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ON THE STRUCTURE OF TOR, II
R. J. NUNKE

The following results are proved:

If A and B are abelian p-groups and the length of A is
greater than the length of B, then Tor (4, B) is a direct sum
of countable groups if and only if (i) B is a direct sum of
countable groups and (ii) if the 3-th Ulm invariant of B is not
zero, then every pfA-high subgroup of A is a direct sum of
countable groups.

If 3 is an ordinal, A is a p-group, and if one pS%A-high
subgroup of A is a direct sum of countable groups then every
pBA-high subgroup of A is a direct sum of countable groups.

If A and B are p-groups of cardinality =¥, without
elements of infinite height, then Tor (A4, B) is a direct sum of
cyclic groups.

For each n with 1 <7 < w, there is a p-group G without
elements of infinite height such that G is not itself a direct
sum of cyclic groups but every subgroup of G having cardinality
< W, is a direct sum of cyclic groups.

If A and B are (abelian) p-groups, when is Tor (4, B) a direct
sum of countable groups (d.s.c. group)? This paper contains a complete
answer for this question when A and B have different lengths.

If A and B have the same length the situation is much more
complicated. The simplest case occurs when A and B have no elements
of infinite height. Then Tor (A4, B) has no elements of infinite height
and it is a d.s.c. group if and only if it is a direct sum of cyclic
groups (X-cyclic). Here, although there is no satisfactory answer to
the question, some partial results are obtained. For example it is
shown that if A and B are p-groups without elements of infinite
height having cardinalities <¥,, then Tor (4, B) is Y-cyclic.

Finally some examples of strange groups are constructed. Let a
p-group be called \-cyclic, where ) is a cardinal number, if every
subgroup with cardinality <\ is 2-cyclic. Every p-group without
elements of infinite height is W,-cyclic. For each # with 1 < #»n < w,
a group is constructed which is W,-cyclic but not X-cyclic.

These results are obtained by homological methods together with
the concept of N-high subgroup due to John Irwin [2].

In diagrams >— denotes a monomorphism and —> an epimor-
phism. An extension C>— E—> A is p*-pure where p is a prime
and « an ordinal number if it belongs to p* Ext (4, C). A monomor-
phism f: C >— F is p*-pure if the extension C >— E —> Coker f is.
Similarly C S E is a p*pure subgroup of E if the extension
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C>— E—>E/C is p*pure. If E is a p-group, then p“-purity
coincides with the ordinary concept of purity. More generally, if
C>— E—> A is p*pure then:

(1°) @ A)Ip] = (C + (p*E)[p])/C for all B8 < a, and

(2°) CNpPE = p°C for all B < «.
An easy transfinite induction shows that (1°) = (2°). If a < w, then
(2°) = p*-purity. If A is a divisible p-group then (1°) = p*-purity for
all ordinals «. This last implication holds in certain other situations
but not in general. These facts are proved in [8].

If N is a subgroup of the group G, a subgroup H of G is called
N-high in G if H is maximal with respect to the property H N N = 0.

ProprosiTION 1. If G is a p-group, N & p°G, and H is N-high in
G, then H is p**-pure in G. If N < p°G, then G/H is divisible.

Proof. We prove first that if G is a p-group, then H is N-high
in G if and only if HNN =0 and (G/H)[p] = (H + N|[p])/H. To
see this suppose H is N-high in G. Clearly HNN =0 and
(H + N|[p]))/H S (G/H)[p]. Let 0=+ xe(G/H)|p] and let ge G map
onto x mod H. Then g¢ H, pgc H, and by the maximality of H there
is a nonzero ac H N (H + {g}). Thus a = h + kg with &k an integer.
Moreover p does not divide k& for otherwise ae H N N = 0. Hence
1 = rk + sp for suitable integers » and s and ¢ = rkg + spg = ra +
(spg-rh). Now spg — rhe H and prac GH NN = 0 so that ve(H +
Nip])/H as desired.

Conversely suppose (G/H)[p] = (H + N|p|))JHand HN N = 0. To
show the maximality of H it is enough to show that (H + {¢} N N # 0
whenever g¢ H but pge H. If g has these properties then the
hypothesis gives ¢ = @ + h with e e N and h ¢ H. Then a =+ 0 because
g¢Hand a =9 — he(H + {g})) N N.

Now suppose H is N-high in G and N < p*G. Then by the result
just proved we have (G/H)[p]| =S (H + (p°G)[p])/H for all 8 < a. Since
(»*(G/H))Ip] & (G/H)[p] and (H + (p°G)[p])/H S (p°G/H))[p] we have

(0*(G/H))[p] = (H + (p°G)[p])/H for all 8= a.

If @ < w the discussion preceeding the statement of this proposition
shows that H is p**’-pure in G. The same discussion shows p***-purity
for &« = w once we know that G/H is divisible.

If N S p“G, then (G/H)|p] S (H + p*G)/H < p*(G/H) which implis
that G/H is divisible.

ProposiTION 2. If C>— E—> A is p*pure with o« = w and B
is any p-group, then

1 The first statement of this proposition and the first statement of [3] Theorem 2
read the same, however the term p*-purity has different meanings in the two places.
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Tor (C, B) >— Tor (E, B) —> Tor (A, B)

is exact and p*-pure.

Proof. The condition a = ® is needed only to show that
Tor (E, B) — Tor (A, B) is epic. We use the description of Tor (4, B)
in terms of generators and relations given in [6, p. 150]. The
generators are triples <a,n,b> with neZ (the group if integers),
ac Aln] and be B[n]. The relations require <a, n, by to be bilinear as
a function of ¢ and b and also require <ka,n,bd) = <a, kn, by for
k,mez,ae Alkn],be B[n], and <a,n, kb) =<a, kn,by for k, nexz,
a <€ Aln], be Blkn].

If « =0, then C>— E—> A is p“-pure and it follows that each
a € A[p*] can be lifted to an element ¢ € £ with the same order. Since
B is a p-group, Tor (4, B) is generated by the elements <a, p", b) with
p"a =0=p"b. Letting e c E[p"] map onto a we have {e,p",b)> € Tor(¥, B)
mapping onto {a, p", by as required to show that Tor (&, B) — Tor (4, B)
is epic.

The sequence with Tor is now exact because Tor is left-exact.

For a given «, the functor p* is represented by an exact sequence
Z >— G—> H (See [7] or |8] for the definitions and details). For
a group A let d,:Tor(H, A)— A be the connecting homomorphism
induced by this sequence. We then have

0.4z, m, @y = (ny)a

where ¥y is any element of G mapping onto x. Since nx =0, nyecZ
so that the term (ny)a makes sense.
The extension

CoBE-Ss A

is p*pure if and only if there is a map ¢: Tor (H, A) — E such that
Ap = 0,.

MacLane shows in [5] that, for groups A, B,C, the group
Tor (Tor (4, B), C) is generated by the elements <<a, n, b>, n, c> with
neZ na =nb = nc =0. Similarly Tor (4, Tor (B, C)) is generated by
the elements <a, n, <b, n, ¢c)>. Moreover there is a natual isomorphism

#: Tor (Tor (A, B), C) = Tor (4, Tor (B, C))
such that
0a, n, by, n, ¢y = <La, n,<b,m, c)> .

For groups A, B we have a diagram
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Tor (Tor (H, A), B) —— Tor (H, Tor (A, B))

Tor (d4, B)l /a{)m,m
Tor (A, B)

This diagram commutes for we have

Tor (9,, B) K&, n, ay, n, by = {0, x, n, ay, n, by
= {(ny)a, n, by
= (nyXa, n, by
= Ororia, 5<%, M, <, M, b>>
= Oporca, 0, My ), M, by .

Now suppose C>— E—> A is p%pure with \: F— A. Hence
0, = Mp. Applying Tor we get Tor (d,, B) = Tor (A, B) Tor (p, B) and
therefore 0y 4,5 = Tor (A, B) Tor (¢, B)d~'. Thus the sequence

Tor (C, B) >— Tor (E, B) —> Tor (A, B)

is p*-pure.

For the purposes of this paper we define the length M\(A) of the
p-group A to be the least ordinal a such that p*4 = 0 and - if there is no
such ordinal. The symbol < is assumed to be larger than any ordinal.
According to [7] p* Tor (4, B) = Tor (p®A, p*B) so that the length of
Tor (A, B) is the minimum of the lengths of A and of B. The group
A is p*-projective if each p*-pure extension C >— E —> A splits. A
d.s.c. group is p*-projective if and only if it has length <« (|7] or |8]).

In the proofs of the next few theorems we shall refer repeatedly
to the following situation. Let £ be an infinite ordinal and let M be
a pfA-high subgroup of A. Then by Proposition 1 the sequence

M>— A—> A/M

is p**'-pure and A/M is divisible. If B is a p-group, then by Proposition
2 the sequence
*) Tor (M, B) >— Tor (A, B) —> Tor (A/M, B)

is also p*'-pure. Moreover if A/M = 0, then A/M = XZ(p~) and
hence Tor (A/M, B) = 3 Tor (Z(p=), B) = YB.

In the remainder of the paper we shall use without further
reference Kaplansky’s theorem [4] that a direct summand of a d.s.c.
group is itself one.

ProposiTiON 3. If B is an infinite countable ordinal, A has a
p?A-high subgroup which is a d.s.c. group, and B is a countable
p-group of length < B + 1, then Tor (4, B) is a d.s.c. group.
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Proof. Let M be the p’A-high subgroup called for and refer to
the p’+-pure sequence (*) above. Since B is countable of length
< B + 1 it is pf*i-projective. Hence Tor (A/M, B) = 2B is also pf+'-
projective and the sequence (*) splits. But then Tor (4, B) is a direct
sum of the d.s.c. groups Tor (M, B) and Tor (A/M, B) and is therefore
a d.s.c. group. Tor (M, B) is a d.s.c. group because M is a d.s.c.
group, Tor commutes with direct sums and Tor (G, B) is countable
whenever G and B are.

ProprosiTION 4. Let Tor (4, B) be a d.s.c. group.

(i) If MA) > MB), then B is a d.s.c. group.

(i) If MA) = \(B) = B8 + 1 with B8 an infinite countable ordinal,
and B is a d.s.c. group, then every p’A-high subgroup of A4 is a
d.s.c. group.

Proof. To show (i) let & = MB). If 8 < @ then B has bounded
order and is clearly a d.s.c. group. Hence suppose 8 = w. Let M
be a p’A-high subgroup of A and consider the p’*'-pure sequence (*).
Since Tor (4, B) is a d.s.c. group of length £ it is pPf-projective.
According to [8, Proposition 3.1} the pf+'-purity of (*) then implies
that the sequence (*) splits. Hence Tor (4/M, B) is a d.s.c. group.
Since MA) > B, A/M =+ 0 so that B is a direct summand of Tor (A/M, B)
and therefore a d.s.c. group.

To prove (ii) we again let M be p’A-high and refer to (*). Now
B is pftl-projective so that Tor (A, B) is p°*'-projective. Hence the
sequence (*) splits. Therefore Tor (M, B) is a d.s.c. group. Since
MM) = B < MB), M is a d.s.c. group by (i) and the commutativity
of Tor.

COROLLARY 5. If B 1s an infinite ordinal and the p-group A
has one p°A-high subgroup which is a d.s.c. group, then every
PP A-high subgroup of A is a d.s.c. group.

Proof. If MA) £ B, then A is the only p°A-high subgroup so
the result is trivial. Therefore assume M\A) > B. Next observe that
if 8> 2, then a pfA-high subgroup cannot be a d.s.c. group because
it has length B and the length of a d.s.c. group is either < Q or is oo.

If =0 and M is p’A-high, then M >— A—>A/M is in
p? Ext (A/M, M). If M is a d.s.c. group, then p?Ext(Z(p~), M) =10
by [8] Lemma 38.10. Since A/M = XZ(p~),

Ext (A/M, M) = I Ext (Z(p~), M)

so that p? Ext(A/M, M) =0, Thus M is a direct summand of A.
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Since M is p°A-high in A we have (A/M)[p] = (p®A)[p] and it follows
easily that p?A is the maximal divisible subgroup of A. Hence M =
A/p°A in this case. Since A/p°A is independent of M it follows that
all p?A-high subgroups are isomorphic (if one is a d.s.c. group) and
hence all are d.s.c. groups.

Finally if £ is infinite and countable, let B be a countable p-group
of length 8 + 1. By Proposition 3 Tor (4, B) is a d.s.c. group because
A has a p?A-high subgroup which is a d.s.c. group. By Proposition 4
(ii) every p’A-high subgroup of A is a d.s.c. group.

THEOREM 6. If MA) > MB) = w, then Tor (A, B) is a d.s.c. group
if and only if

(i) B ts a d.s.c. group, and

(ii) if B s an infinite ordinal such that the B-th Ulm invariant
of B is # 0, then every p°A-high subgroup of A is a d.s.c. group.

Proof. We need two easy consequences of Ulm’s theorem and
Zippin’s theorem (cf. [1] p. 135):

(1) If B is a d.s.c. group whose S-th Ulm invariant is not zero,
then B has a countable direct summand B’ of length 8 + 1.

(2) If B is a d.s.c. group, then B = YB; where ¢ ranges over
some index set and B; is countable of length A8, + 1.

Suppose Tor (4, B) is a d.s.c. group. We get (i) by proposition
4(i). Suppose further that A is infinite and the S-th Ulm invariant
of B is not zero. lLet B’ be a countable direct summand of B with
length B + 1 as provided by (1) above. Then Tor (4, B’) is a direct
summand of Tor (4, B), hence a d.s.c. group and (ii) follows from
Proposition 4(ii).

Suppose MA) > MB) = w and (i) (ii) are satisfied. Using (2) above
we write B = XB; with B, countable of length B8; + 1. Then
Tor (A, B) = 3 Tor (A4, B;). If 8, < w, then B; is a direct sum of
cyclic groups so Tor (A4, B;) is a d.s.c. group. If B, = ®, then
Tor (A, B;) is a d.s.c. group by Proposition 3. Hence Tor (4, B) is a
d.s.c. group.

In order to continue we must derive further properties of Tor.
The inclusions A’ & A, B’ & B induce a monomorphism Tor (4’, B’) >—
Tor (A, B). We shall identify Tor (A’, B’) with its image in Tor (4, B).

LemMmA 7.
(i) IfA,A" < A, then Tor(A'NA",B) = Tor(A’,ByNTor (A", B).
(ii) If A=< A and B’ = B, then

Tor (A’, B') = Tor(A4’, BynTor (4, B’) .
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(i) If A', A” S A and B', B” 2 B, then
Tor (A’ N A”, B' 0 B") = Tor (A", B’y N Tor (4", B") .

Proof. If A’, A” = A, then there is a commutative diagram
A’ N A’ s—5 A —> AI/AI N A"
Vv \"

| 1 1

AII S—0 A — A/AII
with exact rows and monic vertical maps. Applying Tor we get

Tor (A’ N A”, B) >— Tor (A, B) —— Tor (A’/A’ N A", B)
vV \

I l 1

Tor (A”, B) >— Tor(A,B) — Tor (4/A"”, B)

with exact rows and monic vertical maps. Conclusion (i) follows from
this diagram.
To prove (ii) we note the existence of the commutative diagram

Tor (A’, B') >—— Tor (A, B’) — Tor (A/A’, B')
\ Vv \

l l !

Tor (A’, B) >— Tor (4, B) — Tor (4/4’, B)

with exact rows and monic vertical maps and proceed as before.
For (iii) we have

Tor (A’N A”, B’ B")
= Tor (A’ n A”, B)n Tor (4, B’ N B")
= Tor (A’, B) N Tor (A", B) N Tor (4, B’) N Tor (A4, B")
= Tor (4’, B’) N Tor (A", B")

using in order (ii), (i), (ii).
Lemma 7 holds for any left exact covariant functor of two
variables.

ProposITION 8. For « € Tor (A4, B), there are unique finite subgroups
A, < A and B, & B such that

(i) xeTor(A4,, B, and

(ii) if xeTor(A4A’, B') with A =S A and B'< B, then 4, < A’
and B, & B’.

Proof. There exist finite subgroups G < A, H < B such that
xeTor (G, H). Let G, H;G,, H,; ---; G,, H, enumerate the pairs of
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subgroups of G and H respectively such that x e Tor (G;, H,) for i =

1,...,n. By Lemma 7 (iii) we have € Tor (G,N---NG,, H,N--- N H,).

Put A,=G,n---NG, and B,e H,N---N H, Thus (i) is satisfied.
If xeTor (4’, B’) we have by Lemma 7 (iii) that

xeTor(GNA', HNB).

Then GN A" =G, and H N B’ = H; for some 7 so that 4, & A’ and
B, < B’ proving (ii).

COROLLARY 9. If aec A, be B have the same order and
Tor ({a}, {8}) & Tor (4’, B')
with A’ < A and B' & B, then ac A’ and be B’'.

Proof. If the common order of ¢ and b is %, then Tor ({a}, {b})
is cyclic of order n. Let x be a generator. Then « € Tor ({a} UA4’, {b}N B’)
by hypothesis and Lemma 7 (iii). If either {a}nA’ or {b}NB’ had
order <n, then Tor ({a} N A’, {b} N B’) being cyclic would have order
<mn. Thus « would have order <n contradicting the fact that its
order is n. It follows that {a} N A’ = {a} and {b} N B’ = {b} so that
acA’ and be B'.

ProprosITION 10. If A’ £ A and B’ & B with A, Bp-groups, B’
has unbounded order, and Tor (4’, B’) is pure in Tor (A, B), then A’
is pure in A.

Proof. Let ac A’ N pA. Since B’ has unbounded order there is
a bep "B’ having the same order as a. In [7] it was shown that
p" Tor (A, B) = Tor (p"4, p"B). Hence

Tor ({a}, {b}) & Tor (A’ N p"A, B’ Np"B)
< Tor (4’, B’) N p* Tor (A, B)
2 p" Tor (4, B") = Tor (p"A’, p"B’) .

By Corollary 9 aepA’. Since o and n were arbitrary we have
A np"A = p*A’ for all n and A’ is pure in A.

An indexed family {4.},., of subgroups of A will be called a
sequence of subgroups if « ranges over the set of ordinals less then
some ordinal o and A, & A; whenever a« = 8 < p. If {A.}.c, is a
sequence of subgroups of A, then |J A, (the set theoretical union) is
the subgroup generated by the A..

ProposiTiON 11. If {A.}.<, and {B.}.., are sequences of subgroups
of A and B respectively, then {Tor (4., B.)}«c, i8S a sequence of
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subgroups of Tor (A4, B) and
U Tor (4., B.) = Tor (U 4., U B.) .

Proof. It is clear that {Tor (4., B.)}.<, i a sequence of subgroups
of Tor (A, B). Since A,& U A, and B, = | B, for all @« < p we have

U Tor (4., B.) & Tor (U 4., U B.) .

Suppose x € Tor (U A., U B.) and let A,, B, be the subgroups defined
by Proposition 8. Then 4, & | 4, and B, & J B,.. Since 4, and B,
are finite, there is a 8 < p such that A, & A; and B, & B;. Hence
x € Tor (4, Bs) & U Tor (A, B,).

By the term X-cyclic we shall mean a direct sum of cyclic groups.
A p-group is Z-cyclic if and only if it is a d.s.c. group without
elements of infinite height. In view of Proposition 4 if Tor (4, B) is
Y-cyclic and A has elements of infinite height, then B is X-cyclic.

The following theorem gives a necessary condition for Tor (A4, B)
to be X-cyclic. The symbol | A | denotes the cardinality of A.

THEOREM 12. If Tor (A, B) is X-cyclic and B is mot X-cyclic,
then

(i) p*A =0, and

(i) of A’ S A with |A'| = |B]|, then A’ is contained in a pure
subgroup A" of the same cardinality, such that p°(A/A”) =0 and
Tor (A/A”, B) is X-cyclic.

Proof. As stated above conclusion (i) follows from Proposition 4.

Recall that if A and B are infinite p-groups, then | Tor (4, B)| =
|A||B|. Now let A’< A with |A’| = |{B| and let Tor (4, B) = XC,
with the sum direct and each C, cyclic.

If G is an infinite subgroup of Tor (A, B), then, since each element
has nonzero component in but a finite number of the summands C;, G
is contained in a subgroup G’ = Y,,C; where J is a subset of the
index set and |G'| = |G|. Moreover there are subgroups A, & A4,
B, S B such that |A4,| = |B,| = |G| and G & Tor (4,, B,). This is so
because each zeTor (A, B) is a finite sum of elements of the form
{a, n, b).

We define recursively a sequence
Tor(4’, B) £ G, < Tor (A, B) S G, < -
= G’n gTOI‘(A,,”B) S Gn-\‘—l S ..
of subgroups all having the same cardinality such that G, is the sum

of a set of the C; appearing in the chosen direct sum decomposition
of Tor (4, B).



462 R. J. NUNKE
Let A” = J A,. Then by Proposition 11,
Tor (A",B) =TorU(4,,B)=UG. .

Hence Tor (A”, B) is the sum of a set of the C; and is therefore a
direct summand of Tor (4, B). Hence Tor (A", B) is pure in Tor (4, B).
Since B is not ZX-cyclie, it is unbounded and A” is pure in A by
Proposition 10. Hence the sequence

Tor (A”, B) >— Tor (A, B) —> Tor (4/A”, B)

is exact and splits. Thus Tor (4/A”, B) is Y-cyclic and p°(4/A”) = 0
by part (i).

COROLLARY 13. If A and B are p-groups without elements of
mfinite height, B 1s mot X-cyclic, |A|> |B|, and A has greater
cardinality than a basic subgroup, then Tor (A, B) is not X-cyclic.

Proof. Suppose Tor (A, B) is X-cyclic and let C be a basic
subgroup of A such that |C| < |A|. There is a subgroup A’ with
CES A S Aand |A|>|A'| = |B|. By Theorem 12 there is a subgroup
A" with A’ S A" < A, |A”| = A", and p°(4/A") = 0. Now A/A" is
divisible because C = A” and A/C is divisible. Moreover A/A"” = 0
because | A” | < | A|. Hence p“(A/A"”) = 0 contradicting the construction
of A”. Therefore Tor (A, B) is not X-cyclic.

LEMMA 14. Let A be a p-group and let o be the least ordinal
having the same cardinality as |A|. Then there is a sequence
{A}aco of subgroups of A such that U.co A = A and

(i) each A, is pure in A,

(ii) A, = Usa 45 of B ts a lomit ordinal <p,

(iil) |4l =% if a < o, and

(iv) A =lalif o=a<op,

Proof. Well order A as {a,}.,.. Let A, be a countable pure
subgroup of A containing «,. Suppose A; has been defined for all
B < « satisfying (i)-(iv) above and also (v) a,€ A, if vy < B and B is
a singular ordinal <a. If « is a limit ordinal (ii) forces the definition
A, = Us<a 4. Then (i)-(v) follow easily. If o« =~v + 1, then A4, +
{a,} has the same cardinality as A, and there is a pure subgroup A,
of A having the same cardinality as A, + {a,}. Then (i)-(v) are still
satisfied. If @ < p, then [A,| = |a| < |A| so that the construction
can be continued as long as « < p. Since a,€ A,,, it follows that
sz<P A, = A
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THEOREM 15. If A and B are p-groups with the same cardinality
such that every subgroup of either with smaller cardinality is o
2-group, then Tor (A, B) is 3-cyclic.

Proof. Let {A.}uco, {Bataco, be sequences of subgroups of A and
of B satisfying the conditions of Lemma 14, Since |A,| = |B.| <|A]
we have A, and B, 3-cyclic for all o < p. 8Set G, = Tor (4,, B.).
Since A, is pure in A and B, pure in B, G, is pure in Tor (4, B).
Moreover by Proposition 11 and Lemma 14 (ii), G, = Us<. G; Whenever
« is a limit ordinal <p.

Since Tor is left exact, there is an exat sequence

Gy >— Gosy — Tor (Asi/Asy Boi) @ Tor (Auiy, Basi/Be)

The term on the right is Y-cyclic because A,,, and B,,, are X-cyclic.
Thus G,.,/G, is Y-cyclic and therefore G,,, = G, P C, with C, X-cyclic
because G, is pure in G,,,. Hence we have a sequence {G,}.., of
subgroups of Tor (4, B) such that

(1°) G. S Gusy for a < p and G, = U, Gy if « is a limit ordinal
<03

2°) Guy =G, HC, with C, a Y-group for all a < p;

(iii) Tor (A, B) = Ua<r G-
It follows that Tor (A, B) = 2C, and is therefore a X-group.

COROLLARY 16. If A and B are p-groups without elements of
wnfinite height whose cardinality is at most W, then Tor (A, B) is
2-cyclic.

If o is a cardinal number, call a p-group A p-cyclic if every
subgroup of cardinal <p is Y-cyclic. Every p-group without elements

of infinite height is W,-cyclic. Let p* be the cardinal next larger
than p.

COROLLARY 17. If A and B are p-cyclic, then Tor (A, B) is a
ot-cyclic.

Proof. Let G < Tor (A, B) with |G| = p. Since, for x € Tor (4, B),
there are finite subgroups A’, B’ of A and B respectively with
x € Tor (A’, B’), there are subgroups A, & A, B, & B such that [4,|=
|B,| = |G| = p and G < Tor (4, B,). Since every subgroup of a direct
sum of cyclic groups is one, 4, and B, satisfy the hypotheses of
Theorem 15. Hence Tor (4,, B;,) and therefore G is Y-cyclic. However
G was arbitrary with |G| = p so the corollary follows.

For groups A4, ---,A,, define Tor (4, ---, A,) inductively as
Tor (TOI' (Ah ) An—-l)v An)-
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LEmMmA 18. If A, ---, Am are p-grrups without elements of
infinite height, then Tor (4, ---, Am) 18 Wari-cyclic.

Proof. The proof is by induction. We use the associativity of
Tor to show that

Tor (Aly ct Y Azn) = Tor (Tor (Ah ] Am)y Tor (Am— 15 "%y Az”))

where m = 2! and then use Theorem 15 to complete the inductive
step.

ProposITION 19. For each # with 1 £ n < w, there is a p-group
G, without elements of infinite height such that G, is W,-cyclic but
not Y-cyclic.

Proof. If C is the direct sum of p copies of YZ(»") and p = W,,
then the torsion completion of C has cardinality p®. Hence if o™ > o,
there is a p-group without elements of infinite height which has
greater cardinality than a basic subgroup. Since there are arbitrarily
large cardinals with this property there exists a sequence
A, A4, --- A, --- of p-groups of increasing cardinality, all without
elements of infinite height, and all with greater cardinality than a
basic subgroup.

Set G, = Tor(4,, -++, A1) and G, = A,. Then G, is W,-cyclic
by Lemma 18. If A and B are infinite torsion groups |Tor (4, B) | -
max{|A|,|B|} so that |Tor(4,, ---,A)|=14,]. Thus G, is not
2-cyeclic by Theorem 15,
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