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ON THE STRUCTURE OF TOR, II

R. J. NUNKE

The following results are proved:
If A and B are abelian p-groups and the length of A is

greater than the length of B, then Tor (A, B) is a direct sum
of countable groups if and only if (i) B is a direct sum of
countable groups and (ii) if the /9-th Ulm invariant of B is not
zero, then every pβA high subgroup of A is a direct sum of
countable groups.

If β is an ordinal, A is a p-group, and if one pβA-high
subgroup of A is a direct sum of countable groups then every
pPA-hϊgh subgroup of A is a direct sum of countable groups.

If A and B are p-groups of cardinality ^ ^ i without
elements of infinite height, then Tor (A, B) is a direct sum of
cyclic groups.

For each n with 1 ^ n < ω, there is a p-group G without
elements of infinite height such that G is not itself a direct
sum of cyclic groups but every subgroup of G having cardinality
^ ^ n is a direct sum of cyclic groups.

If A and B are (abelian) p-groups, when is Tor (A, B) a direct

sum of countable groups (d.s.c. group)? This paper contains a complete
answer for this question when A and B have different lengths.

If A and B have the same length the situation is much more
complicated. The simplest case occurs when A and B have no elements
of infinite height. Then Tor (A, B) has no elements of infinite height
and it is a d.s.c. group if and only if it is a direct sum of cyclic
groups (I'-cyclic). Here, although there is no satisfactory answer to
the question, some partial results are obtained. For example it is
shown that if A and B are p-groups without elements of infinite
height having cardinalities ^ ^ x , then Tor (A, B) is I'-cyclic.

Finally some examples of strange groups are constructed. Let a
p-group be called λ-cyclic, where λ is a cardinal number, if every
subgroup with cardinality <λ is ^-cyclic. Every p-group without
elements of infinite height is fc^-cyclic. For each n with 1 <: n < ω,
a group is constructed which is ^m-cyclic but not ^-cyclic.

These results are obtained by homological methods together with
the concept of iV-high subgroup due to John Irwin [2].

In diagrams >—> denotes a monomorphism and —» an epimor-
phism. An extension C>—> E—»A is pa-pure where p is a prime
and a an ordinal number if it belongs to pa Ext (A, C). A monomor-
phism /: C >•—> E is £>α-pure if the extension C >—> E —» Coker / is.
Similarly C gΞ E is a pa-puτe subgroup of E if the extension
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C>—> E—» E/C is pα-pure. If E is a p-group, then pω-purity
coincides with the ordinary concept of purity. More generally, if
C >—• E —•> A is pα-pure then:

(1°) (pβA)[p] = (C + (pβE)[p])/C for all β < a, and
(2°) Cίl pβE = pβC for all β ^ a.

An easy transfinite induction shows that (1°)=>(2°). If a ^ a), then
(2°) => 2>α-purity. If A is a divisible p-group then (1°) =^ pα-purity for
all ordinals a. This last implication holds in certain other situations
but not in general. These facts are proved in [8].

If N is a subgroup of the group G, a subgroup H of G is called
N-high in G if H is maximal with respect to the property H Π N = 0.

PROPOSITION 1. If G is a p-group, N <Ξ pαG, and i ϊ is iV-high in
G, then H is p"+1-pure in G. If N S pωG, then G/iϊ is divisible.1

Proof. We prove first that if G is a p-group, then H is iV-high
in G if and only if H f] N = 0 and (G/iϊ)[pl = (IT + iVbDAff. To
see this suppose H is JV-high in G. Clearly H Γ\ N — 0 and
(ff + N[p])/H S (G/i?)[p]. Let 0 ^ x e (G/fΓ)[p] and let geG map
onto a; mod H. Then g £ H, pg e H, and by the maximality of H there
is a nonzero ae H f] (H + {</}). Thus a = h + kg with A: an integer.
Moreover p does not divide k for otherwise ae H Π N = 0. Hence
1 = rk + sp for suitable integers r and s and # = rkg + spg = rα +
(spg-rh). Now spg — rhe H and prα G GH Π N = 0 so that α e (H +
iV[p])/iί as desired.

Conversely suppose (G/H)[p] = (H + N[p])/H and H n ΛΓ = 0. To
show the maximality of i ϊ it is enough to show that (H + {g} Π Λ̂  ^ 0
whenever # ί i ϊ but pg e H. lί g has these properties then the
hypothesis gives g = a + h with a e N and he H. Then α =£ 0 because
gίH a n d a = g-he(H + {g}) Π AT.

Now suppose if is ΛΓ-high in G and iV £ pαG. Then by the result
just proved we have (G/H)[p] C (fl" + (p/3G)[p])/iί for all /S ^ α. Since
(^(G/ίί))b] S (G/H)[p] and (£T + (p'3G)M)/iί £ (p*G/iϊ))fol we have

(^(G/ϋr))[p] = (H + (pβG)[p])/H for all /5 ^ α .

If α < ω the discussion preceeding the statement of this proposition
shows that H is pα+1-pure in G. The same discussion shows pα+1-purity
for a >̂ ω once we know that G/ϋ is divisible.

If iV S PωG, then (G/H)[p] S ( i ί + pωG)/£Γ £ pω(G/H) which implis
that G/ίf is divisible.

PROPOSITION 2. If C > — > £ / — » A is pα-pure with a^ω and 5
is any p-group, then

1 The first statement of this proposition and the first statement of [3] Theorem 2
read the same, however the term pα-purity has different meanings in the two places.
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Tor (C, B) >—> Tor (E, B) — » Tor (A, B)

is exact and p"-pure.

Proof. The condition a ^ ω is needed only to show that
Tor (E, B) —> Tor {A, B) is epic. We use the description of Tor (A, B)
in terms of generators and relations given in [6, p. 150], The
generators are triples (a, n, by with n e Z (the group if integers),
a e A[n] and b e B[n], The relations require <α, n, by to be bilinear as
a function of a and 6 and also require ζka, n, by = <(a, Jen, by for
fc, n e z, α e A[few], 6 e β[%], and <̂ α, %, &&)> = <(α, Jen, by for k,nez,
aeA[n], beB[kn],

If α ̂  0? then C >—> E—» A is pω-pure and it follows that each
a e A[pn] can be lifted to an element eeE with the same order. Since
B is a p-group, Tor (A, B) is generated by the elements (a, pn, by with
pna = 0 = p%6. Letting e e E[pn] map onto a we have (e,pn,hye Ύor(E, B)
mapping onto (a, pn, by as required to show that Tor (Ef B) —• ΎOY(A,B)

is epic.
The sequence with Tor is now exact because Tor is left-exact.
For a given α, the functor pa is represented by an exact sequence

Z>—>G—»H (See [7] or [8] for the definitions and details). For
a group A let dA: Tor (H, A)—* A be the connecting homomorphism
induced by this sequence. We then have

dAζx, n, ay = (ny)a

where y is any element of G mapping onto x. Since nx = 0, ny e Z
so that the term (ny)a makes sense.

The extension

is pα-pure if and only if there is a mapφ: Tor (H, A)—>E such that
Xφ = dA.

MacLane shows in [5] that, for groups A, B, C, the group
Tor (Tor (A, B), C) is generated by the elements «α, n, by, n, cy with
n e Z na = nb = nc = 0. Similarly Tor (A, Tor (JS, C)) is generated by
the elements ζa,n,(b,n, cyy. Moreover there is a natual isomorphism

θ: Tor (Tor (A, B), C) = Tor (A, Tor (B, C))

such that

0«α, n, by, n, cy = <α, w, <δ, w, c » .

For groups A, B we have a diagram
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Tor (Tor (H, A), B) - ^ Tor (H, Tor (A, B))

Tor (A, B)

This diagram commutes for we have

Tor (dAj B) « x , n, α>, n, δ> = <βAζx, n, α>, n,

= <Sny)a, n, 6>

= (ny)<a, n, 6>

Now suppose C > — > £ / — » A is pα-pure with X:E—+ A. Hence
dA = λφ. Applying Tor we get Tor (3^, B) = Tor (λ, B) Tor (φ, B) and
therefore <?TcrU,β) = Tor (λ, B) Tor (cp, B)θ~ι. Thus the sequence

Tor (C, 5) >—> Tor (E, B) — » Tor (A, 5)

is pα-pure.
For the purposes of this paper we define the length X(A) of the

p-group A to be the least ordinal a such that paA = 0 and ©o if there is no
such ordinal. The symbol co is assumed to be larger than any ordinal.
According to [7] pa Tor (A, B) = Tor (paA, paB) so that the length of
Tor (A, B) is the minimum of the lengths of A and of B. The group
A is pa-projective if each pα-pure extension C>—> E—»A splits. A
d.s.c. group is pα-projective if and only if it has length ^a ([7] or [8]).

In the proofs of the next few theorems we shall refer repeatedly
to the following situation. Let β be an infinite ordinal and let M be
a p'aA-high subgroup of A. Then by Proposition 1 the sequence

» A/M

is p^-pure and A/M is divisible. If B is a p-group, then by Proposition
2 the sequence
( * ) Tor (M, B) >—> Tor (A, B) — » Tor (A/M, B)

is also p^-pure. Moreover if A/M Φ 0, then A/M — ΣZip00) and
hence Tor (A/M, B) - Σ Tor (Z(p°°), B) = ΣB.

In the remainder of the paper we shall use without further
reference Kaplansky's theorem [4] that a direct summand of a d.s.c.
group is itself one.

PROPOSITION 3. If β is an infinite countable ordinal, A has a
p^A-high subgroup which is a d.s.c. group, and B is a countable
p-group of length ^ β + 1, then Tor (A, B) is a d.s.c. group.
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Proof. Let M be the p^A-high subgroup called for and refer to
the pβ+1-jmre sequence (*) above. Since B is countable of length
g β + 1 it is p^-projective. Hence Tor (A/M, B) = ΣB is also pβ+1-
projective and the sequence (*) splits. But then Tor (A, B) is a direct
sum of the d.s.c. groups Tor (M, B) and Tor (A/M, B) and is therefore
a d.s.c. group. Tor (M, B) is a d.s.c. group because M is a d.s.c.
group, Tor commutes with direct sums and Tor (G, B) is countable
whenever G and B are.

PROPOSITION 4β Let Tor (A, B) be a d.s.c. group.
(i) If λ(A) > X(B), then B is a d.s.c. group.
(ii) If λ(A) ̂  λ(ΰ) = /S + 1 with β an infinite countable ordinal,

and B is a d.s.c. group, then every pβA-high subgroup of A is a
d.s.c. group.

Proof. To show (i) let β = X(B). If β < ω then B has bounded
order and is clearly a d.s.c. group. Hence suppose β ;> ω. Let M
be a pβA-high subgroup of A and consider the pθ+1-pure sequence (*).
Since Tor (A, B) is a d.s.c. group of length β it is p13-protective.
According to [8, Proposition 3.1] the p^-purity of (*) then implies
that the sequence (*) splits. Hence Tor (A/M, B) is a d.s.c. group.
Since X(A) > β, A/M Φ 0 so that B is a direct summand of Tor (A/M, B)
and therefore a d.s.c. group.

To prove (ii) we again let M be p^A-high and refer to (*). Now
B is p^-projective so that Tor (A, B) is p<9+1-projective. Hence the
sequence (*) splits. Therefore Tor (M, B) is a d.s.c. group. Since
X(M) = β < X(B), M is a d.s.c. group by (i) and the commutativity
of Tor.

COROLLARY 5. If β is an infinite ordinal and the p-group A
has one pβA-high subgroup which is a d.s.c. group, then every
pβA-high subgroup of A is a d.s.c. group.

Proof. If X(A) <Ξ β, then A is the only p^A-high subgroup so
the result is trivial. Therefore assume X(A) > β. Next observe that
if β > Ω, then a p^A-high subgroup cannot be a d.s.c. group because
it has length β and the length of a d.s.c, group is either <£ Ω or is co.

If β = Ω and M is p^A-high, then M >—• A —» A/M is in
pΩExt(A/M,M). If M is a d.s.c. group, then pΩ Ext (Z(p°°), M) = 0
by [8] Lemma 3.10. Since A/M = ΣZ(p~),

Ext (A/M, M) = Π Ext (Z(p~), M)

so that pΩ Ext (A/M, M) = 0. Thus M is a direct summand of A.
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Since M is pM-high in A we have (A/M)[p] ^ (pΩA)[p] and it follows
easily that p°A is the maximal divisible subgroup of A. Hence M =
A/pΩA in this case. Since A/pΩA is independent of M it follows that
all pM-high subgroups are isomorphic (if one is a d.s.c. group) and
hence all are d.s.c. groups.

Finally if β is infinite and countable, let ΰ b e a countable p-group
of length β + 1. By Proposition 3 Tor (A, B) is a d.s.c. group because
A has a pβA-high subgroup which is a d.s.c. group. By Proposition 4
(ii) every pβA-h.igh subgroup of A is a d.s.c. group.

THEOREM 6. If λ(A) > λ(J5) ^ ω, then Tor (A, B) is a d.s.c. group
if and only if

(i) B is a d.s.c. group, and
(ii) if β is an infinite ordinal such that the β-th Ulm invariant

of B is Φ 0, then every pβA-high subgroup of A is a d.s.c. group.

Proof. We need two easy consequences of Ulm's theorem and
Zippin's theorem (cf. [1] p. 135):

(1) If B is a d.s.c. group whose /3-th Ulm invariant is not zero,
then B has a countable direct summand Bf of length β + 1.

(2) If B is a d.s.c. group, then B = ΣBi where i ranges over
some index set and Bi is countable of length βi + 1.

Suppose Tor (A, B) is a d.s.c. group. We get (i) by proposition
4(i). Suppose further that β is infinite and the /3-th Ulm invariant
of B is not zero. Let β ' be a countable direct summand of B with
length β + 1 as provided by (1) above. Then Tor (A, Bf) is a direct
summand of Tor (A, B), hence a d.s.c. group and (ii) follows from
Proposition 4(ii).

Suppose X(A) > X(B) ^ ω and (i) (ii) are satisfied. Using (2) above
we write B = ΣB{ with Bi countable of length βt + 1. Then
Tor (A, B) = Σ Tor (A, B^. If & < α>, then Bi is a direct sum of
cyclic groups so Tor (A, Bi) is a d.s.c. group. If βz ^ ω, then
Tor (A, B^ is a d.s.c. group by Proposition 3. Hence Tor (A, B) is a
d.s.c. group.

In order to continue we must derive further properties of Tor.
The inclusions A! g A, Bf £Ξ B induce a monomorphism Tor (A', B') >—>
Tor (A, B). We shall identify Tor (A', j?') with its image in Tor (A, B).

LEMMA 7.

( i ) If A\Arf C A, then Tor(A'n A",B) = Tor (A', £ ) n Tor (A", 5).

(ii) J / 4 ' g A ami 5 ' S B, then

Tor (A', J3') = Tor (A', J3) n Tor (A, Br) .
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(iii) // A', A" S A and Bf, B" a B, then

Tor (Af Π A!', B' n B") = Tor (A', B') Π Tor (A", B") .

Proof. If A', A" E A, then there is a commutative diagram

Af Γ\A" >—-> A' — » A'/A' Π A"
V V V

J I I
A" >—> A —» A/A"

with exact rows and monic vertical maps. Applying Tor we get

Tor (A' n A", B) >—• Tor (A', B) > Tor (A'/A' n A", B)
V V V

I 1 1
Tor (A", B) >—> Tor (A, B) > Tor (A/A", B)

with exact rows and monic vertical maps. Conclusion (i) follows from
this diagram.

To prove (ii) we note the existence of the commutative diagram

Tor (A', B') >—• Tor (A, B') > Tor (A/Ar, Br)
V V V

1 i i
Tor (A', B) >—> Tor (A, B) > Tor (A/A\ B)

with exact rows and monic vertical maps and proceed as before.
For (iii) we have

Tor (A' n A", B' n B")

= Tor (A' n A", B) n Tor (A, Br n B")

= Tor (A', B) n Tor (A", J5) Π Tor (A, B') Π Tor (A, B")

= Tor(Ar, B ' ) n T o r ( A " , 5 " )

using in order (ii), (i), (ii).
Lemma 7 holds for any left exact covariant functor of two

variables.

PROPOSITION 8. For x e Tor(A,£), there are unique finite subgroups
AXQ A and Bx S B such that

(i) x e Tor (AX1 Bx) and
(ii) if x e Tor (A', Br) with A' S A and B' a 5, then A, a A'

and S. a B'.

Proof. There exist finite subgroups G g A , if a B such that

a? 6 Tor (G, i ϊ ) . Let Gi, -HΓij G2, fl"2; •• GΛ, Hn enumerate the pairs of
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subgroups of G and H respectively such that x e Tor (Gi9 H^ for i =
1, , n. By Lemma 7 (iii) we have x e Tor (G1Π Π Gw, Hx Π Π £Γn).
Put Ax = Gx ΓΊ Π G* and Bx e Hx ΓΊ Π Hn. Thus (i) is satisfied.

If x e Tor (A', 5') we have by Lemma 7 (iii) that

xeTor(Gf]A', H (~) B') .

Then G Π A' = G< and if Π 5 ' = if, for some i so that A, £ A' and
Bx £ 5 ' proving (ii).

COROLLARY 9. If a e A, b e B have the same order and

Tor({α},{&})STor(A',B')

A' Q A and Bf S B, ίfeβ^ α e A ' αwd 6 e B'.

Proof. If the common order of α and b is w, then Tor ({α}, {6})
is cyclic of order n. Let x be a generator. Then x e Tor ({α} U A', {6} Π 5 r)
by hypothesis and Lemma 7 (iii). If either {a}f]Af or {b}f]Br had
order <w, then Tor ({a} Π A;, {6} Π 5 r ) being cyclic would have order
O . Thus cc would have order <n contradicting the fact that its
order is n. It follows that {a} f] A' = {a} and {b} Π Bf = {b} so that
ae A' and be B\

PROPOSITION 10. If A' s A and B' s B with A, 5p-groups, 5 r

has unbounded order, and Tor (A', J5') is pure in Tor (A, B), then A!
is pure in A.

Proof. Let α e A ' Π p ^ A . Since j?' has unbounded order there is
a bepnBf having the same order as a. In [7] it was shown that
pn Tor (A, B) = Tor (pnA, pnB). Hence

Tor ({α}, {&}) S Tor (A; Π pM, S ; Πp"ΰ)

£ Tor (A', BO Π 2?n Tor (A, B)

3 p n Tor (A', 5') - Tor (pwA', p*B') .

By Corollary 9 a e pnAf. Since α and n were arbitrary we have
A' Π 2>%A = ρnAf for all n and A; is pure in A.

An indexed family {Aa}a>p of subgroups of A will be called a
sequence of subgroups if α ranges over the set of ordinals less then
some ordinal p and Aa £ A^ whenever a <, β < p. If {AJα<ί> is a
sequence of subgroups of A, then JJ Aα (the set theoretical union) is
the subgroup generated by the Aa.

PROPOSITION 11. If {Aa}a<p and {Ba}a<P are sequences of subgroups
of A and B respectively, then {Tor (Aa, Ba)}a<p is a sequence of
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subgroups of Tor (A, B) and

U Tor (Aa, Ba) = Tor (|J Aa, \J Ba) .

Proof. It is clear that {Tor (Aa, Ba)}a<p is a sequence of subgroups
of Tor (A, B). Since Aa C U Aa and Ba fi \J Ba for all a < p we have

U Tor (Aa, Ba) S Tor (U Aa, (J A ) .

Suppose xeΎor (\J Aa, \J Ba) and let Ax, Bx be the subgroups defined
by Proposition 8. Then Ax ^ \J Aa and Bx fi (J βα . Since A,, and 5 X

are finite, there is a /9 < (0 such that Ax £ A^ and #,. £ ί^. Hence
a? G Tor (A,, B,) £ U Tor (Aβ, Bβ).

By the term I'-cyclic we shall mean a direct sum of cyclic groups.
A p-group is J-cyclic if and only if it is a d.s.c. group without
elements of infinite height. In view of Proposition 4 if Tor (A, B) is
J-cyclic and A has elements of infinite height, then B is JS-cyclic.

The following theorem gives a necessary condition for Tor (A, B)
to be IZ-cyclic. The symbol | A | denotes the cardinality of A.

THEOREM 12. If Tor (A, B) is Σ-cyclίc and B is not Σ-cyclίc,
then

(i) pωA = 0, and
(ii) if Af S A with \Af\ >̂ \B\, then Ar is contained in a pure

subgroup A" of the same cardinality, such that pω(A/A") = 0 and
Tor (A/A", B) is Σ-cyclic.

Proof. As stated above conclusion (i) follows from Proposition 4.
Recall that if A and B are infinite ^-groups, then | Tor (A, B) \ —

I A 11 B \. Now let A' S A with \Af\^\B\ and let Tor (A, B) = ΣC%

with the sum direct and each d cyclic.
If G is an infinite subgroup of Tor (A, 5), then, since each element

has nonzero component in but a finite number of the summands Cit G
is contained in a subgroup Gf — ΣjejC5 where J is a subset of the
index set and \Gf \ = \G\. Moreover there are subgroups Ao u A,
B,^B such that | Ao | = \ BQ | = \ G \ and G S Tor (Ao, Bo). This is so
because each a? e Tor (A, 5) is a finite sum of elements of the form
<α, w, δ>.

We define recursively a sequence

Tor (A', B j g f t s Tor (Λ, B) S G2 £ •

of subgroups all having the same cardinality such that Gn is the sum
of a set of the d appearing in the chosen direct sum decomposition
of Tor (A, B).
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Let A" = (J An. Then by Proposition 11,

Tor (A", B) = Tor \J (An, B) = U Gn .

Hence Tor (A", B) is the sum of a set of the d and is therefore a
direct summand of Tor (A, B). Hence Tor (A", B) is pure in Tor (A, B).
Since B is not ^-cyclic, it is unbounded and A" is pure in A by
Proposition 10. Hence the sequence

Tor (A", B) >—> Tor (A, B) — » Tor (A/A", B)

is exact and splits. Thus Tor (A/A", B) is ^-cyclic and pω(AIA") = 0
by part (i).

COROLLARY 13. If A and B are p-groups without elements of
infinite height, B is not Σ-cyclic, \A\ > \B\, and A has greater
cardinality than a basic subgroup, then Tor (A, B) is not Σ-cyclic.

Proof. Suppose Tor (A, B) is ^-cyclic and let C be a basic
subgroup of A such that \C\ < \A\. There is a subgroup A' with
C S A! £ A and | A | > | A' | ^ | B |. By Theorem 12 there is a subgroup
A" with A' £ A" s A, | A" | = | A' |, and pω(A/A") = 0. Now A\A' is
divisible because C £ A" and A/C is divisible. Moreover A/A" =£ 0
because | A" | < | A |. Hence pω(A/A") Φ 0 contradicting the construction
of A". Therefore Tor (A, B) is not ^-cyclic.

LEMMA 14. Let A be a p-group and let p be the least ordinal
having the same cardinality as |A | . Then there is a sequence
{Aa}a<p of subgroups of A such that \Ja<P Aa = A and

( i ) each Aa is pure in A,
(ii) Aa = \Jβ<aAβ if β is a limit ordinal <p,
(iii) I Aa I = Ko if a < ω, and
(iv) I Aa I = I a I if ω ^ a < p.

Proof. Well order A as {aa}a<p. Let Ao be a countable pure
subgroup of A containing a0. Suppose Aβ has been defined for all
β < a satisfying (i)-(iv) above and also (v) ar e Aβ if 7 < β and β is
a singular ordinal <a. If a is a limit ordinal (ii) forces the definition
A* = \Jβ<aAβ. Then (i)-(v) follow easily. If a = 7 + 1, then Ar +
{αr} has the same cardinality as Ar and there is a pure subgroup Aa

of A having the same cardinality as Ar + {αr}. Then (i)-(v) are still
satisfied. If a < p, then | Aa \ = \ a \ < | A | so that the construction
can be continued as long as a < p. Since aa e Aa+1 it follows that

\Ja<ρ Aa — A..
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THEOREM 15. If A and B are p-groups with the same cardinality
such that every subgroup of either with smaller cardinality is a
Σ-group, then Tor (A, B) is Σ-cyclic.

Proof. Let {Aa}a<p, {Ba}a<p, be sequences of subgroups of A and
of B satisfying the conditions of Lemma 14. Since | Aa | = | Ba \ < | A |
we have Aa and Ba ^-cyclic for all a < p. Set Ga = Tor (Aa, Ba).
Since Aa is pure in A and Ba pure in B, Ga is pure in Tor (A, B).
Moreover by Proposition 11 and Lemma 14 (ii), Ga = \Jβ<a Gβ whenever
a is a limit ordinal <p.

Since Tor is left exact, there is an exat sequence

Ga >—-> Ga+ι > Tor (Aa+1/Aa, Ba+1) 0 Tor (Aβ+1, Bβ+1/Sα) .

The term on the right is iZ-cyclic because Aa+ι and Ba+1 are J-cyclic.
Thus Ga+1/Ga is IZ-cyclic and therefore Ga+1 = GaφCa with Cα ^-cyclic
because Gα is pure in Ga+1. Hence we have a sequence {Ga}a>P of
subgroups of Tor (A, 5) such that

(1°) Ga S Gα+1 for α < p and Gα = U/3<« Gβ if α is a limit ordinal

(2°) Gα+1 = G α φ C f f with Ca a i^-group for all a < p;
(iii) Tor(A,5) = U«<.Gie.

It follows that Tor (A, B) = ΣCa and is therefore a I'-group.

COROLLARY 16. // A and B are p-groups without elements of
infinite height whose cardinality is at most ^ u then Tor (A, B) is
Σ-cyclic.

If p is a cardinal number, call a p-group A ^-cyclic if every
subgroup of cardinal <p is iJ-cyclic. Every p-group without elements
of infinite height is ^-cyclic. Let p+ be the cardinal next larger
than p.

COROLLARY 17. // A and B are p-cyclic, then Tor (A, B) is a
p+-cyclic.

Proof. Let G C Tor (A, B) with | G \ = p. Since, for x e Tor (A, B),
there are finite subgroups A!, Br of A and B respectively with
x e Tor (A', B'), there are subgroups 4 0 £ i , Bo £ B such that \ Ao\ =
\B0\ = \G\ = p and G £ Tor (Ao, i?0). Since every subgroup of a direct
sum of cyclic groups is one, Ao and Bo satisfy the hypotheses of
Theorem 15. Hence Tor (Ao, Bo) and therefore G is ^-cyclic. However
G was arbitrary with | G \ = p so the corollary follows.

For groups Au , An, define Tor (Au , An) inductively as
Tor (Tor (Λ, , An^)y An).
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LEMMA 18. If Al9 ---,A2n are p-grrups without elements of
infinite height, then Tor (Al9 , A2n) is ^sn+1~cyclic.

Proof. The proof is by induction. We use the associativity of
Tor to show that

Tor (Al9 , A2n) = Tor (Tor (Al9 , AM)9 Tor (Am+l9 - , A2»))

where m = 2n~1 and then use Theorem 15 to complete the inductive
step.

PROPOSITION 19. For each n with 1 ^ n < co9 there is a p-group
Gn without elements of infinite height such that Gn is fc^-cyclic but
not I'-eyclic.

Proof. If C is the direct sum of p copies of ΣZ(vn) and p ^ fc$0,
then the torsion completion of C has cardinality p*». Hence if p** > ,o?

there is a p-group without elements of infinite height which has
greater cardinality than a basic subgroup. Since there are arbitrarily
large cardinals with this property there exists a sequence
Au A2,

 β

 ? Ann ••• of ^-groups of increasing cardinality, all without
elements of infinite height, and all with greater cardinality than a
basic subgroup.

Set Gn = Tor(Al9 •-•, A2»-i) and G1 = A,. Then Gn is K.-cyclic
by Lemma 18. If A and B are infinite torsion groups | Tor (A, B) \ —
max {| A I, | JB|} so that | Tor (Alf , Ak) \ = ί Ak\. Thus Gn is not
^-cyclic by Theorem 15.
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