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EQUIVALENT DECOMPOSITION OF R®

STEVE ARMENTROUT, LLOYD L. LININGER
AND DoNALD V. MEYER

If G is any monotone decomposition of R?, let H; denote
the union of the nondegenerate elements of G, and let P
denote the projection map from R? onto the decomposition
space R?*/G associated with G. Suppose that F' and G are
monotone decompositions of R? such that each of Cl(Ps[H7])
and Cl (P;[H;]) is compact and O-dimensional. Then F and G
are equivalent decompositions of R® if and only if there is a
homeomorphism % from R3/F onto R3/G such that

RICL (Ps[HrD] = CL(Ps[He)) .

A necessary and sufficient condition for two decompositions
to be equivalent is given., It is shown that there is a de-
composition with only a countable number of nondegenerate
elements which is equivalent to the dogbone decomposition,
and several related results are obtained.

By introducing the idea of equivalent decompositions of R®, we
are able to analyze in a precise way, a process that seems quite natural
in the study of monotone decompositions of E? of the type we are
considering. If F is a monotone decomposition of R?, the stipulation
that Cl P,[H;] be a compact O-dimensional set is equivalent to the
following condition: There is a sequence M,, M,, M,, --- of compact
3-manifolds-with-boundary in R® such that for each positive integer
J, M;., < Int M; and ¢ is a nondegenerate element of F' if and only
if g is a nondegenerate component of (7., M,.

A process one finds useful in certain situations is one that involves
a sequence f, fi, fs, -+ of homeomorphisms from R® onto R® such that
(1) f. shrinks or stretches M,, (2) f, agrees with f, on R® — M, and
shrinks or stretches M,, (3) f; agrees with f, on R® — M, and shrinks
or stretches M,, and so on. The “new” decomposition has as its
nondegenerate elements the nondegenerate components of

AIMIN AIMIN AIM N -

We are able to show that under fairly mild restrictions, there exists
such a sequence of homeomorphisms if and only if the original de-
composition and the “new” one are equivalent in the sense of this
paper.

We indicate some examples that illustrate these concepts. The
first two examples give instances of previous applications of the ideas
of this paper. The remaining ones are described in detail in the
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present paper.

ExampPLE 1. Meyer proved [10] that if C is a 3-cell in R® such
that Bd C is locally polyhedral except at points of an are « on Bd C,
then R?*/C is homeomorphic to R%/a.

ExamMPLE 2. Bing described [6] a 2-sphere S in R® such that S
is locally wild at each point of S and S bounds a 3-cell B in R3,
Armentrout proved [1] that there is a 3-cell B’ in R® such that Bd B’
is locally polyhedral except on a Cantor set on Bd B’ and R*B is
homeomorphic to R*B’.

ExXAMPLE 3. Suppose G is a monotone decomposition of R? such
that there is a sequence M,, M,, M,, --- of compact 3-manifolds-with-
boundary as described above. Suppose further that each component
of each M; is a 3-cell-with-handles. Then G is equivalent to a de-
composition into 1-dimensional continua and one-point sets; see §7.

ExAmPLE 4. Bing’s dogbone decomposition [5] is equivalent to
a decomposition into one-point sets and at most countably many non-
degenerate continua; see §4.

ExaMPLE 5. In §3 of [7], Bing described a point-like decomposi-
tion G of R® with only countably many nondegenerate elements such
that R3/G is not homeomorphic to R®. There exists a decomposition
F of R® such that F' is equivalent to G and F’ has uncountably many
nondegenerate elements; see §5.

2. Notation and terminology. The statement that G is a
monotone decomposition of R® means that G is an upper semi-continu-
ous decomposition of R® into compact continua. A compact continuum
K in R® is point-like if and only if R® — K is homeomorphic to the
complement, in R?, of a one-point set. A set M in R® is cellular if
and only if there is a sequence C,, C,, C,, --- of 3-cells in R® such
that for each 7, C;., cInt C; and M = N, C;. For compact continua
in R? “point-like” and “cellular” are equivalent [12]. The statement
that G is a point-like decomposition of R® means that G is a monotone
decomposition of R® into point-like sets.

We shal use the notation and terminology introduced in the
introduction.

If M is a 8-manifold-with-boundary, M need not be connected,
and Bd M and Int M denote the boundary and interior, respectively,
of M.
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The statement that the subset K of R® is a 3-cell-with-handles
means that there is a finite collection C, C,, C,, ---, and C, of 3-cells
such that if 2=1,2,..., or », C;N C is the union of two disjoint
dises, and C;NC =(BAC,)NBAC), and if 7 and 5 are distinct, C,
and C; are disjoint. Such a collection C,C,,C,, ---, and C, of 3-cells
will be called a standard decomposition of K.

We shall use Cl to denote topological closure. If X is a subset
of R® and ¢ is a positive number, then V(X,¢) denotes the e-neigh-
borhood of X in R®. .

Suppose G is a monotone decomposition of R*. Then M,, M,, M,, ---
is a defining sequence for G if and only if M,, M,, M, --- is a sequence
such that (1) for each positive integer ¢, M, is a compact 3-manifold-
with-boundary such that M,,, < Int M; and (2) ¢ is a nondegenerate
element of G if and only if ¢ is a nondegenerate component of

2. M;. G has a defining sequence if and only if Cl P;[H,] is a
compact 0-dimensional set. G is definable by 3-cells-with-handles if
and only if G has a defining sequence M,, M,, M,, --- such that for
each positive integer 4, each component of M, is a 3-cell-with-handles.
G is a toroidal decomposition of R® if and only if G has a defining
sequence M,, M,, M;, --- such that for each positive integer 7, each
component of M, is a solid torus (3-cell with one handle).

3. The existence of sequences of homeomorphisms. In this
section we establish, under fairly weak conditions on the decompositions
involved, the equivalence of two decompositions with the existence
of a sequence of homeomorphisms #k,, k,, ks, --- from R® to R® as in-
dicated in the introduction.

A compact continuum M in R?® is semi-cellular if and only if for
each open set U in R® containing M, there is an open set V lying in
U and containing M and such that each simple closed curve in V is
null-homotopic in U. Every point-like compact continuum in R® is
semi-cellular, since each such set is cellular. Each compact absolute
retract in R® is semi-cellular. Since there exist noncellular ares in
R?, the two categories above are not identical. An example of a
semi-cellular compact continuum in R® neither cellular nor an absolute
retract may be obtained as follows: Let T,, T,, T, --- be a sequence
of solid tori (3-cells with one handle) in R® such that for each 7,
T,,,cInt T;, T, lies in T, as shown in Figure 1, T, lies in T, as T,
lies in T,, and for each 7, T;,, liesin T; as T, lies in T,_,. Then
N, T; is a continuum with the desired properties.

LemMMA 1. Suppose that F and G are monotone decompositions
of R® such that Cl P;[H;]| and Cl P;J|H;] are compact 0-dimensional



208 S. ARMENTROUT, L. L. LININGER AND D. V. MEYER

FIGURE 1.

sets. Suppose that M is a compact polyhedral 3-mamnifold-with-
boundary, each component of which 1s a 3-cell-with-handles, such
that Cl H, CcInt M. Suppose that each element of G is semi-cellular.
Suppose that there vs a homeomorphism h from R|F onto R}/G such
that h[Cl P;[H;]] = Cl P;[H;]. Let @ be the function from R* — Cl H,
onto R®* — Cl H, such that if xe (R* — Cl Hy), p(x) = Pz'hPy(x). Then
there is a homeomorphism f from R® onto R® such that

(1) if ve R* — Int M, f(z) = o(x) and

(2) fIM] = P;'hP.[M], and each component of f[M] is a 3-cell-
with-handles.

Proof. Let M,, M, ---, and M, be the components of M. If
2=1,2,.--, or n,®|Bd M; is a homeomorphism, and thus @[Bd M;]
is a compact tame 2-manifold-with-boundary and @[Bd M;] bounds a
compact 3-manifold-with-boundary N; in R®. Since J~,Bd N; is the
boundary of the connected 3-manifold-with-boundary ¢[R® — Int M],
the sets N, N,, ---, and N, are mutually disjoint. Let N denote

2 N;. It is not hard to see that N contains Cl H;, @ takes
R? — Int M homeomorphically onto R®* — Int N, and @[Bd M] = Bd N.
Therefore, in order to describe f, it is sufficient to construct, for
each 7, an extension of @ |Bd M; to M,.

Suppose then that ¢+ =1,2, ..., or n. Since M, is a 3-cell-with-
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handles, there is a finite set {D.,, Dy, +-+, D} of mutually disjoint
polyhedral dises such that (1) if j=1,2, ..., or m;, Bd D,; © Bd M,
and Int D;; c Int M; and (2) the closures of the components of

M- U?:il Dijy Ciiy Ciy » Ciki ’

are polyhedral 3-cells such that if ¢t=1,2,..., or k;,, BdC,, is the
union of a punctured disc A;, and certain ones of the dises D;,,D,,, ---,
and D, such that if D;; and A;, intersect, D;; N A;, = Bd D;; and is
also a boundary curve of A4,,. If t=1,2 ..., or k;, let S;, denote
Bd C;..

If 7=1,2,..., or m;, there is a polyhedral subdisc Dj; of D,;
such that Dj;cIntD;; and (Cl Hy) N D;; cInt Dj;. Let B;; denote
the annulus D;; — Int D},.

Now P;'hP;[(Cl H;) N D;;] is compact and lies in Int N;. Since
each element of G is semi-cellular, there exists a finite collection
{U, V), (U, V), ---, (U,, V,)} of pairs of open sets in R* such that

(1) ift=1,2, ..., or r, V,c U, U, Int N;, each simple closed
curve in V, is null-homotopic in U,, and V, is a union of elements of
G, and

(2) each element of G that intersects P;'hP;[D;;] lies in some
one of V,,V,, ---, and V,.

There is a triangulation T of D); such that if o is any 2-simplex
of T, then for some ¢, P;'hPy[c]c V,. Let 0,0, -+, and o, denote
the 2-simplexes of T.

Let <{x,@,x,> denote the 2-simplex o,. Let y,, y,, and ¥, be
points of Pz hP.(x,), PithPg(x,), and Pz'hPp(x,), respectively. Since
G is monotone, Pz'hPy[{x,x,>] is a compact continuum and near it
we can choose a polygonal arc {y,¥,> such that if o is any 2-simplex
of T having d{x,x,> as an edge and P;'hPg[<{xx,>]CV,, then
Yy V,. It is to be true that if <{w,w,> misses Cl H, then
<YYuy = Pi*h Py, >]. In a similar manner we choose polygonal
arcs <{y,¥.y and <{y,y.>. We adjust these slightly near Cl H; so that
if v, = <Yt U <¥n¥) U<¥¥ysy, then 7, is a simple closed curve.
Now for some ¢,, P;'hPs[0,] C V,, and by construction v,  V,. Hence
there is a polygonal singular disec z, in U, and bounded by v,.

Corresponding to o,, we construct 7, and 7, such that for some
t, 7, is a polyhedral singular disc in U,. It is to be the case that
if a vertex of o, belongs to o,, we make the same choice for that
vertex of o0, as was made for o,, and similarly if an edge of o, lies
in g,. In addition, if either a vertex or edge of ¢, misses Cl H;,
then for the corresponding set in v,, we use its image under ¢ and
do not move it in adjusting to obtain 7,.

Continue this process. There result polyhedral singular discs
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T, Ty *++, and 7, in Int N; such that (i, 7, is a singular disc whose
boundary is @[Bd D!;] and which lies in Int N;. By applying Dehn’s
lemma [10] to the polyhedral singular disc @[B;;] U (Ui-.7:), We see
that there is a disc 4}; such that Bd 4}; = ¢[Bd D;;] and Int 4;;  Int N;.

By well-known techniques it may be shown that there exist
mutually disjoint dises 4;,, 455, -++, and 4;,, such that for each j,
Bd 4;; = #[Bd D,;] and Int 4;; C Int N,.

Recall that if t=1,2,..-, or k;, C;, is a 3-cell contained in
M;, S;, = BdC,, and A,, is the punctured disc S;, — U7, Int D;;. It
is clear that if D;;, D;;, ---, and D,;,, are those dises of D, Dy, -+,
and D;,,, whose boundaries are contained in 4;,, then ¢[A4;,] U (U532, 45,)
is a tame 2-sphere S.,.

We can easily show that if s and ¢ are distinet, then int S}, and
int S!, are disjoint, where ‘‘int’’ denotes the interior, in E3, of a
2-sphere. Both int S}, and int S}, are contained in Int N,. If S’;, and
int S}, intersect, then some point of either ¢[A;] or ¢[A;] lies in
Int N,. This is a contradiction, so int S}, and int S}, are disjoint.

There is a homeomorphism 6, from S; onto S) such that (1)
0,14, =9|A; and (2) if D,;cS;, then 6,[D;;] = 4;;. There is a
homeomorphism 6,, from S;, onto S}, such that (1) 6,,| A4, = | A,
2) if D;;cS,NS;, then 6,, | D;; = 6;,| D;;, and (3) if D;;C S, 0:.[D;;]1=
d;;0 If £ =3,4,---, or k;, there is a homeomorphism 64, from S,
onto S}, such that (1) 6,,|A4;, = 9|4, Q) if s=1,2,.--, or (t—1)
and 4;,;CS;;NS;,, then 6,,|4;; =0,;| 4;;, and (3) if D;;CS;,, 0:.[D;;] = 4;.

If¢=1,2,..., or k;, there is a homeomorphism 6} from C;, onto
(S;; Uint S};) such that 63|S; = 6,. Now let @, be the function
from M; onto N, defined as follows: If xe M;, let ¢ be an integer
such that xeC;, and let ¢,(x) be @%(x). The function @; is well-
defined because if xe C;, N C,;,, then 6#j(x) = 6%(x). It is easy to see
that ¢, is a homeomorphism from M, onto N; and that ;| Bd M, =
@ | Bd M;.

Now we are ready to define f. If axec R®— Int M, then define
flz) to be o). If xe M, let ¢ be the integer such that xe M.
Then define f(x) to be @,(x). It is easily seen that f is a homeomor-
phism from R® onto R® satisfying the conclusion of Lemma 1.

THEOREM 1. Suppose that F and G are monotone decompositions
of E* such that Cl Pi[H,] and Cl P, H;] are compact 0-dimensional
sets. Suppose that F is definable by 3-cells-with-handles M,, M,, - -
Suppose each element of G is semi-cellular. Then if F and G are
equivalent decompositions, there exists a sequence fi, fo) foy o+ Of
homeomorphisms from R® onto R® such that (1) for each

& fon [(B* — Int My) = f; | (R® — Int M) ,



EQUIVALENT DECOMPOSITIONS OF R 211
and (2) fiIM], fiM,), fiIM;], --- is a defining sequence for G.

Proof. Since F and G are equivalent, there is a homeomorphism
h from R}F onto R}/G such that h[Cl P,[H,]] = Cl PJH;]. Let @
be the function from R®* — Cl H, onto R® — Cl H,; such that if

xe (R — Cl Hy), P(x) = P hPp(x) .

Since F' is definable by 3-cells-with-handles, there exists a defining
sequence M,, M,, M,, --- for F' such that for each positive integer 7,
each component of M, is a 3-cell-with-handles. By Lemma 1, if 7 is
any positive integer, there is a homeomorphism f; from R?® onto R*
such that if xe B® — Int M, fi(x) = ¢(x). We will show that the
sequence fi, /s, fs, ++- satisfies the conclusion of Theorem 1.

Suppose 7 is any positive integer. Then M,;, < Int M; since
M,, M,, M,, --- is a defining sequence for H,. Since

Sie |[B® — Int M;,) = | (B — Int M),
then
fin | (R*— Int M) = @ | (R* — Int M) .
Since f; [ (R®* — M;) = @|(R* — Int M,), it follows that
fin|((BB—Int M) = fi|(R*— IntM).

Suppose U is an open set in R? containing Cl H,. Then P;'h~'P U]
is open in R? and contains Cl H,. Hence there is a positive integer
n such that M, c P;*h—'P,JU], and it follows that P;'hP.[M,]C U.
Since f,[M,] = PP, [M,], f,[IM,JcU. It is clear that for any
1, (Cl Hy)  fi{M.]. Consequently, f[M;], filM.], fi[M], --- is a defining
sequence for G. Hence Theorem 1 holds.

COoROLLARY. 1. If F and G satisfy the hypothesis of Theorem 1,
then G is definable by 3-cells-with-handles. If F' is toroidal, so is G.

Proof. We use the notation of Theorem 1. By Theorem 1,
LM, fIM], fi[M;], --- is a defining sequence for G. By Lemma 1,
for each positive integer 4, each component of f;[M;] is a 3-cell-with-
handles. Hence G is definable by 3-cells-with-handles. It is clear
that if for each positive integer 4, M; is a solid torus, so is fi[M;].
Therefore, if F is toroidal, so is G.

THEOREM 2. Suppose that F and G are monotone decompositions
of R® such that Cl P,[|H,| and Cl PJH;] are compact 0-dimensional
sets. Suppose that F has a defining sequence M,, M, M,, --- and
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there exists a sequence f, f,fs, +++ of homeomorphisms from R? onto
R?® such that (1) for each t, fi,|(R® — Int M,) = f;| (B® — Int M,), and
2) AIM.], fiAM,), fiIM], --- is a defining sequence for G. Then F
and G are equivalent.

Proof. We shall define a homeomorphism % from R*/F onto R*G
such that A[Cl P;[H;]] = Cl P, H].

Suppose = is a point of R/F. Consider first the case where
x¢Cl P;]H;]. Then P;'(x) is a one-point set and so there is a point
y of R® such that P.(y) = x. Further, y¢Cl H,. Hence for some
Ny, if © > n,, fi(y) = f,(y). Then define h(x) to be the point Psfr,(y)
of RY@.

Suppose « € Cl P;[H;]. Then there is a sequence M,;, M,;,, M;,, -+ -
such that for each k, M,;, is the component of M, containing Pr'().
It is true, further, that P;'(x)=UiL, M,;, . Since fi[M,], LIM.], fi[ D], - - -
is a defining sequence for H;, then Ni_, fi[M,; ] is an element g, of
G. Define h(z) to be the point z of R¥G such that Pgg.] = {z}.

It is not hard to show, using the hypothesis, that % is a homeo-
morphism from R} F onto R®/G such that h[Cl P;[H,]] = Cl P, H,].

THEOREM 3. Suppose F and G are monotone decompositions of
R? such that Cl P,[Hy] and Cl PJH;] are compact 0-dimensional sets.
Suppose F is definable by 3-cells-with-handles and each element of
G s semi-cellular. Then F and G are equivalent if and only if
there exists a defining sequence M,, M, --- for F and a sequence
Jiy for foy =+« Of homeomorphisms from R® onto R® such that (1) for
each 1,

Sir [(B — Int M) = fi | (B* — Int M;) and (2) fi[M.], LIM.], Sl M), - - -

1s a defining sequence for G.

Theorem 3 is a corollary of Theorems 1 and 2.
We shall indicate now some conditions under which a monotone
decomposition F' of R?® satisfies the hypothesis of Theorem 3 for F.

LEMMA 2. Suppose that F is a monotone decomposition of R®
such that Cl P,[H,] is a compact 0-dimensional set. Then F is de-
finable by 3-cells-with-handles provided it 1s true that if g is any
element of F, g, is any subcontinuum of g embeddable in R:, and h
1s any embedding of g, in R?, then hlg,] does not separate R*. In
particular, the condition stated holds provided g satisfies any one
of the following:

(1) g is tree-chainable (see [3] for definition).
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(2) g is snake-like (see [3] for definition).
(3) g¢g is a dendron.
(4) g is an arec.

Lemma 2 may be established by the methods of [2].

4. The dogbone space. In this section it is proved that there
is a decomposition F' which is equivalent to the dogbone decomposition
and such that F has only countably many nondegenerate elements,
The notation and terminology of [5] will be used in this section.

LeMMA 3. Suppose f is a homeomorphism of A into R}, B =
flAl, B; = flA], P, P,, Py, - -+, and P,, are disjoint horizontal planes
i R°, there exist positive integers j and k such that 1 <j<k<m
and B intersects only P;, P;.,, ---, and P,, and for each positive
integer v, 1 <1 < m, each component of BN P, 1s a tame dise,
BN (Us<: P,) is contained in some component of B — P;, BN (U,>: P.)
1s contained in some component of B — P;,, and BN P, is contained
wn some component of B — U,z P,. Then there exists a homeo-
morphims h of R® onto itself such that (1) h 1is point-wise fixed
outside of B, (2) h|B,] intersects P;, P;.,, ---, and P,, (3) each of
h[B,], h|B;], and h[B,] intersects at most k — j of the P}s, and (4)
SJor ©=1,23, or 4, R[B]N (U P, has the same properties as
BN (Uk Py).

Proof. Adjust Ui, f7B;] = U=, 4; by a homeomorphism ¢ of

A onto itself such that ¢ is fixed on the boundary and g carries
i-1 A; to the positions indicated in Figure 2. Let & be fgf—'. It
can be assumed that 2[B;] has small cross sectional diameter, Ui, h[B;]

IR0 B [P, >B|
gl A}
glA.]
N olA,] /’/
\/
N
“ﬁ/ \@’”
gl4,]
F1P.NB]

FIGURE 2.



214 S. ARMENTROUT, L. L; LININGER AND D. V. MEYER

and Upr,P; are in relative general position, and each component of
(Ui 2[B:D N (U, Py) is a disc.

We will now construct the decomposition F. Let P, P, --., and
P, be horizontal planes which intersect A as shown in Figure 3.
Apply Lemma 3 to A and P, P, ---, and P, to obtain a homeo-
morphism £,, and let B; = h[A4;]. See Figure 3. Apply Lemma 3 to
B; and P, ..., and P, to obtain a homeomorphism #Ai. Let &, =
hihhihih, and let B;; = hyA;;]. This process is continued until B;;...,
intersects at most one of the P/s. When B,,..., intersects only P,,
then dises are added to the collection of dises B;;..., N P, so that the
total collection cuts B;,...,, in the same manner as P, ---, and P, cut
up A, and so that each component of B;,.., in the complement of
the collection of disecs has diameter less than one half the diameter
of B. A modified version of Lemma 3 is now applied to B;;...,, and
the collection of disjoint discs.

@

FIGURE 3.
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F is the decomposition whose nondegenerate elements are the
nondegenerate components of AN(NB)N(UB; ;) N(UB;z)U-+-. It
is clear, using Theorem 2, that F is equivalent to the dogbone
decomposition.

THEOREM 4. F has only countably many nondegenerate elements.

Proof. There is a one to one correspondence between the com-
ponents of AN (UB;)N(N B;;)N--- and the set of all sequences into
{1, 2, 3, 4}, where the sequence ¢ corresponds to A N By, N By Nv -
It will next be shown that f is a nondegenerate element of F if and
only if the sequence corresponding to f converges to 1.

Suppose ¢ is a sequence into {1, 2, 3, 4}, ¢ converges to 1, and f
corresponds to ¢t. Then there exist disjoint disecs F, and E, and an

N
//

N

FIGURE 5.
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integer m such that if » = m, then B, ..., intersects E, and E,.
Hence f is a nondegenerate element.

Suppose ¢ is a sequence into {1, 2, 3, 4} which does not converge
to 1. Let {g;} be an increasing sequence such that for each 1, t(g;) = 1.
Then Biuw....q, intersects at most one of P, P, ---, and P,. For
some 7, By....q, intersects at most one of the discs used to define
the homeomorphism 7., ,:,. Hence lim,_. (diam B,...,,)) is zero.

ExAMPLE 6. There exists a point-like decomposition F' such that
if K is any point-like decomposition equivalent to F, then K has
uncountably many nondegenerate elements. Let A be a solid double
torus and let A4,, 4,, ---, A;, and A; be solid double tori embedded in
A as shown in Figure 4. Inside each of the A,’s eight double tori
are embedded like the A;’s are in A, etc. Suppose K is equivalent
to F' and let A},.., correspond to A;,.,. Let D/ and D, be disjoint
discs in A’ which are embedded in A’ in the same manner as D, and
D, are embedded in A. See Figure 4. It follows from the arguments
in [5] that two of the A!’s intersect both D/ and D,, and inside each
of those two of the A;;’s interset both D/ and D], ete. It follows
that K has uncountably many nondegenerate elements.

5. A decomposition not equivalent to the dogbone. In this
section G will denote the point-like decomposition of R® described by
Bing in [7], and the notation and terminology of that paper will be
used. It will be proved that any point-like decomposition equivalent
to G has at least one nondegenerate element which is not locally
connected. Let T, denote a round solid torus in R®. Let T, and T,
be disjoint solid tori embedded in the interior of 7T, as shown in
Figure 5. Inside each T, two tori are embedded, etc. G is the
decomposition of R® whose nondegenerate elements are the nondegener-
ate components of T, N (U To) N (U Ty;) N ---. G has countably many
nondegenerate elements, each of which is indecomposable.

Property P. Suppose T is a solid torus. A disc D has Property
P with respect to T if and only if D is a polyhedral disc in general
position with respect to 7' and Bd D is a simple closed curve on Bd T
which circles Bd T' meridianally.

Property A. A collection of sets {T, D, ---, D,} has Property A
if and only if (1) T is a solid torus, (2) for 1 <4+ < n,D,; is a disc
which has Property P with respect to T and no proper subdisc of
D, has Property P with respect to T, (3) if i~ then D; and D; are
disjoint, and (4) if C is a longitudinal curve on Bd T which intersects
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FIGURE 5.

each Bd D, in a single point ¢;, then the ordering of the ¢,’s on C
is ¢,¢: - 4.4

Suppose {T, D,, ---, D,} has Property A. A collection (@, ---, @,}
is a division of T determined by {T, D, ---,D,} if and only if for
each ¢, 1 < i< n, if D] denotes the component of D, — (R*— T)
which contains Bd D;, for 1 <1 < n,Q. denotes the component of
T — (U D}) whose closure intersects both D/ and D/.,,,, Q; = @/, and
Q. is the closure of the component of T — (D! U D)) which is disjoint
from Q.

Lemma 4. If {T,,D,, ---,D,} has Property A and {Q, ---, Q,}
is a dwvision of T, determined by {1, D,, ---, D,}, then there exist
an integer 1 and discs E,, E,, ---, and E, such that 1) 1 =0 or 1,
@) {1y, E\, ---, E,} has Property A, 3) +f {R,, +--, R,} ts the division
of T, determined by {T,, E, -+, E,}, then there exists integers
Ty Bgy * vy ANA Ty, SUCH that 1 Z 1, < 1, < o v0 < 1, < M and for some

t,1<t=n, R, CQ,R,CQ, - Ry,CQ,Ri, CQ,- R
CQH—U R; +1CQt+1) M) RianQt ,

and (4) if R;, CQ;, then E; 1is contained in one of D; and Dj.,
and E; ,, is contained in the other.

n

n
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Proof. Consider the universal covering space for T,. It is re-
presented by Figure 6 where it appears that T, has been rolled out
onto a cylinder. It follows from the proof of [7, Th. 5] that for
some k, either each center for T, intersects two adjacent copies of
D, in the universal covering space, or each center for T, intersects
two adjacent copies of D, in the universal covering space. Assume
each center for T,, intersects two adjacent copies of D, in the uni-
versal covering space and let 1 = 0. Let C be a center for T, such
that CN(UD,) is a finite set, and if C’ is a center for T, then
C' N (U D;) contains at least as many elements as CN (U D,). This
last condition implies that if »e C N D;, then there is a subdisk E of
D; which has Property P with respect to T, and £ N C = ». It can
be assumed without loss of generality that T, is polyhedral and
Bd T, and U D; are in relative general position.

D, Dy Dy D, D Duy D D,

FIGURE 6.

Let C’ denote one of the copies of C in the universal covering
space as shown in Figure 6. Assume that one of the copies of Dj,
say D}, is the rightmost one of the copies of the D,’s that intersect
C’. Let D} be the first copy of D; to the left of D} and let D] be
the first copy of D, to the right of D). Let t be j —1if 2k <j<mn
ort be n if j=1. Let k, be a point in C’ to the right of D} and
let k, be a point in C’ to the left of D/. Let A be an arc in C’
from k, to k, and B be the arc in C’ from k, to %k, which intersects
A only in the end points. Let 7} be the first point of A in D)_, and
let 7] be the last point of AN D} preceding r,. Let 7, be the first
point of A in Dj_, and let #; be the last point of A N D)_, preceding
r;. Continue this procedure to obtain points =, ¢}, -, 7h._,, and 7},.
Let 7,4, be the first point of B in D/., and let 7)., be the last
point of BN D} preceding 7},... Continue this to get 7}, #}, -+, 7\, _,
and 7,,. Let r; be the point in C corresponding to 7.

The »;’s have the ordering »,7,-:-7,7, on C, and determine disks
E,---,and E,, on T,. It can be assumed that each of the E,’s is
a subdisk of U D,, each has property P with respect to T, no proper
subdisk of E; has property P with respect to T, if 7, = #,., then
E; = E;,,, otherwise the E;s form a disjoint collection, and finally
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E;NnC=r;. If the collection {E, .--, E,,} is reindexed to give a
disjoint collection {E, .--, E,} then clearly m = 2n and there exist
integers %,, ---, and %,, which satisfy the conclusion of the lemma.

THEOREM 5. If F is a point-like decomposition equivalent to G,
then some nondegenerate element of F is not locally connected.

Proof. By Theorem 1 and Corollary 1, F is a toroidal decomposi-
tion of R® and there exists a sequence of homeomorphisms {k;}z, of
homeomorphisms such that 4; is from R® onto R? if j >k, then
h;| R* — U Ty,...;, = h;, and the nondegenerate elements of F are the
nondegenerate components of k[T, N A JU To] N ---.

Let D, and D, be disjoint discs, each of which has Property P
with respect to A[7,], and such that no proper subdisc of either D,
or D, has property P with respect to i[7T;]. Then A7'[D,] and A'[D,]
are discs, each of which has Property P with respect to T, and no
proper subdisc of either has Property P with respect to T,. Let R,
and R, be the division of T, determined by {7\, A'[D,], h'[D,]}.

By Lemma 4, there exist an integer ¢, in {0,1} and disks £, F,, - - -,
and E. such that, {T, E,, -+, E,,»} has Property A, and if
{Ry, +++, Rinw} is a division of T, determined by {T.,, E., «+, Einw},
then there exist integers j,, and j., Jj, <Jj, such that, R, and
R,;, are contained in R, E,; and E,;, are contained in one of A~'[D]
and A7'[D;], and E,;., and E\,:)manwn are contained in the other,
Then {T., hi'h[EL], « -, hi'h[Ei.]} has Property A, and by applying
Lemma 4 again, there exist an integer ¢, in {0,1} and discs E,, ---,
and E,,, such that {T,,, E., -+, B} has Property A, and if
{Ru, +++, Roynw} is a division determined by {7y, B, * -+, Ebwe}, then
there exist integers j; < J» < Jus < Juu such that

R,;, C R, szzz c szm, sz23 e Ru'm, and Rzm CRy, .

Continuing this process by induction it follows that
(ho[To] N kl[TOtl] n hz[TotltZ] Ne+e) — (DU Dy

has an infinite number of components, each of which intersects both
D, and D,, and hence is not locally connected.

In fact, countably many of the nondegenerate elements fail to
be locally connected. To see this let v; denote (¢ + 1) mod 2. Let
D, and D, be disjoint disecs which have Property P with respect
to [T.] and repeat the above argument. Similarly for each of
hz[Totl]y ha T0t1t203]9 h’4[T0t1t2t3'u4]’ ete,

COROLLARY 2. There does not exist a point-like decomposition
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F equivalent to G such that each mondegenerate element of F is
an arc.

COROLLARY 3. The decomposition G 1is mot equivalent to the
dogbone decomposition.

ExaMPLE 7. There does exist a decomposition F equivalent to
& such that some nondegenerate element of F' is an arc.

Construction of F. Let T, and T, be embedded in 7, as shown in
Figure 7. If this pattern is used at each stage, then Ty, N Ty N Toyn N oo+
is an arc.

FIGURE 7. FIGURE 8.

ExaMPLE 8. There exists a decomposition F equivalent to G such
that F' has uncountably many nondegenerate elements and each is an
indecomposable continuum.

Construction of F. Let T, and T, be embedded in T, as shown
in Figure 8. This pattern is used at each stage.

6. Tamely finnable 3-cells. In this section we show that if
a 3-cell C in R® is tamely finnable, then there is a 3-cell C' in R?
with a flat spot on its boundary such that the decomposition of R?
whose only nondegenerate element is C is equivalent to the decom-
position of R® whose only nondegenerate element is C’. A 3-cell C
in R® is tamely finnable if and only if there exists a tame disc D in
R? such that DN C is an arc &« and ac (Bd D) N (BdC). The state-
ment that Bd C has a flat spot means that Bd C contains a polyhedral
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disc. We begin by describing several sets and functions which will
be used in the proof.

Let R be the 38-cell {(x,y,2):|z|=1,|y|=<2,|2| <1}, R* be
RN{x,y,2):y=0}), and R~ be (RN{(x,y,2):y <0}). For each
subset X of R, let X* denote X N R* and X~ denote X N R~.

If P and @ are points in R? let [P, Q] denote the straight line
interval from P to Q Let D, be {(x,y,?):2*+ 4* < 1}, D, be

Ul 0,0), (x,y, D]: 2" + y* =1},

Ui, v,0), (x,y, D] : 2 + y* =1},

U {[(xy Y, 0)9 (x» 0’ _1)] pat y2 = 1} ’

and D*® be {(z,y, 0): 2% + y* < 1}.
Let K be the 3-cell bounded by D, U D,, L be Cl(R — K), M be
the 3-cell bounded by D, U D, U D,, and N be Cl (R — M); see Figure 9.
Let g, be a homeomorphism of L* onto N* such that g, is fixed
on BAL*NBAR, ¢g[{(x,0,0): — 1< <1} is {(x,y,0):2*+y*=1,y =0}
and g, moves points only along lines parallel to the y-axis. Let g,
be a homeomorphism of L~ onto N~ such that g, is fixed on

BdL-NBAR, gli(x,00)0:—1=<u2=<1}]

is {(x,y,0):2* + y*=1,y < 0} and g, moves points only along lines
parallel to the y-axis.

Let M’ be M N {(x,y,2):2=0} and let g, be a continuous func-
tion from M’ onto K such that gJfD;] = {(x,0,0): —1 <o <1}, g, is
the identity on D, g,|Di = g7, 9:| Dy = ¢g;!, and g¢; is a homeo-
morphism on (M’ — D)

THEOREM 6. Let C be a 3-cell in R® such that C is tamely fin-
nable. Then there exists a 3-cell C' im R® such that C' has a flat
spot and the decomposition of R® whose only nondegenerate element
1s C 1s equivalent to the decomposition of R whose only nondegenerate
element is C'.

Proof. Let C be the 3-cell and D be a tame disc such that
DN C is an arc a lying on Bd D N Bd C. There exists a homeomorphism
h of R® onto itself such that (1) hla] = {(z,0,0): -1 <z < 1}, (2)
R[D]={(x,0,2):|2|=1,0=2<1}, and (3) k|[Bd C—a] and KU(R*NR")
are disjoint.

Let F' be a homeomorphism from R—(KU(R*NR~-)) onto R—M
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< N
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FIGURE 9.

D,

such that if xe[R—(KU(R*NR)), F(x) =g,(x), and if ve[R—
(KUR*NE )], F(x)=g,(x). Extend F to R}—R such that if
re(R*—R), F(x)=x. Let S be D,U Fh[Bd C—«].

It is easily seen that S is a 2-sphere in R* which bounds a 3-cell
C’ and Bd C’ has a flat spot, the disk D,. It remains to show that the
decomposition of R* corresponding to C and C’ respectively are equi-
valent.

We will define a function @ from R® onto itself such that |@[C’]
=h[C] and @|Ext C’ is a homeomorphism. If Pe R*— M, @(P)=F-(P).
If Pe M’, ®(P)=g4(P). If Pe MN{(%, y, 2): 2<0} and P=(z, ¥, ), let @(P)
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be (z, 0, 2).

Now the function 2~'@ is a continuous function from R?® onto it-
self which maps C’ onto C and is a homeomorphism outside C’. It
follows that the corresponding decompositions are equivalent.

COROLLARY 4. If C s a 3-cell in R® and C is tamely finnable,
then there exists a disc D in R® such that the decomposition of R?
whose only nondegenerate element is C 1is equivalent to the decom-
position of R® whose only nongenerate element is D.

Proof. This follows from Theorem 3 of [10].

The statement that K is a crumpled cube means that K is home-
omorphic to the union of a 2-sphere and its interior in R®.

THEOREM 7. If K is a crumpled cube in R®, there exists a 3-cell
C in R® such that the decomposition of R® whose only nondegenerate
element is K 1s equivalent to the decomposition of R® whose only non-
degenerate element is C.

Proof. Apply Theorem 2 of [8].

7. Improving elements of decompositions. Suppose K is a 3-
cell-with-n-handles in R®* and C,C,, C,, C;, -+, and C, is a standard
decomposition of K. If ¢ is a positive integer less than or equal to 7,
let D;, and D,, be the two components of CNC;. Let p be an ele-
ment of Int C, and if 7 and j are integers, 1 <1< n, 1 <j < 2, let p;,;
be an element of Int D, ;. Let T be {(z,y,2)eR: 2>+ y* <1, |2z| < 1}.
If 7 is a positive integer less than or equal to #, there is a homeomor-
phism f; of C; onto T such that f[D;.]={(x,9,2): *+ 9y =1, z=
1}, filDiol ={(=, v, 2): @ + ¥ =1, 2= —1}, fu(p:)) = (0,0, 1) and fi(p;,.) =
(0,0, —1). Let a; be f7[{(0,0,2):]z]| < 1}].

Let f be a homeomorphism of C onto the unit ball {(z, v, 2): * +
y* + 2* < 1} such that f(p) = (0,0,0). If 7+ and j are integers, 1 <
1=n,1<j5=<2 let b;; be the straight line interval from jf(p;,;) to
7(0), and let B, be f7b;;]. Let S be (Ui U (Umt-8:,). We
will call S a special spine of K.

A partition of K is a finite collection &2 of subsets of K such
that 1) if Qe &7, Q is a 3-cell, (2) if Qe &” and Qc C, then Q = C,
3) if Qe .&” and there is a positive integer 7 less than or equal to »
such that Q c C;, then there exist real numbers a¢ and b such that
—1=Za=b=1 and filQ]l ={(z,y,2):a Z2Z0INT, 4) if Q. .7,
Qe P, Q,#4Q, and @, NQ, # @, then @, NQ, is a disc on BdQ, N
Bd Q,, and (5) U{Q:Qe.Z”} = K.

If K is a polyhedral cell with handles in R? S is a special spine
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of K, and ¢ > 0, there is clearly a homeomorphism % of R?® onto itself
and a partition & of K such that (1) if x e (R®* — V(K, €)), h(z) = z,
(2) R[K]cC V(S, €), and (3) if Qe .&”, (diamA[Q]) < €.

THEOREM 8. Suppose F is an upper semi-continuous decomposi-
tion of R® and F is definable by 3-cells-with-handles. Then there ex-
1sts an upper semi-continuous decomposition G of R® such that F is
equivalent to G and each nondegenerate element of G is one dimen-
tional.

Proof. Since F is definable by 3-cells-with-handles, there exists a
defining sequence M,, M,, M,, --- for F such that for each positive in-
teger k, each component of M, is a 3-cell-with-handles. Let C,,, C,.,
-+, Cy,, be the 3-cells-with-handles which are the components of M,
and if j is a positive integer less than or equal to n,, let S, ; be a
special spine of C,,;.

Let ¢, be a positive number such that ¢ <1 and V(C,,,¢),
V(C.,s, &), -+, and V(C,,,, &) are mutually disjoint sets. For each
positive integer j less than or equal to m,, there exist a partition P,,;
of C,,; and a homeomorphism #,,; of V(C,,;, ¢) onto itself such that (1)
if ve V(ij! 81) - V(Clyj! 81/2)1 h’l,j(x) =, (2) hl’j[CLi] - V(S1,j’ E"‘1)7 and
3) if Qe &,;, (diam h, ,;[Q]) < e,.. Let h, be a homeomorphism of R?
onto itself such that if «e¢ Up, V(C,,;, &), h(x) =, and if ¢ is a posi-
tive integer less than or equal to », and xze V(C,;, &), h(x)=h, ().

Let 0, be min {(diam 2,[Q]): @ € (U7, P,,;)} and let ¢, be a positive
number such that e, < min{0,/2,1/2} and V(2 [C.,.], &), V(R]C.,.], &),

-+, and V(h,[C;,,], &) are mutually disjoint sets each one of which is
contained in h,[V(M,, 1/2)]. For each positive integer j less than or
equal to m,, there exist a partition &, ; of C,,; and a homeomorphism
ho,; of V(h,]C,,;], ¢.) onto itself such that (1) if

xve V(h[Cy;l, &) — V(h[C,,;], &/2), hs, () = @,

(2) ho, [ 1[C, 11 CV(RS.,i], &), B) if Q, € .,;, there exists an element
Q. of Ui, &, such that h,;h[Q] C h[Q.], and (4) if

Qe iy (dlam hz,jhl[Q]) < &,
Let h, be a homeomorphism of R? onto itself such that if
ng
x¢é L:.! V(hl[czn']y 52), kz(x) =2,
and if 7 is a positive integer less than or equal to %, and

T e V(hl[Cz,i], 82), h/z(x) = hz,i(x)'
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Continue in this manner obtaining a sequence h,, A, hs, ++- of
homeomorphisms of E® onto itself. Let k& be lim,_.(h,h,_, -+ k), and
let G be {h|f]: feF}. It is easily seen that G is an upper semi-con-
tinuous decomposition of E*® such that F and G are equivalent. The
fact that each nondegenerate element g of G is one-dimensional can
be seen by noticing that g intersects the boundaries of the images of
the elements of the partitions in a 0-dimensional set.

THEOREM 9. Let G be a monotone upper semi-continuous decom-
position of R® such that G has only countably many mnondegenerate
elements, and each nondegenerate element is tame (relative to the
usual triangulation of R®). Then there exists a homeomorphism h of
R? onto itself such that if g€ G, hig] is polyhedral.

Proof. Let g, ¢,, ¢s5, - -+ denote the nondegenerate elements of G.
Let ¢, be a positive number such that ¢, < 1/2. Since g, is tame, it
follows from Theorem 9 of [4] that there exists a homeomorphism #4,
of R® onto itself such that if xeR® — V(g &,/4), h(x) =z, if v e R?
d(z, hy(x)) < &/4, and h,[g,] is polyhedral.

Let ¢, be a positive number such that

& < (6,/2), V(llgil, &) < W[ V(g,, 1/27)],

and V(h]g.], &) N k]g] = @. There exists a homeomorphism %, of R?
onto itself such that if xe R® — V(h[g.], €./4), hy(x) = x, if x € R® then
d(hy(z), ) < &,/4, and h,h,[g,] is polyhedral.

If » is a positive integer and 4, k,, ---, and h,_, are chosen, let
e, be a positive number such that

&, < 1/277,’ V(hn—l b kl[gn]y sn) c h‘n-—l M h‘l[ V(gny 1/2%)],

and

Vihos -+ 1lg.d &) 0 (U b -+ 1ilg) = 2.

There exists a homeomorphism %, of R?® onto itself such that if
ve R — V(b +++ hifg.], €./4),

then h,(x) =2, if e R® then d(k,(2),®) <e,/4, and h, --- h]g,] is
polyhedral.

Let 2 be lim, . h,h,_, -+« h,. h is the uniform limit of continuous
functions, thus % is continuous. It follows from Theorem C, of [9]
that & is onto R®.

To show that & is one-to-one, let x and y be distinct points of R2,
If 2 and y belong to the same element of G, then clearly i(x) = k(y).
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Suppose ze g, and yeg, and g,%#g, where g, and g, are elements of G.
Since G is upper semi-continuous, there exists a positive integer N
such that if # is an integer greater than N and z e V(g., 1/2"), then
ye V(g,, 1/2"), and if n is an integer greater than N and y € V(g,, 1/2 ),
then z¢ V(g,, 1/2").
Now for each positive integer =, let U, be

(haes ==+ h) 7 [V(ney - - - B)[9.], &a/4]-

Then U, C V(g,,1/2"). If for each positive integer = neither x nor y
belongs to U,, then

h(x) = k’N e h‘l(x)y h(y) = hN M hi(?/)
and
h(y) #= h(x).

Suppose there exists a positive integer » such that n > N and
xeU,. Then

v e V(ga, 1/2"), y € V(g,, 1/27)

and
By v+ hy(%) € V(Ryy =+ -+ hi[g,], €,/4).
Since
Vhoy + =+ hilg,], &) Chyy = -+ B[ V(ga, 1/27)],
Fruy oo hi(Y) € By <=+ B[V (g, 1/27)]
and
ARy + =+ hi(Y), Ty ==+ By(R)) = €.

Then

d(h(w)! h/n-—-l R hl(m)) é sn/zy d(h(y)y hn—-l e hl(y)) g 87L+1/2 < en/z
and
d(h(z), h(y)) = 0.

Thus i(x) #= h(y). Hence h is one-to-one.

To show that A~' is continuous, suppose there exists a sequence
x, — x such that h~'(x) 4 h~'(x). Picking a subsequence if necessary,
it can be assumed that there exists a positive number ¢ such that
for each 1, h~'(x;) ¢ V(b '(x), €).

Since # is bounded, {A~'(x;): %€ J} is bounded and Cl{A '(x;): ¢t € J}
and {~'(x)} are disjoint compact sets. Hence for some

5> 0, d([Cl {h~Y(z): i J}], hh—'(x)) > 6.

Then for each positive integer 7, d(x;, ) > 6. This is a contradiction.
Thus %~ is continuous.
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COROLLARY 5. If F is an upper semi-continuous decomposition
of R® imto tame 3-cells and points, then there exists an upper semi-
continuous G into polyhedral 3-cells and points such that F is equi-
valent to G.
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