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INTERPOSITION AND APPROXIMATION

BERNARD KRIPKE AND RICHARD HOLMES

Let <Z(X) be the space of all bounded real-valued func-
tions on a set X, with the norm || /|| = sup{| flz)|: x€ X},
and let K be any nonempty subset of <2 (X). The question
whether an element f of <% (X) has a best approximation g
in K (such that ||f—g||=6(f)=inf{||f—h]||:heK}) can
be formulated as the problem of interposing a function g in
K between two functions, L(-,f) and U(-,f), which are
constructed out of K by certain lattice operations, If K is
closed with respect to these lattice operations, or has a certain
interposition property, the best approximation will always
exist,

For example, X might be a bounded subset of a Banach space E
and K might be the set of restrictions to X of the continuous linear
functionals in E* [2, 6]. U(-, f) is then constructed in two stages:
first the suprema of bounded subsets of K are formed, and then
U(-, f) is obtained as a decreasing sequential limit of such suprema.
In two other typical cases, K consists of the bounded continuous
functions on a paracompact space [5], or the distance decreasing
functions on a metric space. These two share the property of trans-
lational invariance:

(1) if fe K and ¢ is a constant, then (f + ¢)e K,

which permits U(-, f) to be constructed by forming suprema alone,
without the intervention of decreasing sequential limits. In the last
of these sample cases, it actually turns out that U(-, f) is itself in
K, and is thus the largest of the best approximators to f in K.

1. Mere existence. For every p > 0, there is a g € K such that
[l f—gll<d(f)+ p, or in other words f —d(f)—p<g<f+ )+ p.
Therefore, U,(x, f) = sup{g(z):9e K, g =< f + o(f) + o} lies between
f —0(f) —p and f + d(f) + p, and dominates

Ly, f) = inf{g(x):9e K, g = f — o(f) — 0} .

L, and U, are, respectively, monotonically increasing and decreasing
functions of o, so that

F =) S L(-, ) = lim Luyo(-, £) < lim Uia(-, )
= UG, N f+0) .
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ProposITION 1. If fe < (X) and ge K, then || f — g]|| = 6(f) if,
only if, L(-, f) = g = U(-, f).

Proof.

Nf—gll=éf)—rF—-0N=9=r
+of)=f—-0f)—o=9g=Ff+if)+p

for each p > 0= Ly(-, ) = g = U,(+, f) for each 0 < 0= L(-, f) =
g = U, f).

The significance of this proposition is that f has a best approxi-
mation in K if, and only if, a function ¢ in K can be interposed
between two functions L(-, f) and U(-, f) which are respectively the
increasing sequential limit of infima and the decreasing sequential limit
of suprema of functions in K.

DEFINITION. K has the interposition property (lp) if for each
fe#(X), there exists a ge K such that L(-, ) <g = U(-, f). K
has the upper [lower] interposition property (Uip [Lip]) if for each
fez(X), U(-, f) [L(-, f)] is in K.

COROLLARY 2. K has the Ip if, and only if, for each f e Z(X),
there is a g€ K such that || f — g|| = o(f). If K has the Uip [Lip],
U(-, f) [L(-, f)] is the largest [smallest] function ge K such that

=gl =a(f).

ProposITION 3. Of the following statements, (2) = (3) = (4).
(2) For each xe X, there is a family S(x) of functions from <z (X)
to R (the real numbers) such that

(@) f,geZ#(X),zeX,NvelS(), f = 9=M[f) =NM9);

(b) if {f.} is a monotonically decreasing sequence in <Z(X) con-
verging pointwise to f, x € X, and » e S(x), then \(f) = lim,_. M(f,);

(¢) feK<= f(x) = Mf) for each x € X and e S(x).

(3)(a) If F is a nonempty family of functions in K which is uni-
formly bounded above, its supremum (-, F') is also in K.

(b) If {f.} is a monotonically decreasing sequence of functions in
K converging pointwise to a function fe <#(X), then fe K.

(4) K has the Uip.

Proof. (2a) & (2¢) = (3a). For each feF, f < @(-,F). Thus
for each zeX and »eS(), f(x) < MS) < Me(+, F)). Therefore,
o(x, F)=sup {f(x): fe F} <\ ®(+, F)). According to (2¢), o(-, F) e K.
(2b) & (2¢) = (3b). Trivial. (3) = (4). Likewise.
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2. Wherein the assumption of translational invariance im-
proves the theory. Throughout this section, it shall be assumed
that K has the property (1) of translational invariance. It then
makes sense to introduce the wupper and lower K-envelopes of a
bounded function, a(x, f) = inf |g(x): g€ K, g = f} and

B(x, f) = sup{g(x): 9e K, g < f}.

The quantity 4(f) = (1/2) || a(-, f) — B(-, f)|| can be used to estimate
o(f), while u(-, ) = B(-, f) + 4(f) and I(-, ) = a(-, f) — 4(-, f) can
be used to approximate U(-, f) and L(-, f). More precisely, these
new constructs are related to U, L, and ¢ as follows.

PROPOSITION 4. 3(f) = (). U(-, f) = B(-, f) + o(f) Z u(-, f) =
ey £) Z al-, f) — 8(f) = L(-, /).

Proof.
'M(’, f) - l('y f) = B(') f) - 03(', f) + 2A(f)
=lla(, f) = B, NIl = (-, ) = B(-, f)) = 0.

In the presence of (1), it is clear that U,(-, f) = B8(-, ) + o(f) + p
and L,(-, f) = a(-, f) — o(f) — p. We know that for every p > 0,
there is a g ¢ K such that

a(-, ) —o(f) —o =L+, ) =9 = U+, /) = B(-, /) + o(f) + o,
whence a(-, f) — B8(-, ) = 2(0(f) + p). Since a(-, f) — B(-, f) is

evidently nonnegative, and since p can be arbitrarily small, it follows
that 24(f) = ||a(-, f) — B(-, f)|| = 20(f). Moreover, letting p tend
to 0, we find that U(-, f) = lim,_, U,(-, ) = B(+, f) + 6(f), and like-
wise L(-, f) = a(-, f) — 6(f). The rest is trivial.

COROLLARY 5. In order that an element g€ K satisfy || f — g|| =
A(f), it 1s mecessary and sufficient that I(-, f) < g < u(-, f), in which
case A(f) = B(f)y U('y f) = u’('yf)y and L('7 f) = l('rf)°

Proof. If ge K and I(-, f) < g9 < u(-, f), then

f=df)=sa-, /) =4 =U-, ) =9 =u, f)
=BG, )+ 4N = f+ 4f).

Thus
of) = f—gll =40 =) .
Conversely, if ge K and || f — g|l = 4(f), then o(f) || f —gll =
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A(f) = 0(f). Therefore, o(f) = 4(f), U(-, )= u(-, f), and L(-, f) =
I(-, f). Proposition 1 then shows that I(-, f) = L(-, /)< g = U(+, f) =
u(' ’ f)'

Observe that (-, f) and I(-, f) are respectively the supremum
and the infimum of families of functions in K. The preceding results
show that when a function in K can be interposed between I(-, f)
and u(-, f), the distance from K to f not only is attained, but can
also be calculated directly from the upper and lower K-envelopes of f.

DEFINITION. K has the strong interposition property (Sip) if it
is translationally invariant and for each fe < (X), there exists a
g € K such that (-, /) < g < u(-, f). K has the strong upper [lower]
interposition property (Suip [Slip]) if it is translationally invariant
and for each fe¢ #(X),u(-, f) [I(-, /)] is in K.

ProrosiTioN 6. If K is translationally invariant, the following
three statements are equivalent.
(5) K has the Suip.
(6) If F is a nonempty family of functions in K which is uniformly
bounded above, its supremum @(-, F') also is in K.
(7) For each xze X, there is a family S(x) of functions from .7 (X)
into R such that

(@) figez(X),ze X, eS@), f =g9=N[)=Mg), and

(b) feK< f(x) < N) for each xc X and X e S(x).

Proof. The demonstration that (7) = (6) was part of the proof
of Proposition (3), and the proof that (6) = (5) follows trivially from
the definition of (-, f) as the supremum of the functions in K which
are bounded above by f + 4(f). To show that (5)= (7), take S(z)
for each x to consist of the single function f — B(z, f). It is clear
at once that B(z, -) satisfies the monotonicity condition (7a), and that
feK= Bz, f) = f(x). If, conversely, f =< B(-,f), then f must
equal B(x, f) because B(-, f) is evidently no larger than f. But then
the Suip and (1) imply that f = B8(-, f) = u(-, f) — 4(f), which is in
K.

3. Applications. The reader can apply Proposition 6 to his
favorite of the families of bounded functions which are closed with
respect to taking suprema. For example, if X is a convex subset of
a vector space V, let S(x), for each x € X, consist of all mappings of
the form f —af(y) + bf(z), where y,z¢ X,a,b=0,a +b =1, and
& = ay + bz. Then f is convex if, and only if, f(x) £ M) for each
xe X and A€ S(x). That is to say, the convex functions are charac-
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terized by conditions of the type (7); and it is worth noting that
condition (2b) is satisfied in this case as well. One then concludes
from Proposition 6 that the family of bounded convex functions on
X has the Suip, or from Proposition 3 and a moment’s reflection that
the family of bounded convex functions on X which vanish on a
prescribed subset of X has the Uip. Both of these families of func-
tions are thus proximinal—every bounded function has a best
approximator in each of them. Indeed, every bounded function has
a largest (but not necessarily a smallest) best approximator in each
of these families. The second of them is not translationally invariant.
Similar arguments can be applied to the families of bounded lower
semi-continuous functions on a topological space and of bounded sub-
harmonic functions on a region in the plane.

In an earlier paper [5], the authors have announced the result of
applying Corollary 5 to the case in which K consists of the bounded
continuous functions on a paracompact space. In this situation,
u(-, ) and I(-, f) are respectively lower and upper semi-continuous,
and the fact that K has the Sip is a consequence of the Interposition
Theorem of Dieudonné [3, p. 75]. Similar reasoning was used by 8.
Mazur to compute the distance from a continuous function f on a
compact topological space X to the set K of functions of the form
go®, where ¢ is a fixed continuous mapping from X onto a topologi-
cal space Y, and ¢ is continuous on Y. The answer is, of course,
that K is translationally invariant and has the Sip, so that the distance
from f to K is 4(f). (The authors are indebted to Professor R. R.
Phelps for informing them of Mazur’s work. The distance formula
was announced without proof in Pelezynski’s paper [8], while Mazur’s
proof can be found in Semadeni’s notes [9].)

Cheney and Goldstein [2] proved the following theorem on ap-
proximation by linear functionals.

THEOREM. Let E be a Banach space and X be a subset of E.
In order that each bounded function from X to R have a best ap-
proximation in the set of continuous linear functionals on E which
are bounded on X, it 1s sufficient that 0 be interior to the closed
convex hull of X U (—X) relative to its linear span.

In case X is bounded, it was shown by Kripke and Rockafellar
[6] that this sufficient condition for the class of continuous linear
functionals to be proximal is necessary as well. Using Corollary 2,
the result of Cheney and Goldstein can be strengthened as follows.
Let V be any locally convex linear topological space, and let X be a
subset of V such that the closed convex hull Y of XU (—X) has
interior relative to the subspace W of V which it spans. Let K be
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the set of continuous linear functionals on V which are bounded on
X. It will be shown that K has the Ip.

For each ye Y, put Uy, f) =sup{g(w):9e K, g9 = f + o(f) + o}
and U(y, f) = lim,_, U(y, f). These definitions extend to all of Y
functions which previously had been defined only on X. U,, being
the supremum of a uniformly bounded family of restrictions of linear
functionals to Y, is convex; and U, being the decreasing limit of
convex functions, is convex as well. This much was noted above.
In like manner, L(-, f) is a concave function on Y. {(v, ¢): ¢ = Uy, f)}
and {(y, ¢): ¢ < L(y, f)} are thus disjoint convex subsets of the product
space W x R, both of which have interior. They can be separated
by a closed hyperplane H in W x R (Bourbaki [1]) which is the graph
of a continuous affine functional (a linear functional plus a constant)
h on W interposed between L(-,f) and U(-, f). But L(-, f) and
U(-, f) clearly vanish at 0, so A is actually linear. The Hahn-Banach
theorem (Bourbaki [1]) permits & to be extended to a functional g € K.

The last of the typical applications mentioned in the introductory
paragraph requires that X be supplied with a pseudo-metric d. K
now is to consist of those bounded functions g which satisfy the
Lipschitz condition | g(x) — g(v)| < d(x, y) for all z, ye X. A function
ge Z(X) belongs to K if, and only if, it satisfies either of the
following equivalent conditions for each ze X:

(1) g(2) = 9(y) + d(x, y) for every ye X,

(i) g(x) = 9(y) — d(=, y) for every ye X.
The condition (i) is precisely of the type (7) which characterizes
families of functions possessing the Suip, while (ii) is characteristic
of families possessing the Slip. Since K thus satisfies both the Suip
and the Slip, each bounded function f has a largest and a smallest
best approximator in K, u(-, f) and I(-, f), and the distance from f
to K is precisely 4(f).

It is not hard to calculate a(-, f) and B(-, f) explicitly. If ge K
and g = f, then g(») = 9(y) — d(=, ¥) = f(y) — d(x, y), so that

a(x, f) = A(x, f) = sup{f(y) — d(z,y):ye X}.

On the other hand, the triangle inequality shows that for each v,
the function 2 — f(y) — d(x,y) is an element of K. A(-, f), being
the supremum of such functions, is also in K. Since

A, f) = f(2) — d(z, 2) = f(»), A(-, ) = f.
But then a(-, f) can be no larger than A(-, f). That is, it has

been shown that a(z, f) = sup, (f(y) — d(z, ¥)).
This formula can be used to evaluate A(f).
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4(f) = 2 sup[a(@, f) - 6@, /]

2 sup[sup (£(y) — d(s, ¥)) — inf (F() + d(z, )]

= 2 sup (/@) — d(w, ) — () — d(a, 2)]

Il

< >sup () — £() — dly, 2)] = < sup [£W) — By, £)]
< —;- sup [a(v, f) — By, )] = 4(F) -
To summarize

(8) o) = 4F) = sup L) — F(@) — d(w, 2],
Uz, f) = inf (f(2) + d(@, 2)) + 4(f) ,
and

L(z, f) = sup (f(y) — d(=, y) — 4(f) .

The derivation of formula (8) was discovered by Mr. Masao Kishore,
a student in a seminar for undergraduates given at the University
of California, Berkeley, in 1965.

4. Brief comment. As the authors indicated in their earlier
paper [5], much of what has just been transacted could be played
out in a measure-theoretic setting, in which the essential supremum
plays the role of the supremum. It also seems possible to extend
some of these results, notably the fact that the space of bounded
continuous functions is a proximinal subset of <#(X) when X is
paracompact, to the case of complex-valued functions, or more generally
functions with values in a reflexive Banach space E. With 6(f)
defined as before, one introduces for each ze X and p > 0 the set
T.(x), which is the closed convex hull in E of

{g(@):9e K, || f —gll £ 0(f) + o},

and then the set T(x) = N> To(x). At least in the case that K
consists of the bounded continuous functions on a paracompact space,
a theorem of E. A. Michael [7] is available to guarantee that an
element g of K can be interposed through the sets T(x)—g(x)e T(x)
for each z e X—and this shows by arguments like those that have
gone before that f has a best approximation in K. An entirely
different line of reasoning can be applied to the set of E-valued
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functions on a compact metric space which satisfy a Lipschitz condition.
One observes that best approximations need only be sought in a bounded
subset of K, and that if E is given its weak topology, such a subset
of K is compact in the topology of uniform convergence on X accord-
ing to Ascoli’s theorem (Kelley [4]). Since || f — g|| is a lower semi-
continuous function of ¢ when E has the weak topology, it attains
its infimum. However, Kishore’s formula for the distance, as well
as certain of its plausible generalizations, fails even for complex-valued
functions, as is shown by counterexamples due to another student in
the Berkeley undergraduate seminar, Mr. Daniel Chester.
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