ON THE UNION OF TWO STARSHAPED SETS

D. G. Larman

Abstract

Let S be a compact subset of a topological linear space. We shall say that S has the property φ if there exists a line segment R such that each triple of points x, y and z in S determines at least one point p of R (depending on x, y and z) such that at least two of the segments $x p, y p$ and $z p$ are in S. It is clear that if S is the union of two starshaped sets then S has the property φ, and the problem has been raised by F. A. Valentine [1] as to whether the property φ ensures that S is the union of two starshaped sets. We shall show that this is not so, in general, but we begin by giving a further constraint which ensures the result.

Theorem. If a compact set S, of a topological linear space, has the property φ, and, for any point q of S, the set of points of R which can be seen, via S, from q form an interval, then S is the union of two starshaped sets.

Proof. Consider the collection of sets $\left\{T_{q}\right\}, q \in S$, where T_{q} denotes the set of points of R which can be seen, via S, from q. If every two intervals of this collection have a nonempty intersection, then it follows from Helly's Theorem that S is starshaped from a point of R. Suppose, therefore, that there exist points q_{1}, q_{2} of S such that $T_{q_{1}} \cap T_{q_{2}}=\phi$. We partition the collection $\left\{T_{q}\right\}, q \in S$, into three collections $\left\{T_{q}\right\}_{1},\left\{T_{q}\right\}_{2},\left\{T_{q}\right\}_{12}$, so that T_{q} belongs to $\left\{T_{q}\right\}_{1}$ if T_{q} meets $T_{q_{1}}$ but not $T_{q_{2}}, T_{q}$ belongs to $\left\{T_{q}\right\}_{2}$ if T_{q} meets $T_{q_{2}}$ but not $T_{q_{1}}, T_{q}$ belongs to $\left\{T_{q}\right\}_{12}$ if T_{q} meets both $T_{q_{1}}$ and $T_{q_{2}}$. If T_{q}, T_{r} are two sets of $\left\{T_{q}\right\}_{i}(i=1,2)$ then it follows from φ applied to the points q, r and $q_{j}(j \neq i)$ that T_{q} meets T_{r}. If T_{q}, T_{r} are two sets of $\left\{T_{q}\right\}_{12}$, then, since both T_{q} and T_{r} span the gap between $T_{q_{1}}$ and $T_{q_{2}}$, it follows that T_{q} meets T_{r}. Further, if T_{q} belongs to $\left\{T_{q}\right\}_{12}$, then it must meet every set of at least one of the collections $\left\{T_{q}\right\}_{i}(i=1,2)$. For, otherwise, there exists sets $T_{r_{1}}, T_{r_{2}}$, belonging to $\left\{T_{q}\right\}_{1},\left\{T_{q}\right\}_{2}$ respectively, which do not meet T_{q}. However, by property φ applied to r_{1}, r_{2} and q, this implies that $T_{r_{1}}$ meets $T_{r_{2}}$ and hence that

$$
T_{r_{1}} \cup T_{r_{2}}
$$

spans the gap between $T_{q_{1}}$ and $T_{q_{2}}$. But this implies that $T_{r_{1}} \cup T_{r_{2}}$ meets T_{q}; contradiction. We now form the collections $\left\{T_{q}\right\}_{12 i}(i=1,2)$ so that T_{q} belongs to $\left\{T_{q}\right\}_{12 i}$ if either T_{q} is in the collection $\left\{T_{q}\right\}_{i}$ or T_{q} is in $\left\{T_{q}\right\}_{12}$ and meets every member of $\left\{T_{q}\right\}_{i}$. We note that

Fig. 1
$\left\{T_{q}\right\}_{122} \cup\left\{T_{q}\right\}_{122}=\left\{T_{q}\right\}, q \in S$,
and combining the results above with Helly's Theorem, we deduce that the intersection U_{i} of all the members of $\left\{T_{q}\right\}_{12 i}$ is a nonempty closed set. Let s_{i} be a point of U_{i} and let S_{i} be the set of points of S which can be seen, via S, from S_{i}. Then S is the union of S_{1} and S_{2} which are starshaped from s_{1} and s_{2} respectively.

Counter-example. There exists a plane compact set S which has the property φ but, nevertheless, cannot be expressed as the union of two starshaped sets.

We assume the existence of a rectangular coordinate system and let c, e, v be the vertices of an equilateral triangle, with c, e on the x-axis, e lying to the right of c, and v lying above the x-axis. Let o be the centroid of the triangle $c e v$ and let the line through o, which is parallel to the x-axis, meet $c v, e v$ at g, h respectively. Let the vertical line through g meet co at i and ce at k. Let the vertical line through h meet $e o$ at j and $c e$ at ρ. Let $v i$ produced meet $c k$ at a and let $v j$ produced meet ρe at b. So far we have defined six distinct points c, a, k, ρ, b, e, in that order, on the x-axis. Let d be a point on the x-axis which lies to the left of c and let the line od produced meet $c g$ at m and $h v$ at n. Suppose the lines $m i$ produced, $n j$ produced, meet the x-axis at points $k^{\prime}, \rho^{\prime}$, respectively. Let $k g$ meet $m b$ at v_{1} and let ρi produced meet $a m$ at v_{2}. As

$$
d \rightarrow-\infty, \rho^{\prime} \rightarrow \rho, k^{\prime} \rightarrow k, m \rightarrow g, v_{1} \rightarrow g .
$$

Hence we can suppose that d has been chosen as to ensure that (i)
k^{\prime} and ρ^{\prime} are distinct interior points of $a b$, with k^{\prime} lying to the left of ρ^{\prime}, and (ii) the quadrilateral $m v_{1} i v_{z}$ is nondegenerate, and i is closer to the x-axis than is m. We choose a point f on the x-axis and to the right of e, and a point w on the line $o v$ produced and strictly above v. Let $e v$ produced meet $d w$ at p and let $c v$ produced meet $w f$ at z. We also choose a point q on vo produced, which lies strictly above the x-axis but which lies below the line segments $a j$ and $b i$. Now, by (ii), the interior C_{1} of the quadrilateral $m v_{1} i v_{2}$ is nonempty, and, if $k j$ produced meets $n b$ at u, the interior C_{2} of the triangle jun is nonempty. We define C_{3} to be the interior of the triangle $a q b$ together with the open line segment $a b$. Finally we take S to be $T-C_{1} \cup C_{2} \cup \mathrm{C}_{3}$, where T denotes the set within and on $w d f$. Note that by construction every point of S, other than those within $v z w p$, can see, via S, one of a and b, and one of c, d and e. We first show that S has the property φ, with $R \equiv d f$.

Suppose that p_{1}, p_{2}, p_{3} are points of S for which no two can together be seen from any point of $d f$. As any point within $v z w p$ can see each of c, d and e, we deduce, from above, that none of p_{1}, p_{2}, p_{3} can lie within $v z w p$. But this implies that each of p_{1}, p_{2}, p_{3} can see one of a and b; contradiction. Therefore, we conclude that such a triple of points cannot be chosen in S and hence that S has the property φ, with $R \equiv d f$.

We now show that S is not the union of two starshaped sets. Suppose, therefore, that p_{1}, p_{2} are points of S and that each point of S can be seen from at least one of p_{1}, p_{2}. Let am produced meet $d w$ at a^{\prime} and let $b n$ produced meet $w f$ at b^{\prime}. If neither of p_{1}, p_{2} lie within $a a^{\prime} d$, then neither point can see the interior of the segment $m v_{2}$. Hence p_{1}, say, lies within $a a^{\prime} d$ and, similarly, p_{2} lies within $b b^{\prime} f$. Let $i v_{2}$ produced meet $d w$ at i^{\prime} and let $j u$ produced meet $w f$ at j^{\prime}. Then p_{1} must lie within $d a v_{2} i^{\prime}$, for, otherwise, the interior of the line segment $v_{2} i$ cannot be seen from p_{1} or p_{2}. Similarly p_{2} lies within $f b u j^{\prime}$. Let $n i$ produced meet the x-axis at n^{\prime} and let $m j$ produced meet the x-axis at m^{\prime}. As p_{2} cannot see the interior of the line segment $n j, p_{1}$ must lie within $a i n^{\prime}$. But then p_{1} cannot see the interior of the line segment $m v_{1}$ and so p_{2} must lie within $j b m^{\prime}$. We note that $p_{1}=a, p_{2}=b$ is impossible and that i and j are the same distance from the x-axis. It follows that $p_{1} i$ produced, $p_{2} j$ produced meet at an interior point g^{\prime} of $i j v$. But as C_{1} and C_{2} are nonempty open sets, it follows that there is a nonempty quadrilateral Q, which lies within $i j v$ and has g^{\prime} as its lowest vertex, whose interior cannot be seen from either p_{1} or p_{2}. As Q lies in S, this is a contradiction, and we conclude that S cannot be expressed as the union of two starshaped sets.

Reference

1. F. A. Valentine, Convex sets, McGraw-Hill, 1964.

Received December 22, 1965, and in revised form May 2, 1966.
University College, London, England

