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ON FINITE GROUPS CONTAINING A CCT-SUBGROUP
WITH A CYCLIC SYLOW SUBGROUP

MArceL HERZoOG

Let G be a finite group containing a CCT-subgroup M. M is
called a CCT-subgroup of G if M contains the centralizer in G
of each of its nonunit elements and it is also a trivial-intersec-
tion subset of G. In this paper the p-blocks of characters of G
of full defect are described in detail, under the additional as-
sumption that the Sylow p-subgroups of M are cyclic and non-
trivial. This information yields, under the same conditions, a
detailed characterization of the nonexceptional (with respect to
M) irreducible characters of G. As an application, it is shown
that if G is also perfect, its order is less than gm(m?+3m+2)/2,
where m is the order of M and gm is the order of No(M), and
No(M)+ M,G, then G is isomorphic either to PSL(2, p),
m=p >3,o0r to PSL(2, m — 1), m —1=2,b > 1, These results
generalize those of B, Brauer, dealing with the case m = p,

We proceed with a precise statement of the results. Quite
recently, E. C. Dade [4] obtained a very detailed information about
blocks with cyclic defect groups. Using his results, we will prove
the following

THEOREM 1. Let G be a finite group of order g and suppose
that G contains a subgroup M of order m, satisfying the following
conditions:

(i) for all he M?, Co(h)EM

(ii) a Sylow p-subgroup P of M is cyclic of order p*,a =1

(iii) ¢q = [Ng(M): M]> 1,9 > gm.

Then the nonexceptional (with respect to M) irreducible characters
of G, nonvanishing on M?, are of one of the following two types:

(I) PGi=1,---,9) —P(1)=rm + 1, P(h) =1 for all he M?

) Qt=1,--+,¢—9 — Q) =sm—1,Qh) = -1 for all
he Mt
where 1 < y < q and r;, s; are nonnegative integers.

The assumptions of Theorem 1 imply that M is a nilpotent Hall
subgroup of G, which is a trivial-intersection-subset of G. It follows,
hence, that the Sylow p-subgroups of G are cyclic, of order p°. The
situation described in Theorem 1 is similar to that which was sum-
marized by R. Brauer in [1, pp. 59-60], for the case that M satisfies
condition (i) and m = p.

Theorem 1 follows quite easily from the following proposition,
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which is of independent interest. Since we are to distinguish between
the (irreducible) exceptional characters of G with respect to M (see
W. Feit [5]) and those with respect to the cyclic p-group P (in the
sense of E. C. Dade [4]), the latter ones will be called p-exceptional.
An irreducible character is p-nonexceptional if it is not p-exceptional.

PropPoOsITION. Let G and M satisfy the assumptions of Theorem
1. Let ¢ be the number of conjugate classes of G meeting M* non-
trivially. Then the p-blocks of G are listed and described below:

(I) d blocks of defect 0, each containing one ordinary irreducible
character and one modular irreducible character.

(II) One block of defect a, containing ¢ modular irreducible
characters, ¢ p-nonexceptional characters and (p* — 1)/q p-exceptional
characters.

(III) (tqg + 1 — p*)/p°q blocks of defect a, each containing one
modular irreducible character, one p-nonexceptional character and p* — 1
p-exceptional characters.

As an application of Theorem 1, we will prove the following
generalization of the main result of R. Brauer in [1]. Theorem 1 is
also needed in a forthcoming paper.

THEOREM 2. Let G be a finite group of order g and assume that
G = G'. Suppose that G contains a subgroup M of order m, satis-
fying conditions (1)—(iii) of Theorem 1.

Then g = gm(nm + 1), where n is a positive integer, and one of
the following statements holds:

(I) »n=@muw + v+ u + w)/(uw + 1)
where w and w are positive integers.

(II) n=1,m=p,q=(p — 1)/2,G = PSL(2, p), p > 3.

) n=@m—3)/2,q=2,m=2"4+1>3,G = PSL2,m — 1),

As an immediate corollary we get:

COROLLARY. Let G and M satisfy the assumptions of Theorem 2.
If n < (m + 3)/2, then G is a simple group either of type (II) or of
type (I1I).

The arguments applied in the proof of Lemma 2.2 are quite
similar to those used by E. Brauer in his proof of Theorem 7 in [1].
However, for the sake of completeness, the proof is given in full
detail.

Most of our notation is standard. If G is a group, then G* and
1, denote, respectively, the nonunit elements of G and its principal



A CCT-SUBGROUP WITH A CYCLIC SYLOW SUBGROUP 525

irreducible character. If p and ¢ are rational integers, then (p, q)
denotes the greatest common divisor of p and ¢, and p|¢ means: p
divides q. If wu,e, h are elements of the group G, then #n(u) is the
order of the centralizer of # in G and c¢,,, is the coefficient of the
conjugate class of & in the product of the conjugate classes of % and e.

1. Proof of the Proposition and of Theorem 1. In this proof
by blocks we mean p-blocks. Since ¢ > 1, M is a nilpotent group and
P< Z(M). It follows, in view of assumptions (i) and (ii), that G has
blocks of defect 0 and @ only. The blocks of defect 0 are well known
to be of type (I)(see [3], Th. 86.3). Therefore it remains to show
that the blocks of defect a are either of type (II) or of type (III), and
their number is correct.

If m = p, then the Proposition and Theorem 1 follow by Brauer
[1,pp.59-60]. In that case G has only one block of defect @, as re-
quired. Therefore, from now on, we will assume that m > p. Since
Ny (M) is a Frobenius group and P is cyclic, it follows that ¢ < p — 1
and ¢ < Vm — 1.

As P is cyclie, the blocks B, ---, B, of defect a were described
by Dade [4]. Each B; contains e; modular irreducible characters, e;
p-nonexceptional characters and (p* — 1)/e; p-exceptional characters,
where ¢; is an integer dividing q.

Let d’ be the number of the irreducible characters of G vanishing
on M* We will show that d’ = d. Let X be an irreducible character
of G vanishing on M* Then m | X(1), and since m is divisible by the
full p-part of |G|, X has defect 0. Thus d’ < d. On the other hand,
G and M satisfy the assumptions of Hypothesis A in [6]. By [6],
Lemma 3.1.d, ¢ =0. Hence, according to the formulas following
Hypothesis A, the degrees of the irreducible characters of G, non-
vanishing on M*# are of one of the following forms:

2(fm + q¢e), rm + s

where f and r are nonnegative integers, ¢ = +1, s is the value taken
on M*# by the corresponding nonexceptional character, hence a nonzero
integer, and z is a degree of an irreducible character of M. Since P
is a normal abelian subgroup of M, it follows by Ito (see [3], Corollary
53.18) that z divides [M: P], hence (z,p) = 1. As also (¢,p) =1, it
follows that no character of degree z(fm + q¢) belongs to a block of
defect 0. Since by the definition of 7' and by [6], Lemma 3.1.b
s < T < q, it follows that (s, p) = 1 and no character of degree rm + s
belongs to a block of defect 0. Consequently, d < d’ and the equality
follows.

It is well known, that the number of the modular irreducible
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characters of G is equal to the number of (conjugate) classes in G
minus the number of p-singular classes in G (see [3], Th. 83.5). In
view of the nilpotency of M, the number of the p-singular classes
in M is (p* — 1)(tq + 1)/p°, and the corresponding number for G is
(p? — 1)(tq + 1)/qp°. Let b be the number of the nonexceptional char-
acters of G, nonvanishing on M¥# Then, ¢ being the number of the
exceptional characters of G, the number of the conjugate classes in GG
ist+ b+ d. It follows from the above mentioned equality, remarks
and the results of Dade that:

Se+d=t+b+d— (p*— 1)(tg + 1)/gp*

where the summation is over ¢ = 1, ---, #. The index of summation
¢ will run over these values throughout this proof. It follows that:

(1) e =t+b— (p*— 1)(tg + 1)/qp” .

Since the number of the (ordinary) irreducible characters of G is
equal to the number of the conjugate classes in G, we get, using once
more Dade’s results, that after subtraction d from both sides:

(2) (P*—1)> (Le)) + e, =t +b.
Equations (1) and (2) yield:

(3) t = p° 3. (1/e)) — (1/q)

(4) b=23e;— > (1/e) + (1/q) .

It is also well known, that the number of blocks of defect a is
equal to the number of p-regular conjugate classes of G of defect a
(see [3], Th. 86.10). Thus:

(5) w=t—(p"—1)tg + D/gp* +1=(t¢g +1—-p*)/p°q¢ + 1.
Finally let ¢ = e, f;. It follows from (3) and (5) that:
w=(1/9) X fi — 1/ +1
(6) Sfi=ug+1—gq.
Suppose that f; = q. Then f; < q/2 and it follows from (6) that at

most one f;, say f,, is unequal to q. Hence:
L+ w—1g=(u—1)qg+1
and consequently:
(7) fi=le=qfi=--=fi=¢6="-=¢=1.
The Proposition follows from (5), (7) and the results of Dade.
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Equations (4) and (7) immediately yield b = q. Thus there are ¢
nonexceptional characters nonvanishing on M* and therefore, in view
of [6], Lemma 3.1.b, they are either of type (I) or of type (II). As
the principal character is of type (I), ¥ =1. This completes the proof
of Theorem 1.

2. Proof of Theorem 2. By [6], Theorem 2.3, N,(M) = QM,
where QN M =1 and g = gm(nm + 1). Since q = 1, M is a nilpotent
group with a eyclic Sylow subgroup, hence @ is abelian. As G = G,
n # 0.

If m = p, then the theorem holds by Brauer ([1], Th. 10). There-
fore, from now on, we will assume that » does not satisfy (I), m > p
and will prove that then G satisfies (III). Since P is cyclic, it follows
that 1< g<Vvm—1land ¢g<p— 1.

The groups G and M now satisfy the assumptions of Hypothesis
A in [6]. Therefore it follows from Theorem 3.1 there that ¢ = 0,
and by Thorem 1 of this paper, ¢; = +1. Consequently, taking
into account the formulas preceding Theorem 3.1 in [6], the degrees
of the nonprincipal irreducible characters of G, nonvanishing on M?¥
are:

the exceptional characters: z(bm + q¢) = (z/v)[(bv + e)ym — ¢]
the nonexceptional characters: um + 1

(8)

where % is a positive integer, b is a nonnegative integer, ¢ = +1,
v =(m — 1)/q and z is a degree of an irreducible character of M. By
Ito ([3], Corollary 53.18) 2z divides [M: P], hence z < wv.

We will proceed with a series of lemmas.

LEMMA 2.1. G is a simple group and m s an odd integer.

Proof. Let K be a normal complement of N M) in G. Then K
is nilpotent and G is solvable, a contradiction. Therefore N, (M) has
no normal complement in G.

Let now K be a nontrivial, proper normal subgroup of G. Then
by [6], Theorem 2.3, the order of K is either of the form wm + 1,
where wm + 1 divides nm + 1 and n = ywm + y + w for some non-
negative integer y, or it is of the form ¢m(nm + 1), where ¢, divides
q. Suppose that the first case occurs. As shown above, w # n, and
hence y is a positive integer. Let 2 = (w + 1)y; then

n = (ewm + ¢ + w* + w)/(w + 1),

which has been assumed not to be the case. On the other hand, the
order of K could not be gm(nm + 1), since that would force the exis-
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tence of a nonprincipal irreducible character of G of degree less than
¢, which is not the case. Thus G is a simple group.

If m is even, then it follows from Suzuki ([8]), Theorem 1) and
the fact that ¢ = 1, that M is a Sylow 2-group of G. Hence p = 2
and consequently ¢ = 1, a contradiction. It follows that m is odd, and
the proof of the lemma is complete.

LEMMA 2.2. The degrees of the nonprincipal trreducible charac-
ters of G, nonvanishing on M?*, are:

the exceptional characters: 2mm +1)/v

the monexceptional characters: m — 1 or nm + 1
where z and v are as described above.

Moreover, e = —1 and v|n + 1.

Proof. In view of (8), it suffices to show that if
um + 1| (m — 1)(nm + 1)

then % = n, if um —1|(m — 1)(nm + 1) and um —1 == (m — 1)(nm + 1)
then 4 = 1, and no irreducible character of G of degree z(m — 1)/v = 2q
exists. Indeed, by (8) each character in question has order of the
form k(um -+ o), where k is either 1 or z/v and 6 = +1. If 6 =1 then
% = n, as required. If 6 = —1, then either um — 1 = (m — L)(nm + 1)
or w=1. If w =1, then £ = 1 and the corresponding character is not
an exceptional one. If um — 1 = (m — 1)(mm + 1), then:

E(um — 1) = (m — 1)(nm + 1)}/v* > gm(nm + 1)

a contradiction. Thus if &k = z/v then 6 =1 and u = =; it follows also
that e = —1 and v divides nm + 1 — n(m — 1) =n + 1.

Let um + 1 = de, where d|m — 1 and ¢|nm + 1. Suppose that
n <wu. Thend|u +1ande|u—n. Hence (u + 1)(u — n) = w(um + 1),
where w is a positive integer and:

w+1lwm—1,u <wm—w-—1
wut=uwwm+n—-—1)+w+nu>wm+n-—1

a contradiction. If on the other hand, n >« then d|u +1 and e|n — u.
It follows that (w + 1)}(n — u) = w(uwm + 1), where w is a positive
integer, and % is of form (I), a contradiction. Thus u = n.

Let wm — 1 = de, where d|m — 1 and e|nm + 1. Suppose that
#>1. Then d|uw — 1 and e|n + u. Hence:

(9) (w — 1)(n + u) = wlum — 1)

where w is a positive integer, and considering this equation as a
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quadratic equation for u, we get that the second root ' = (w — n)/u
is an integer. Since for u = 1 the left hand side of (9) vanishes,
while the right hand side is positive, it follows that #’ < 0. Let
w' = —u", and suppose first that " = 0. Then w = n, and (9) yields:

u=nm-—1)+1,um—1=(nm+ 1)(m — 1).

Therefore if um — 1 %= (nm + 1)(m — 1) then w” is a positive integer
and —u' satisfies equation (9). Consequently, n satisfies (I), which
is not the case. Thus u = 1.

Finally assume that & = zq is a degree of an irreducible character
of G. As z is a degree of an irreducible character of M* it is well
known that 2* < [M: Z(M)] < m/2p. It follows that

=20 < Vm2pVm — 1< (m— 1)/2,

But then, since G is simple, the character of degree x satisfies the
assumptions of Theorem 4.2 [7]. This is a contradiction, since the
group G does not satisfy any of the conclusions of that theorem.
Thus no irreducible character of degree zq exists, and the proof of
the lemma is complete.

LEMMA 2.3.

g = (m — Lym[(g — 1)m — q]

and no nonexceptional character of G is of degree nm + 1.

Proof. Let he M* and let y have the same meaning as in Theorem
1. Then it follows from Lemma 2.2, Theorem 1 and from the sum-
mation formulas of §3in [6] that:

0 =3, X(1)X(h)
=1+ (fm—g)N=¢) + (y — Dinm + 1) — (g — y)(m — 1)

where the summation ranges over all the irreducible characters of G
and f = (n + D)/v, fm — q = (mn + 1)/v. After cancellation, we get:

g=f+yn+l)—-—n=mn+Dv+ymn+1) —-n.
Suppose that y > 1; then, as v < n + 1:
g>m+Dv+n+1>v,m—1=qv<¢®

in contradiction to our assumptions. Therefore y =1 and n = (¢—1)v—1.
Consequently, there are no nonexceptional characters of degree nm + 1,
and:

9 = qml(g — Dom — (m — 1)] = (m — I)m[(g — Dm — q] .
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LEMMA 2.4,
q=2.

If w is an tnvolution of Ny (M), then n(uw) = m — 1,

Proof. By Lemma 2.3,
g=(m— 1ymr

where r = (¢ — 1)m — q. It is easy to see that the three factors are
prime to each other.

Let u, h and e be elements of G* whose orders divide m — 1, m
and 7, respectively. Let X, R and D be: an exceptional character of
G, a nonprincipal nonexceptional character of G nonvanishing on M?*
and an irreducible character of G vanishing on M?*, respectively. Let
s be a prime divisor of the order of . Then R, being of degree
m — 1, belongs to an s-block of defect 0, and consequently R(u) = 0
(see [3], Th. 86.3). Similarly, X(¢) = 0. We, therefore, get the follow-
ing character table:

1 U h e
1, 1 1 1 1
X z(nm + 1)/v 0
R m— 1 0 -1
D am 0

By the well known formula for ¢,., it follows that:
Cuer = g/n(u)n(e) ,  n(w)nle) | (m — 1)r.

Since ¢ is an arbitrary element of order dividing 7, it follows that
n(u) |m — 1.

As m is odd, m — 1 is even. Let now u be an involution of G,
and let C be the conjugate class of G containing w, of order e.
Then:

czg/(m—1)>g/m—1

and by [2], Theorem (4K), and the trivial intersection property of M,
q is even,

Let, finally % be an involution belonging to N (M). Then it
follows from [2], Theorem (4J), that n(u) = m — 1. Since n(u)|m — 1,
n(u) = m — 1. The same theorem also yields:

g=(m— 1ym(m — q) .

Thus, in view of Lemma 2.3,q¢ = 2 and the proof of the lemma is
complete.
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Theorem 2 now follows from Lemma 2.4 and a result of Suzuki
[9]. Suzuki has shown, that if Lemma 2.4 holds, then G is of type
1),
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