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FIXED POINTS AND FIBRE MAPS

RoBERT F. BROWN

Let & = (E, p, B) be a (Hurewicz) fibre space and let 1
be a lifting function for .&#. For W a subset of B, a map
fip(W)—> E is called a fibre map if p(e) = p(e’) implies
p(f(e) = p(f(e)). Define f: W— B to be the map such that
fo=npf. M [WuUf(IW) S VS B where V is pathwise con-
nected, define f7: p~'(b) — p~(b), for be W, by f7(e) = (f(e),
w)(1) where w:I— V is a path such that «(0) = f(b) and
w(1)=0b. Let 7 be a fixed point index defined on the category
of compact ANR’s and let @ denote the rationals, The main
result of this paper is:

TueoreEM 1. Let & = (E, p, B) be a fibre space such that
E, B, and all the fibres are compact ANR’s, Let f: EF— FE
be a fibre map, If U is an open sn_lbset of B such that
F(b) # b for all bebd(U) and ¢l [U U f(U) S V < B where V
is open and pathwise connected and & |V = (p~%(V), p, V) is
Q-orientable, then

i(f, V) = i(f, U). L(fY)
where L(f}) is the Lefschetz number of f] for any be U.

Independence of L(f}). For & = (H, p, B) a Hurewicz fibre
space with lifting function X [7] and w a loop in B based at b, define
@: p~(b) — p~'(b) by p(e) = Me, w)(1). The fibre space & is called
Q-orventable if

@*: H*(p™(b); Q) — H™*(p~'(b); Q)

is the identity isomorphism for all pairs (b, @) where be B and o is
a loop in B based at b.

LemMMmA. Let & = (H, p, B) be a Q-orientable fibre space and let
w;: I — B, 1 =1,2, be paths such that ;(0) = b and w,(1) = b'. Define
@it pH(b) — p7'(b) by pi(e) = Me, w,)(1), then

P = @ H*(p™'(b'); Q) —=~ H*(p™'(b); Q) .

Proof. By Proposition 2 of [4], each ¢; is a homotopy equivalence
with homotopy inverse +;: p~(b') — p~*(b) given by +(e') = Me', @;)(1)
where @;(s) = @;(1 — s). Therefore, ¢}: H*(p~(b'); Q) — H*(p~'(b); Q)
is an isomorphism and +} = (p})~'. Consider w: I — B defined by
w,(23) 0<s<1/2

Y= 150 —2 12<s<1
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then w is a loop in B based at b and since & is Q-orientable, for
p(e) = Me, w)(1), p* is the identity isomorphism. It follows from [4]
that ¢ is homotopic to ., S0 @* = @fvF and ¥ = (¢f)~'. Hence
vy = f and @f = @f.

THEOREM 2. Let & = (E,p,B) be a Q-orientable fibre space
where B is pathwise connected and H*(p~'(b); Q) ts finitely generated
for beB., For WZB, let fip(W)—E be a fibre map, then
L(fy) = L(f,) for all b,b e W, where f, means fF.

Proof. Since f, = @/ | p7'(b)), the lemma implies that
fis H (p7(b); @) — H*(p7(b); &)
is independent of the choice of the path @; from f(b) to b. Let

w,, w,: I — B such that w,(0) = f(b), ®(1) = w,(0) = b, and w,(1) = ¥'.
Define w,: I — B by
{ﬂ71<28) 0<s<1/2
(!)2(8) =
w2 —1) 12=s=1.

We first show that diagram (1) is homotopy commutative, where
@z(e) = >\’<37 wi)(l)f% = Oy 13 2'

pt) — L o (b)) — s pi(h)
( 1 ) Sﬁll T‘Pz
) PR P ()

Define the homotopy H: p~'(b) x I — p7%(b) by
Hie, t) = M S(Me, @)1 — 1)), ©'](1)

where
F@(2s + 1) 0=s= 12‘ ¢
0'(s) =
w0<28+t—1> 1——t§8§1.
t+1 2

Then H(e, 0) = @, fp.(e) and H(e, 1) = ¢, f(e) as required. By the lemma
and [4], (/,)* = (oS | p7(b)))*. Furthermore,

(V1 fop)™ = (V@@ f | D710 ) p)*
= (P f 27O NP)* = (@ [ D7 ON)* = [ .

Since @ is a field, H*(p~'(b); Q) and H *(p~'(d’); @) are finite dimensional
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vector spaces and of, f;, v are linear transformations. Pick bases
for H*(p~(b); Q) and H*(p~(V'); Q)and let @, F’, and ¥ be the matrices
with respect to these bases representing @*, i, and +}* respectively.
Since ¥ = ()™, ¥@® = E,, the n x n identity matrix, where n is the
dimension of H*(p~'(b); Q). Therefore, trace (JF'¥) = trace (F’) which
implies that L(f,) = L(y1fy»®:). The theorem now follows because
(Yo fop)* = fiF implies L(yfop) = L(f).

2. Extension of a theorem of Leray. Let B and F be topolo-
gical spaces and let (B x F, ', B) be the trivial fibre space. Suppose
W is a subset of B and f: W x FF— B x F is a fibre map. Define
fo: F — F by f, = n°fj, where j,: F — W x Fis given by 7,(x) = (b, x)
and 7. B x F — F is projection. Theorem 3 is a restatement of
Theorem 27 of [9] in the somewhat specialized form in which we
shall use it.

THEOREM 3 (Leray). Let (B x F, ', B) be the trivial fibre space
where B and F are finite polyhedra. For U an open connected subset
of B, let ficl(U) x F— B x F be a fibre map.! If fib) = b for all
bebd(U), then

iW(f, U x F) = 4(f, U)-L(f,)

for all be U, where © denotes the Leray fized point index.

By Theorem 22 and Corollary 26-27 of [9], the Leray index [9,
p. 208] satisfies the O’Neill axioms [10, p. 500]. (We will use the
formulation of the axioms and the terminology of [1]). Therefore, an
index ¢ for the category of compact ANR’s, satisfying the O’Neill
axioms, may be obtained from the index 7 in the following manner
[2, p. 20]. Let X be a compact ANR and let « be a finite open cover
of X, then there exists a finite polyhedron K and maps ¢: X — K,
i K — X such that 4@ is a-homotopic to the identity map on X,
i.e. there exists a map H: X x I — X such that H(x, 0) = @, H(x, 1) =
Jo(x), and for each x € X, the set {H(x, t)|¢<c I} lies in a single element
of a [5, Theorem 6.1]. Write @ ~,1,. For U an open subset of
X and f: X — X a map such that f(z) == = for all xebd(U), let

io(f, U) = ilpfr, v(U)) .

Browder [2, Theorem 2, p. 20] showed that there exists a finite open
cover £,U) of X such that if « is a refinement of £,(U), then 7.(f, U)
is well-defined and independent of «, ¢, and +». Write ¢, = ¢ for all

1 The notation ¢l (U) denotes the closure of U. We use bd(U) for the boundary
of U.
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such a.

THEOREM 4. Let (B x F, ', B) be the trivial fibre space where
B 1s a finite polyhedron and F is a compact ANR. For U a connected
open subset of B, let ficl(U) X F— B X F be a fibre map. If
F(b) = b for all bebd(U), then

Wf, U x F) = i(f, U)-L(f,)
for all be U.

Proof. Let F be dominated by a finite polyhedron K by means
of maps ¢: F — K and :K — F. Define fBx K— B x K by
FHb, k) = (f(b), pfiv(k)) then f* is a fibre map with respect to
(B x K, 7', B) and f* = f. Since ¢ is homotopic to the identity map
on F, L(f}) = L(f;) (see the proof that L(f,) = L(y f,¢,) in Theorem
2). Let a be a finite open cover of B which refines £7(U), then
T = {(n")"Y(A) | Ac a} refines £,(p~(U)). Since f*= 1z X @)f(1z X )
and, trivially,

Iz X ¥)Az X @) ~. 15 X 17,
then i(f, U x F) =1(f*% U x K). Therefore, by Theorem 3,
i(f, U x F) =14(f, U)-L(f,) .

3. Proof of Theorem 1. We first assume that B is a finite
polyhedron. By a theorem of Hopf [6, Theorem 5], given ¢ > 0, there
exists a map g: B— B homotopic to f by a homotopy h:B x I — B
such that A(b, 0) = f(b), h(b, 1) = g(b) and o[h(b, t), h(b, t')] < & for be B,
t,t' € I, where p is the metric of B. The map § has a finite number
of fixed points b, ---, b, where, with respect to some barycentric sub-
division of B, each b; lies in the interior of a different simplex o; of
B, where o; is not a face of any other simplex of B. Since f has
no fixed points on bd(U), inf {o(b, f(b)) |be bd(U)} = ¢, > 0. Lete, >0
be the distance from cl[U U fiU)] to B —V (if V = B, take ¢, = o).
Let ¢ = min (g, &,) then A(b, t) = b for all bebd(U). Hence i(f, U) =
(g, U) by the homotopy axiom. Furthermore, cl[U U g(U)]<= V.
The homotopy % induces 4': B— B. Let X\ be regular lifting function
for & and define H': E — E* by

H'(e)(t) = MS(e), ' (p(e)(?)

Define g: E — E by g(e) = H'(e)(1) then ¢ is a fibre map homotopic to
f by a homotopy without fixed points on bd(p~*(U)) so i(f, p~(U)) =
i(g, p~(U)). Furthermore, pg = gp. Since f; , is precisely g, ; if we
use the path A'(b;) to define f,, and the constant path to define g, »
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then L(f)) = L(g;,). We have shown that when B is a finite poly-
hedron, it is sufficient to verify the conclusion for the map g.

Let U; be a d-neighborhood of b, where ¢ is chosen small enough
so that [cl (U),) U g(cl (U;))] & 0;. We may contract o; to b; so that
b, stays fixed throughout the contraction and such that the restriction
to ¢l (U,) contracts cl (U;) through itself to b;,. The contraction induces
fibre homotopy equivalences

a.p o) o; X F: B
o’ p el (U) == cl(U;) x F: B

where the primes denote restriction and F' = p~'(d;) [4, Proposition 4].
Consider the diagram

gl

!

| a1
A(U,) x F o= pl (U)o pY(0,) = 0, X F
4 B

p

|
(2) |
SN .

ol (U) —=— 0,

where ¢’ = agS’. By Theorem 4,
ig', U; x F) = i@, U)-L(g},) -

If we use the constant path to define g, 2 then g,, = g;,, so L(g}) =
L(g; j). Let ¢ = gB": p(cl (U;)) — 0; x F, then by the commutativity
axiom

i(ay, U.'i X F) = i(#a,y p_l(Uj)) .

Now i(ay, U; x F) =1i(¢9’, U;x F') by definition. On the other hand,
po’ = gB'a’ is homotopic to g by a homotopy which has no fixed points
on bd(p~(U,)) since g has no fixed points on bd(U;) and the homotopy
between S’a’ and the identity is fibre-preserving, so by the homotopy
axiom i(pa’, p~(U;)) = (g, p~(U;)). Therefore

(g, p™(U) = 4@, U,)-L(g7) .

Renumber the fixed points of § so that b, ---,b, are the fixed
points which lie in U. Since g(¢) = ¢ implies p(e) = b; for some j =
1,..-,s,¢0 has no fixed points on [p~(cl(U)) — Uiz »(U;)]. Hence
by the additivity axiom,
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<

S itg, p(U,)

(g, p7(U)) =

b

>, 1(g, UpLigy) = (g, U)-L(g})

Il
Na

S
Il

Now suppose that B is a compact ANR, let K be a finite polyhedron
and let ¢: B— K, +: K — B be maps such' that ¢p ~,1; where «
refines £7(U) and «(AU)), the union of all A ¢« such that A N A(U) ==
@, is contained in V. Let 4% o) = (v*(&), p*, K) where

VHE) = {(k, ) e K x E|y(k) = p(e)}

and pi(k, e) = k, then %7 ) is a fibre space with lifting function \?
given by

N((k, e), o)(t) = (0(1), Me, y@)(?))
where )\ is the lifting function of & . Let h: B x I — B be the

a-homotopy such that &b, 0) = b, (b, 1) = ++(b), then &I induces
h': B— BI. Define ¢': E — +#(F) by

P'(e) = (pp(e), Me, W'(p(e))) 1)

Consider
JHE) i .y
NS4 1.
Y 7
VHE) ——— K
(3) Pt p¢J lp »
K— B
Z N
LT N\
K — B
¢

where '(k, ¢) = ¢ and f* = p'fy’. Since f* = ¢fy and yp ~, 1, then
W(fF, U) = o(f% v (U)). We let v=¢'fi E— *E), then by the
commutativity axiom,
W'y, () = i(vy’, v p(U)) .

Define H: K x I — E by H(e, t) = \e, M (ple)(t). If H(f(e),t) = ¢
for any ecbd(p~(U)), t e I, then h{ f(p(e)), t) = p(e) which is impossible
since « refines £7(U) |2, p. 20], so +'v = +'¢'f is homotopic to f by
a homotopy without fixed points on bd(p~*(U)) and by the homotopy
axiom

i(y'y, pH(U)) = (S, p(U)) .
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On the other hand, i(vy’, ¥/ 'p~4(U)) =i(f*, p* (v (U))). If key(U),
then f¥(k)eyY(V) = W since a(f(U)) = V. Let w:I— W be a path
such that @(0) = f#k) and w(l) = k. Define @’: I —V by

_[W(FR))EZs)  0=s<1/2

w'(s) =
Yw(2s — 1) 12<s<1

and let fy) be given by fyu(e)=Mf(e), @)(1). Define flw: p~(v(k)) —
7' (yr(k)) by

Frw(e) = MM(fe), K (FH(E))D), yol1),

then by [4], f%u is homotopic to fyu,. But fik, e) = M ((k, e), w)(1) =
(k, firu(e)). Therefore L(fi") is equal to L(f)) and is independent of
k and w. Applying the first part of the proof to the fibre space
¥ Z7), the map f¥ and the open set v+ (U) & K, we get

iS5, oy H(U)) = i(F T (U)) - L(fE) .
Therefore,
i(f, p7(U) = i(f, U)-L(f})

which completes the proof of Theorem 1.

4. The index of a fixed point class. Let X be a compact ANR
and let f: X — X be a map. Denote the fixed point classes of f by
F,---,F.. Let (X, 7, X) be the universal covering space of X, then
by [2, pp. 43-44] there is a map f7: X — X such that f7 = fp which
has the following properties: (1) if fi(e) = e, then p(e)e F;, (2) for
each be F; there exists ec p7'(b) such that fi(e) = e. We say that f7
covers F;. There is an open set U; in X containing F,; such that
cd(U)nF,=@ for k+j. The index of F; is defined by i(F;) =
i(f, U;) and is independent of the choice of U,.

THEOREM 5. Let X be a compact ANR with finite fundamental
group. Let f: X — X be a map, let F be a fixed point class of f,
and let f: X — X cover F. If there exists an open subset U of X
such that for xzeU, fix) =z if, and only if, xeF, flx) #x for
2xebd(U), and cl[U U AU) SV, where V is an open connected
stmply-connected subset of X, then

WF) = L(F)/L(fY)
for xe U.

Proof. We first observe that L(fY) == 0. Take x ¢ F, then since
the fibre is discrete L(fY) is just the number of fixed points of f
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restricted to ~'(x) which, since f covers F, must be greater than
zero. Since m,(X) is finite, X is compact and we can apply Theorem
1 to obtain

i(f, U) = i(f, BON/LTY)

Since f has no fixed points outside of H~(U), i(f, 34(U)) = L(f).

The existence of the simply-connected set V in the hypotheses of
Theorem 5 is not as severe a restriction as it may appear. For
example, if X is a finite polyhedron, (or a compact topological manifold,
with or without boundary) f is homotopic to a map g which has only
isolated fixed points [6, Theorem 5] [3, Theorem 2] and the homotopy
carries F to a fixed point class F’ of g of the same index [2, Theorem
3, p. 36]. Hence we can apply Theorem 5 to g and F’ to compute
2(F) (compare Theorem 5.2 of [8]).
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