is an indefinite form, or is identically zero, and it satisfies
the same differential equation ^fM[φp(H; /)] = 0 for all
He En. Analogous differential relations are true for the
solutions of homogeneous hypoelliptic equations of any order.
The infinite differentiability of these solutions is called upon.

2* Forms associated w i t h differential operators* Let En be
the ^-dimensional Euclidean vector space and let R = (rlf , rn), a
multi-index, be a point whose coordinates rd are nonnegative integers;
associated with R are the nonnegative integers | R \ = rί + + rn

and R\ = rλl rj and the differential operator

( 1 ) Dψ* = r

 d m where X = (xίy . ., xn) e En .

If H=(hu •• ,hn)eEn9 we define the differential operators
for p = 1, 2, by

( λ 1 + + Λ

and we let ^(H) be the identity operator. Let Ω c En be a domain
and let Ck(Ω) be the class of all real-valued functions having con-
tinuous partial derivatives of order k on Ω. If A = (au , an) e Ω
is arbitrary but fixed once and for all, and if fe Ck(Ω) then we define
φp(H;f) for p = 0,1, , & to be the result of applying &P(H) to /
and evaluating the partial derivatives at A; thus

( 2 ) φp(H; f) - Σ h h{X ' λ * (D™f)z=*
II iί!
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Hence φp(H;f) is a homogeneous polynomial of degree p in

hlf •••, hn; i.e. φp(H;f)

is a form of degree p so that for every real number λ we have

These forms also have the property that if XeEn and if

f(X)= Σ Σ
0 0

converges absolutely for X in some neighborhood of A, then in such
a neighborhood

p=0

For w = 2, Mann [4] has shown that if / is harmonic in a neigh-
borhood of A, then each form φp(H; f) is harmonic and, unless
identically zero, it is an indefinite form. Here we generalize this
result to more variables and to more general differential equations.

3* A lemma* Let Sfx be an arbitrary homogeneous linear dif-
ferential operator of order q with constant coefficients B(R):

Σ

Let F{X) = £fx[f{X)] and ΦP{H) = £fB[φp(H; f)]. We have the
following result.

L E M M A . If f e Ck{Ω), A e Ω a n d k ^ q t h e n

( φ p _ q ( H ; F ) i f p ^ q
(4) ΦP(H) =

(0 if p ^ q - 1 .

Proof. The second line of (4) is clear since ^fH is of order

whereas <pp(H;f) is a polynomial of degree p. The results is also
obvious if q = 0.

Now let 1 ^ q ^ p ^ fe. Applying the special operator 3/5/̂  to
(2) we obtain

-f- <pp(ff; /) = Σ

Putting t1 = rι — l but t2 = rz, , tn = rn, we see that all ts ^ 0 and
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2-φ,(H;f)= Σ I
Oh, |Γ|=p-l 1

Iteration immediately gives

dh?

if 7Ί g k. Hence, if | R | = q we get from (1)

ff;/) = φp_]Bl(H; Dψf) = φp_q

Multiplying by B(R) and summing over all R such that | R \ — q, we
obtain (4) after applying (3) and the definitions of ΦP(H) and F(X).

COROLLARY. Let J*fx be a homogeneous linear differential oper-
ator of order q with constant coefficients. Let feCk(Ω), AeΩ and
k^q. Iff satisfies jSfx[f(X)\ = 0 in Ω, then £?B[<pp(H; /)] - 0 for
all He En and all p = 0,1, .

Proof. By hypothesis FeCk~q(Ω) is identically zero in Ω. From
(2) it follows that φ^H; F) = 0 for all j ^ 0 so that (4) gives

Φ,(H) s 0

for all p^ q. The same conclusion also holds if p ^ q — 1 by (4)
and the result is proved.

4. The main results. In order to formulate the first of our
results, we need to recall the idea of a hypoelliptic linear differential
operator. If

\R\

is a linear differential operator of order not exceeding s with constant
coefficients, where D1/1 is defined by (1), then we can associate with
& the polynomial P, of degree not exceeding s, defined by

P( W) - X K(R)i^w? . . w , W = (wu , wn) e En;
|Λ|£«

this polynomial results from the formal replacement in & of each
differentiation operator d/dxk by iwk where i2 = —1. If

is the usual Euclidean length of the vector X, we also associate with
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& the function d defined on En by

d ( Y ) = g.l.b.{\\ Y-U\f+ \ \ V \ \ ψ >

where the g. I. b. is extended over all U, VeEn such that

P(U+iV) - 0 .

Finally, we say that & is hypoelliptic if d(Y)—* oo as

For other equivalent definitions, see Hormander [3, p. 100]. Both
elliptic [3, p. 102] and parabolic [3, p. 152] operators are hypoelliptic.

THEOREM 1. Let j ^ x be a homogeneous linear operator (i.e.
I R I = s for some s) with constant coefficients which is hypoelliptic.
If AeΩ and f is a Lebesgue integrable solution of Jίfχ[f(X)] = 0 in
Ω, then ^f3[φP(H; f)] = 0 for all He En and all p = 0,1,

Proof. Since / is integrable on Ω, the expression 1 f(X)ψ(X) dX
JΩ

defines a distribution; here ψ, a test function, is in C^iΩ) and van-
ishes outside a compact set. (See Hormander [3, pp. 2-5].) It follows
from the last part of Theorem 7.4.1 on p. 176 of Hormander that
feC°°(Ω). Since k may be taken arbitrarily large in the Corollary,
its conclusion yields the conclusion of the present theorem.

THEOREM 2. Let j?fx be a homogeneous elliptic operator of the
second order with constant coefficients. If AeΩ and f is a Lebesgue
integrable solution of Jt?x[f(X)] = 0 in Ω, then for each p Ξ> 1 the
form φv{H;/) is either indefinite or is identically zero.

Proof. By the preceding result £fH[φp(H; /)] = 0 for all HeEn

and all p ^ 0. Suppose that for some p φp(H; f) is not indefinite;
then it is semi-definite and, without loss of generality, we may assume
that it is negative semi-definite. Then for all HeEn we have

φp{H; /) ^ 0 = φp(θ; f)

where θ = (0, 0, 0). However, by the strong form of the maximum
principle, see Courant-Hilbert [2, v. 2, p. 326], for solutions of homo-
geneous elliptic equations of the second order, it follows that φp(H; f)
is constant in En. This constant is 0 since φp(θ; f) = 0.

For odd p a much simpler proof results from

φp(-H;f) = (-l)>φ,(H;f) = -φp(H;f);

hence, if φv(H;f) is not identically 0, it takes both positive and
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negative values and is therefore indefinite.
It may be remarked that there is a result connected with this

which is independent of differential operators. This result asserts
that if feCk(Ω),AeΩ and the φr(H; f) are identically zero for

r = l , 2 , . . . , p - l ,

where 1 <̂  p ^ k, but φp(H; f) is an indefinite form, then in each
neighborhood of A the function / assumes values which are both
greater than f(A) and less than f(A). This result is proved by ex-
panding / about A in a finite Taylor series and using the continuity
of the partial derivatives of order p. For p = 2, the result is par-
ticularly well-known and may be found, for example in Apostol, [1,
pp. 149-152].

It is a consequence of this result that if one could prove Theorem
2 without an appeal to the maximum principle, then one would have
an independent proof of this principle. In fact, when n = 2 and £/?x

is the Laplacian, Mann [4] does this and it is not unreasonable to
suppose that there are other cases of second order elliptic equations
for which this can be done.
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