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SOME MAPPING PROPERTIES OF THE GROUP
ALGEBRAS OF A COMPACT GROUP

CHARLES A. AKEMANN

A number of equivalent conditions are given under which
certain representations of M(G) and L\G) have closed range.
A faithful representation with closed range implies the finite-
ness of G. Weakly compact operators on Lι(G) commuting
with right translations are classified as left convolutions by
functions in L\G).

In recent years various authors have shown that the same tech-
niques which have proved so successful in developing the theory of
locally compact abelian groups can be applied, with surprisingly small
modifications, to nonabelian groups as well. The purpose of this paper
is to carry on this theme with special emphasis on compact groups.
Toward this end we shall emphasize the use of functional analysis
methods and representation theory. In fact, the main technical result
of the paper doesn't concern groups at all, though its foremost appli-
cation, Theorem 2, gives some equivalent conditions under which certain
representations of the group algebras of a compact group have closed
range. The other main result of the paper is Theorem 4, which
characterizes the weakly compact operators in the group algebra L\G)
[G compact] which commute with right translations as left convolution
by some element of U{G),

1* Notation and preliminaries* Let G be a compact Hausdorff
group. Following Dixmier [2] we denote the set of equivalence classes
of irreducible unitary representations of G by G. We shall assume that
one representation is chosen from each equivalence class, and we shall
denote this collection by G as well. If Ur is in G, then by the Peter-Weyl
Theorem, Ur is a finite-dimensional representation, say of dimension dr9

on the Hubert space Hr. For each such r let B(Hr) be the full matrix
algebra over Hr with the usual operator norm. Let TC(Hr) be the full
matrix algebra over Hr with the trace norm [i.e. the trace class of Hr],
Let M be the bounded direct product of all the B(Hr). That is, if
Δ is an index set for G, then M is that subset of the Cartesian product
of {B(Hr)}reJ for which {||α r | |} reJ is bounded, where {ar}eM. Under
coordinate wise operations and norm \\a\\ = sup r e J || ar ||, for a = {ar} e M,
it is well-known that M is a W*-algebra, i.e. a von Neumann algebra.
Let N be the subalgebra of M defined by the condition: a e N if and
only if for any a > 0, {r e A: \\ ar \\ > a} is a finite set. It is clear that
N is a norm-closed subalgebra of M and hence a J5*-algebra. Let F
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be the Banach space direct sum of the {TC(Hr)}reJ, i.e. if c = {cr} e F,
I! c II = Σre// II cr 11*. It is easy to verify that as Banach space, F is the
dual of N [written F = N*] and M is the dual of F under the bilinear
mapping tr (ac) for a e M or N and c e i*7. [tr (ac) = Σ r 6 j t r (arcr)].
We define a representation U of G into Λf by Z7(ί) = {Ur(t)}.

We define the Lp spaces for G with respect to Haar measure in
the usual way. Also we shall consider the space C(G) of continuous
complex-valued functions on G with sup norm, and its dual, the space
M(G) of finite regular Borel measures on G. It is well-known that
both M(G) and Lι(G) are Banach * algebras under convolution multi-
plication. Also L\G) is naturally embedded in M{G) as a closed ideal
which is dense in the weak* topology of M(G). When it is convenient
we shall identify U(G) with its natural embedding in M(G), and we
shall do the same with N and its embedding in M.

We now define the Fourier transform as an M-valued *homomor-
phism of M(G). If m is in M(G), define the Fourier transform

A(m) = m to be the operator in M with rth-component \ Ur(t)dm(t).

The fact that A is an injective *homomorphism of M{G) into M is

proved in Dixmier [2, p. 316]. Dixmier also proves that if A is re-

stricted to L\G), then the range of A lies in N. Thus A induces a

dual map A* of F into Lr(G). If c is in F and / is in Lι(G), then

Λ*{c){f) - c(f) = tτ(c^U(t)f(t)dtyj - ^f(t)tτ(cU(t))dt.

This proves that A*(c)(t) = tr (cU(t)), and hence the range of A* actually
lies in the natural embedding of C(G) in L°°(G). Thus we may con-
sider A**, which maps L°°(G)* into M, as actually mapping M(G) into
M by composing A with the natural quotient map of L°°(G)* onto M(G).
Thus A is a dual map and almost a second dual map, and we shall
tend to identify the various maps A used above when no confusion
can result.

Finally we note that if p is any central projection in M, then the
spaces pN, pF, and pM are defined in the obvious way, and we have
immediately that (pN)* — pF and (pF)* = pM. We shall consider pM
as a subalgebra of M, pF as a subspace of F, and pN as a subalgebra
of N.

PROPOSITION A. N is the C* group algebra of G, and M is the
"big group algebra of G". [cf. 4]

Proof. We first show that L2(G) is uniformly dense in N. In
order to show this it is only necessary to point out that if p is the
central projection in N determined by the finite set Z7ri, , Ur% in G,
then p = (driχri + • • + drnχrχ. [χr(ί) = tr (tfr(ί))]. This proves that
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pN — pU(G), and hence L\G) is uniformly dense in JV. Also if A is
in Lι(G), then C* norm of A equals the norm (as an element of JV)
of i by [2, p. 40J. Thus JV is naturally isomorphic to the abstract
completion of L\G) in the C* norm, so JV is the C* group algebra
of G. It is then immediate from [4, p. 476] that Mis the "big group
algebra of G".

The above result identifies the objects of the present study as
the familiar group algebras. The ideal structure of M and JV is parti-
cularly simple, and it follows easily that the ideal structure of L\G)
is essentially the same as that of JV.

PROPOSITION B. The closed ideals of L1(G) are precisely those of
the form {/: pf = 0} for some central projection p of M. The weak*
closed ideals of M(G) are precisely those of the form {m: pin = 0} for
some central projection p of M.

Proof. Loomis [11, p. 161] proves the assertion about Lι{G) though
in slightly differenty form. Alternately one may use the methods of
Rudin [12]. To prove the assertion about M(G) by these methods one
needs only to note that if {fa} is a bounded approximate identity in
LΎ(G), then {fa} converges to / in the weak* topology of M. Other-
wise one replaces characters with those functions determined by taking
a specific matrix representation for each Ur and looking at each entry.
Compare [9] for more details of this type of substitution.

We remark here that the most important aspect of the structure
we are building here is that one can use the methods of the abelian
case to prove results analogous to the familiar ones. For example
we could imitate again the proof in [12] to prove the following charac-
terization of M(G) as a subset of M.

PROPOSITION C. Suppose aeM. Then a e M(G) if and only if for
each feL\G), afeM(G).

2. Representation of L\G) and M(G). For the first result of
this section we suspend our notation temporarily in order to more
readily state Theorem 1 in its full generality. This theorem was first
proved by W. G. Bade [unpublished] for the abelian case, and, as
usual, our proof draws heavily on the original methods.

THEOREM 1. Let Ω be any index set and suppose that for each
θ in Ω we are given a finite dimensional Hilbert space Hθ. Let H
be the direct sum of the {Hθ}θeΩ, M be the bounded direct product of
the {B(Hθ)}θeΩi and F be the direct sum of the {TC(Hθ)}eeΩ. Then
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JF7* = M and M is a W*-algebra acting on H in the natural way*
Suppose X is a Banach space and T is a bounded linear operator
mapping F into X. Suppose further that for each unitary operator
u in M there exists x* in X* such that \\u — Γ*(ίc*)|| < 1. Then
T* is surjective.

Proof. Let U be the set of unitary operators of M. We claim
that U is closed in the weak operator topology (equivalently the σ(M, F)
topology) of M. To see this suppose {uφ} is a net in U which σ(M, F)
converges to some a in M. Because of the way that M acts on H
we need only show that a is unitary on each H}. But each H3 is finite
dimensional, so {uφ} converges uniformly to a on each Hθ, so a is
unitary on each Hθ, so a is in U. Thus U is compact for the σ(M, F)
topology of M.

We need only show that T is injective and has closed range,
whence it follows that T* is surjective. Suppose T(f) = 0 for some
feF. Suppose | | / | ! = 1. By [13] and the above 3 unitary
ueM3f(u) = 1. Choose x*eX*3\\ T*(x*) - u\\ < 1. Then

1 > \\T*{x*)-u\\ ^\f(T*(x*))-f(u)\ = \f(u)\ = 1.

This contradiction shows T is injective.
To show T has closed range we need only find a finite dimensional

central projection pe MB the restriction of T to (I — p)F has closed
range, since F = pF® (I — p)F and pF is finite dimensional. Assuming
no such p exists, we may find by induction sequences {fN} in F and
{pN} orthogonal, finite-dimensional, central projections satisfying:
11/̂ 11 = 1, Λ(α)=/ j y (^α)vαei l f , || T{fN) \\ — 0. By [13] and the-
orthogonality of the {pN} 3 u unitary in M 3 fN(u) = 1 for all N =
1,2, . . . . Choose cc*eX*9| | Γ*(x*) - u\\ < 1. Then

1 = HΛIί =Mu)^\fN(u- T*(x*))\ + \fN(T*(x*))

Letting N tend to co we get 1 ^ \\u — T*(&*)||, a contradiction.

For the case of an arbitrary W* -algebra the conclusion of the
last theorem will in general be false. We shall give an example to
illustrate this.

EXAMPLE D. Let H be a separable infinite dimensional Hubert
space and set M = B(H) and F = TC(H). Let {xn} be a fixed ortho-
normal basis in H, and we shall write elements of F and M as matrices
with respect to this basis. First note that F is continuously isomor-
phic to the Banach space l2 + F under the mapping: θ({fi3)) =
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{fij} + {/ +i,y}. Set Y = l2 + F, then F* is isomorphic to the direct
product of l2 and M (written l2πM). Also θ* takes F* into M by:
$*({α*o} + {&ij\) = {α*,i-i}, as is easily checked by considering matrices.

Now let X = c0 + JF, and consider the map Γ of F into X defined
M T({fn} + {fij}) = {fn} + {/<,-}. It is immediate that T is continuous
and that T*(X*) has dense range in F*. (One checks that

where {en} is in lu and we are considering X* as isomorphic to lxπM.)
However, T* is not surjective since lx is a proper subset of l2.

We are almost ready to state and prove the main theorem of this
section. In the abelian case this result is proved in [12, Ch. 5], and
again many of our methods are similar. Another approach to the
nonabelian case is given in [9], but their results are not equivalent
to ours unless the group G admits only irreducible representations of
bounded order. A discussion of such groups is given by Kaplansky
[10]. The subject also arose in [6], and some of the equivalences of
Theorem 2 of the present paper are proved therein, though they are
stated in different form. For notational convenience we first introduce
some definitions.

DEFINITION E. Choosing in any fashion orthonormal bases in the Hr

we may write, for each teG, Ur(t) as a matrix Ujj(t). For each fixed
triple (r, i, j) the function Uίd(t) is well-defined on G, and we call a
function / on G a polynomial or trigonometric polynomial if it is a
finite linear combination of such functions.

DEFINITION F. Let E be a subset of zf, the index set of G. The
central projection of M corresponding to E is that unique projection
p such that pM — ME, where ME is the bounded direct product of the
algebras {B(Hr)}rβE considered as a subalgebra of M in the natural
way. feL\G) is called an E-function if pf = f (p as above). A
polynomial / is called an E-polynomial if pf = / .

THEOREM 2. Let E be a subset of A and p the central projection
of M corresponding to E. Then the following statements are equi-
valent:

( 0 ) Definition: E is a Sidon set.
(1) pM(G) = pM.
( 2 ) pL\G) = pN.
( 3) Λ* restricted to pF has closed range.
( 4 ) If f is a continuous E-function, then Xr€ ί7 dr tr (\fr |) < oo.
( 5 ) If f is a bounded E-function, then Y,reE dr tr (|/r |) < oo.
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( 6 ) There exists K > 0 such that if f is an E-polynomial, then
\\-^ΣireBdrtτ(\fr\).

( 7 ) There exists K > 0 such that if f is a bounded E-function,
then

( 8) For each unitary u in M there exists m e M(G) such that
\\p(u-m)\\ <1.

Proof. The equivalence of (l)-(3) follows from [3, pp. 487-488].
The implications (7) —> (6), (7) —> (5), (5) -> (4) are obvious. Theorem 1
and the previous remark that A is a dual map shows the equivalence
of (1) and (8). We now fill in the gaps.

(4)—>(3): If / is in the closure of the range of A*, it is im-
mediate that / is a continuous i?-function. Thus by the hypothesis
(4), c = {drfr} is a well-defined element of F. One easily verifies that
A*(c) = f. Thus (3) holds.

(3)—»(6): By (3) and the closed graph theorem we need only to
note that any ^-polynomial /trivially satisfies Σreε dr tr (|/r |) < oo.
Thus / is in the range of A* as above, and (6) follows by the closed
graph theorem.

(6) —* (7): Let / be a bounded 2£-f unction, and let a > 0 be given.
Fix rly « ,rΛ in E. Since there exists a bounded approximate iden-
tity consisting of trigonometric polynomials, we may choose such a
polynomial g such that Xf=1 dr. tr (|/r. |) - a ^ v ^ dr. tr (\fr.gr. \) £
K\\ 1/1*1^ I IU ̂  ^ l l / I U | | ^ | | i and || ̂  j ^ ^ 1, where K is the constant
given by (6). This proves (7), and the theorem follows.

REMARK. A useful example of a set E satisfying the conditions
of the last theorem is given in [6]. A related concept is discussed
in [8].

It is to be noted here that sets E which satisfy the conditions of
Theorem 2 will have to be sparse in some sense. It is known that
in the abelian case no representation of L\G) or M(G) can both be
faithful and have closed range. With the tools at hand nowadays it
is easy to extend this result to the general case—even for noncompact G.

THEOREM 3. Let G be any locally compact group and suppose
T: M(G)[L\G)] -»B{H), for some Hilbert space H, is faithful. If A
is a C*-algebra in B(H) and A is a subset of the range of T, then
A is finite dimensional.

Proof. Let J — T~\A). Since T is norm-decreasing [2], J is a
closed subspace of M(G). Thus J is weakly sequentially complete. By
the closed graph theorem, T is a homeomorphism on J, so A is weakly
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sequentially complete as well. But Sakai [14] proves that such an A
is finite-dimensional.

3* Operators in Lι(G). The earliest results of the type to be
given here were proved by Wendel [16] who showed that a bounded
linear operator T: L\G) —» L\G) which commuted with right transla-
tions was just left convolution by some meM(G). Helgason [8] used
this fact to classify such operators T (as above) which were also
spectrally continuous as convolutions by functions in L2(G). Sakai [15]
eliminated some unnecessary hypotheses from Helgason's theorem. We
shall use the results of all of these papers for our classification
theorem.

THEOREM 4. Suppose T: LX(G) —• L\G) is a bounded linear map
which commutes with right translations. Then the following con-
ditions on T are equivalent:

(1) T is a compact operator.
( 2 ) T is a weakly compact operator.
(3) There exists geL\G) such that for each feU(G), T(f) =

g*f

Proof. Wendel [16] proves that T is just left convolution by
some meM(G) and || m || = || T| | . Clearly (1) implies (2). Also it fol-
lows by standard arguments that the space of compact [weakly com-
pact] operators on U(G) of this type is closed in the norm topology
of B(L\G)). If geL2(G), the map /—>g*f is spectrally continuous
by a theorem of Helgason [9]. That is to say, it can be extended to
a continuous linear map of N into Lι(G)\ and hence it is weakly com-
pact by a result of [15]. Since L\G) is dense in L\G), it follows
that (3) implies (2). By [3, p. 510] if T and T' are weakly compact
operators on L\G), then their composition TTr is compact. Since
L\G)*L\G) is dense in L\G)9 it follows that (3) implies (1) as well.

To complete the proof we assume that m (as above) is not ab-
solutely continuous and show that this implies T is not weakly compact.
By considering the Jordan decomposition of m and using the Eberlein—
Smulian Theorem [3, p. 430] we may assume that m is positive. Since
m is not absolutely continuous, there exists a compact subset E of G
such that E is a null set for the Haar measure of G but m(E) > 0.
Let θ be the Haar measure of G. Choose open neighborhoods {Vn} of
the identity β of G and neighborhoods {Un} of E such that θ(Un)-+0
and EVnczUn. Let fn be defined by fn(t) = l/θ(Vn) if teVn and
fn(t) = 0 otherwise. Then \\fn ||x = 1 for each n = 1, 2, . Also we

have ί m*fn(t)dt = [ \[ fn{s~H)dt\dm{s). But for each seE,
JEVn )GL)EVn J
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( fn{s-H)dt ^ ( fn{s-ιt)dt = \ fn(t)dt = 1 .

Thus we have,

\ m*fn(t)dt Ξ> 1 1 dm 7> m(E) , for each n = 1, 2, .

But 0(#FΛ) ^ 0(ί7n)->O. By [3, p. 294] this shows that {m*fn} is
not a weakly relatively compact set and hence T is not a weakly com-
pact map.

We remark that the argument of Sakai [15] show that if G is
not compact (but is locally compact), then any map T satisfying the
conditions of the last Theorem is identically 0.
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