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FIXED POINTS AND FIBRE MAPS

ROBERT F. BROWN

Let ^ — (E, p, B) be a (Hurewicz) fibre space and let λ
be a lifting function for J^~. For W a subset of B, a map
f:p~1(W)—*E is called a fibre map if p(e) = p(βf) implies
vθ(β)) = V(f(ef)). Define / : W-* B to be the map such that
/p = pf. If [T7 u /(W)] ^ V ^ B where F is pathwise con-
nected, define f[: p~\b) -> p-'φ), for δeΐF, by f[(e) = Kf(e),
ω)(l) where ω: I ~-> V is a path such that ω(0) = f(b) and

ω (l) = b. Let i be a fixed point index defined on the category
of compact ANR's and let Q denote the rationale. The main
result of this paper is:

THEOREM 1. Let J?" = (E> p, B) be a fibre space such that
ϋ7, B, and all the fibres are compact ANR's. Let f\E->E
be a fibre map. If U is an open subset of B such that
/(6) Φ b for all 6 € bd(U) and cl [U U f{U)] ^VQB where V
is open and pathwise connected and J^~| V = (p~KV), p, V) is
Q-orientable, then

where L{fζ) is the Lefschetz number of fζ for any beU.

Independence of L(f[). For ^ = (£7, p, 5) a Hurewicz fibre
space with lifting function λ [7] and ω a loop in B based at δ, define
9>: jr-^δ) -+ p"\b) by ^>(e) = λ(β, α>)(l). The fibre space ^ is called
Q-orίentable if

is t h e i d e n t i t y i s o m o r p h i s m for al l p a i r s (6, ω) w h e r e beB a n d ω is
a loop in B b a s e d a t 6.

LEMMA. Let J^ = (£7,3?, J5) δβ α Q-orientable fibre space and let
il I ~+B, i = 1, 2, 6β pα£Λs suc/z, ί/̂ αί ω^O) = 6 and 0)̂ (1) = δ'. Define

φf = y*: H+ip-φ); Q) ~^> H*(p~\b); Q) .

Proof. By Proposition 2 of [4], each φt is a homotopy equivalence
with homotopy inverse ψv p-^δ') —> ^ ( δ ) given by ψi(er) = λ(e', ώi)(l)
where ώ^s) - ω,(l - s). Therefore, ^f: H*(p-\b')) Q)-+H*(p-\b); Q)
is an isomorphism and ψf = ί^*)"1- Consider ω: I—+ B defined by

ω1(2s) 0 < s < 1/2

ώa(l - 2s) 1/2 ^ s ^ 1
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then ω is a loop in B based at b and since ^ is Q-orientable, for
φ(e) = λ(e, ω)(l), 9?* is the identity isomorphism. It follows from [4]
that φ is homotopic to φ2φi so φ* = φfΫ* and ψf = {φ*)~λ. Hence
ψ* — ψΐ and φt = φf.

THEOREM 2. Let j ^ — (E, p, B) be a Q-orientable fibre space
where B is pathwise connected and H*(p~\b)\ Q) is finitely generated
for beB. For W g B, let f: p~\ W)~^E be a fibre map, then
L(fb) = L{fh,) for all 6, bf e W, where fb means fb

B.

Proof. Since fb = <pi{f\p~1(b)), the lemma implies that

/6*: H*(p-\b)', Q) ^ H*(p-\b); Q)

is independent of the choice of the path ωi from fib) to 6. Let
ω0, ωL: I —> B such that OJ0(0) = f(b), ωo(l) = ω^O) = b, and ω^l) = b\
Define ω2: I —* B by

o)2(s) = ]
\ωo(2s -

We first show that diagram (1) is homotopy commutative, where

Ψi{e) -

( 1 )

Define the homotopy H: p~\b) x I —> p~x{b) by

Hie, t) = λ[/(λ(e, ωL)(l - t)), ωι

where

is + t)) 0 ^ s ^

ω\s) =
/2s + t - l

Then H(e, 0) = φ2fφ>i(e) and iί(e, 1) = φQf(e) as required. By the lemma

and [4], (/».)* = (?Ί%(/ ί P"1^')))*. Furthermore,

Since Q is a field, H*(p~\b); Q) and H*(p-ί(b'); Q) are finite dimensional
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vector spaces and φ*,f*>,ψΐ are linear transformations. Pick bases
for Hk{p-\byy Q) and Hk{p~\bfy, Q)and let Φ, F', and Ψ be the matrices
with respect to these bases representing 9??'*, /6*»fc, and ψf'k respectively.
Since ψf = (φ?)~\ ΨΦ = 2£Λ, the w x n identity matrix, where n is the
dimension of Hk{p~ι{b)\ Q). Therefore, trace (ΦF'Φ) = trace (Ff) which
implies that L(fb,) = LifafvφJ. The theorem now follows because
(Ψifb><Pi)* = fb implies

2* Extension of a theorem of Leray* Let B and F be topolo-
gical spaces and let (B x F, π\ B) be the trivial fibre space. Suppose
W is a subset of JB and f:WxF—*BxFis a fibre map. Define
fb: F -> JP7 by /6 = π2/^6 Λvhere i6: ί7 -> TΓ x JP is given by jb(x) = (6, a?)
and π2: B x F —> F is projection. Theorem 3 is a restatement of
Theorem 27 of [9] in the somewhat specialized form in which we
shall use it.

THEOREM 3 (Leray). Let (B x F,π\ B) be the trivial fibre space
where B and F are finite polyhedra. For U an open connected subset
of B, let f:c\(U) x F ~-> B x F be a fibre map.1 If f(b) Φ b for all
bebd(U),then

ϊ(f, U x F) = ϊ(f, U) L(fh)

for all be U, where i denotes the Leray fixed point index.

By Theorem 22 and Corollary 26-27 of [9], the Leray index [9,
p. 208] satisfies the O'Neill axioms [10, p. 500]. (We will use the
formulation of the axioms and the terminology of [l]). Therefore, an
index i for the category of compact ANR's, satisfying the O'Neill
axioms, may be obtained from the index i in the following manner
[2, p. 20]. Let X be a compact ANR and let a be a finite open cover
of X, then there exists a finite polyhedron K and maps φ: X —> K,
ψ: K —> X such that ψφ is α-homotopic to the identity map on X,
i.e. there exists a map H: X x I —> X such that H(x, 0) — α?, H(x, 1) ~
ψφ(x), and for each xe X, the set {H(x, t)\te 1} lies in a single element
of a [5, Theorem 6.1]. Write ψφ~alx. For U an open subset of
X and / : I ^ I a map such that f(x) Φ x for all x e bd(U), let

ia(f, U) = Hφfψ,ψ-1(U)).

Browder [2, Theorem 2, p. 20] showed that there exists a finite open
cover Kf(U) of X such that if a is a refinement of ιcf(U), then ia(f, U)
is well-defined and independent of a, φ, and ψ. Write ia — ί for all

1 The notation cl (U) denotes the closure of U. We use bd(ϊ7) for the boundary
of U.
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such a.

THEOREM 4. Let (B x F, TΓ1, B) be the trivial fibre space where
B is a finite polyhedron and F is a compact ANR. For U a connected
open subset of B, let f:ol(U)xF-+BxF be a fibre map. If
f(b) Φ b for all bebd{U), then

i(f, U x F) = ϊ(f, U)-L(fb)

for all beU.

Proof. Let F be dominated by a finite polyhedron K by means
of maps φ:_F -> K and ψ:K~> F. Define fhBxK->BxK by
/*(£>, k) = (/(δ), φfbψ(k)) then /* is a fibre map with respect to
(B x K,π\ B) and /* — /. Since ψφ is homotopic to the identity map
on F, L(fi) = L(fh) (see the proof that L{fh,) = L{ψιfh,φ1) in Theorem
2). Let a be a finite open cover of B which refines fCj(U), then

τ = {{π1)-\A)\Aza} refines £/(p~W)). Since /* - (1B x φ)f(lB x f)
and, trivially,

(1B X ψ)(lB X φ) ~τ 1B X 1F ,

then i(f, U x F) =ϊ(f*, U x K). Therefore, by Theorem 3,

i(f,U x F) = ϊ(f,U)-L(fh).

3* Proof of Theorem !• We first assume that B is a finite
polyhedron. By a theorem of Hopf [6, Theorem 5], given ε > 0, there
exists a map g:B—+B homotopic to / by a homotopy h: B x I —> B
such that h(b, 0) = /(&), h(b, 1) = g(b) and p[h(b, ί), h(b, t')] < ε for δ 6 B,
t,t' e I, where p is the metric of B. The map g has a finite number
of fixed points bl9 •••,&, where, with respect to some barycentric sub-
division of Bf each b3- lies in the interior of a different simplex σ3- of
B, where σ3 is not a face of any other simplex of B. Since / has
no fixed points on bd(U), inf {ρ(b, /(&)) | δ e bd(U)} = εx > 0. Let ε2 > 0
be the distance from cl [Ϊ7 U /(C/)] to J5 - V (if F = By take ε2 = oo).
Let ε = min (εx, ε2) then h(b, t) Φb for all δ e bd(U). Hence i(/, Z7) =
ί(^, U) by the homotopy axiom. Furthermore, cl [U U ^(?7)] S V.
The homotopy /̂  induces hf\ B--> B1. Let λ be regular lifting function
for j r and define H': E-+E1 by

H'(e)(t) = λ(/(β), hf(p{e)))(t) .

Define g: E —> E by g(e) — iϊ'(e)(l) then ^ is a fibre map homotopic to
/ by a homotopy without fixed points on bdip-^U)) so i(fp~\U)) =
i(gf p~\U)). Furthermore, pg = </#. Since /δ is precisely <7& if we
use the path h'(bό) to define fb. and the constant path to define gb ,
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then L(fζ.) = L(g\). We have shown that when B is a finite poly-
hedron, it is sufficient to verify the conclusion for the map g.

Let Uj be a δ-neighborhood of bό where 3 is chosen small enough
so that [cl (Uj) U gr(cl (ϋ7, ))] fi 0> We may contract σά to b3- so that
bj stays fixed throughout the contraction and such that the restriction
to cl (Us) contracts cl (Us) through itself to b3. The contraction induces
fibre homotopy equivalences

a: n ί a,- x F: β

where the primes denote restriction and F = v\b^) [4, Proposition 4],
Consider the diagram

a i
p-ι(σs) zzί σs x F

( 2 )

proj.

where gf = agβ*. By Theorem 4,

i(flf', C7, x JP) = ϊ(g, U)-L(g'bj) .

If we use the constant path to define gbj, then gbj = #^, so (flΓ)
L{g'h5). Let μ = ^/S': ̂ ( c l (U$)) —> σ3 x F, then by the commutativity

iaxiom

i(aμ,U,x F) =

Now i(αμ, Ud x F) = i(g', UόxF) by definition. On the other hand,
μa! = gβ'a! is homotopic to g by a homotopy which has no fixed points
on bd(p~\ Uj)) since g has no fixed points on bd( Us) and the homotopy
between β'oί and the identity is fibre-preserving, so by the homotopy
axiom i(μa\ p~\U0)) = i(g, p-^Uj)). Therefore

Renumber the fixed points of g so that blf , bq are the fixed
points which lie in U. Since g(e) = e implies p(e) = δ̂  for some j =
1, « ,s, flr has no fixed points on [ ^ ( e l (f/)) — U i ^ i P " ^ ^ ) ] - Hence
by the additivity axiom,
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3=1

, Us)L(gΐ) = i(g, U) L(gl) .

Now suppose that B is a compact ANR, let K be a finite polyhedron
and let φ: B —> K, -f: K —* B be maps such' that ψφ~alβ where a
refines κ7(U) and a(f(U)), the union of all A e a such that A Π f{U) Φ
0, is contained in V. Let ψ-*(ĵ ) — (γt(E),pt, K) where

- {(k, e ) e K x E \ ir{k) = p(e)}

and p%k, e) = &, then
given by

is a fibre space with lifting function λ*

, e), ω)(t) =

where λ is the lifting function of S?~. Let h: B x I —> β be the
α-homotopy such that h(b, 0) = 6, A(δ, 1) = ψφΦ), then /i induces
h'\ B — 5 r . Define ψ' . E -> f *(£") by

Consider

( 3 )

K

K <—

E

^B

B

where ψ'(k, e) — e and /* = φ'fψ'. Since /* = φfψ and ψφ ~ α 1B, then
i(f,U) = ι{p,ir-1(U)). We let v = φ'f .E-+-ψ*(E), then by the
commutativity axiom,

Define H: E x 1-> E by #(e, ί) =_λ(e, Λ'(p(e)))(ί). If H(f(e), t) = e
for any e e bd(p~\U)), te I, then h(f(p(e)), t) = p(e) which is impossible
since a refines κj(U) [2, p. 20], so ψ 'v = ψ 'φ'f is homotopic to / by
a homotopy without fixed points on bdip-^U)) and by the homotopy
axiom

f'v, p~\U)) = i(
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On the other hand, i(vφ', f-1p-1( U)) = i{f\ P^if-'i U))). like f~\ U),
then f*(k) e φ-\V)_= W since a(f(U)) g V. Let ω: I— W be a path
such that ω(0) - /*(fc) and α>(l) - k. Define ω': I-> F by

fΛ(/^(fc))(28) 0 g 8 S 1/2
(s) = j

and let fψik) be given by fγik)(e)=X(f(e), ω')(l). Define /£<*,: p~\f(k))

then by [4], /£<*) is homotopic to /^(Λ). But /|(fe, e) = λ*(( ,̂ e), ω)(l) =
(&, fir{k)(e)). Therefore L(f^w) is equal to L(/δ

F) and is independent of
k and ω. Applying the first part of the proof to the fibre space

the map /*, and the open set ψ-ι(U) g jfiΓ, we get

Therefore,

i(f,P~ι(U)) = i(f, U)-L(f?)

which completes the proof of Theorem 1.

4* The index of a fixed point class* Let X be a compact ANR
and let /: X —> X be a map. Denote the fixed point classes of / by
Fu , jPr. Let (X, p, X) be the universal covering space of X, then
by [2, pp. 43-44] there is a map /*': X —> X such that pfj — /p which
has the following properties: (1) if fj(e) — e, then p(e) e Fjf (2) for
each b e F3- there exists e e p~\b) such that fj(e) = β. We say that fj

covers Fj. There is an open set U5 in X containing Fό such that
cl (Uj) n f t = 0 for & ̂  i . The index of F y is defined by i(Fd) =
i(f, Uj) and is independent of the choice of Ud.

THEOREM 5. Let X be a compact ANR with finite fundamental
group. Let f: X —> X be a map, let F be a fixed point class of /,
and let f: X —> X cover F. If there exists an open subset U of X
such that for x e U, f(x) = x if, and only if, x e F, f(x) Φ x for
xebd(U), and cl [U U f(U)] E V, where V is an open connected
simply-connected subset of X, then

= L(f)/L(fζ)

for x e U.

Proof. We first observe that L{fζ) Φ 0. Take x e F, then since
the fibre is discrete L{fl) is just the number of fixed points of /
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restricted to p~\x) which, since / covers F, must be greater than
zero. Since τίτ{X) is finite, X is compact and we can apply Theorem
1 to obtain

Since / has no fixed points outside of p~\U), ί(f, p^iU)) = L(f).
The existence of the simply-connected set V in the hypotheses of

Theorem 5 is not as severe a restriction as it may appear. For
example, if X is a finite polyhedron, (or a compact topological manifold,
with or without boundary) / is homotopic to a map g which has only
isolated fixed points [6, Theorem 5] [3, Theorem 2] and the homotopy
carries F to a fixed point class Ff of g of the same index [2, Theorem
3, p. 36]. Hence we can apply Theorem 5 to g and Fτ to compute
i(F) (compare Theorem 5.2 of [8]).
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