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THE STRUCTURE SPACE OF A COMMUTATIVE
LOCALLY M-CONVEX ALGEBRA

R. M. Brooks

If A is a commutative Banach algebra with identity, then
the sets .2 (all maximal ideals), .# (all closed maximal
ideals), . #, (kernels of nonzero C-valued homomorphisms of
A), and #; (kernels of nonzero continuous C-valued hom-
morphisms of A) coincide., If A is a commutative complete
locally m-convex algebra, one has only A4, = #,c #, c #,
and the containments can be proper. Our goal is to investi-
gate .7 and its relationship to ./#;; specifically (1) to give
a description of ./ (A) in terms of A and ./ (A) which is
valid for at least the class of F-algebras, (2) to determine
when _#Z(A) is one of the standard compactifications (Wall-

man, Stone-Cech) of .7Z;(A).

For many locally m-convex algebras, especially algebras of func-
tions, one can determine _#,, However, descriptions of _# and its
relationship to _#; seem to be limited to special cases; for example,
Hewitt’s description of _Z(C(X)) [5] and Kakutani’s description of
- for the algebra of analytic functions in the unit disc [6]. We
show that a commutative complete locally m-convex algebra A gen-
erates a lattice & on _#, and that if we impose a rather natural
restriction on A, then . is the space of ultrafilters of <& We
give necessary and sufficient conditions on A in order that (1) _# is
the Wallman compactification of (_, hull-kernel), (2) _# is the
Wallman compactification of (_#, Gelfand). In the second case, we
show that _# = B_#; and obtain a correspondence between _; and
the A-realcompactification of _#;.

We then specialize to F-algebras and show (1) F-algebras always
satisfy the condition imposed in the general situation, (2) _# is the
Wallman compactification of (_#,, hull-kernel), and 8) . # = B_#,,
whenever the algebra is regular.

1. The general case. A locally m-convex algebra (hereafter
LMC algebra) is a locally convex Hausdorff topological algebra A whose
topology is given by a family of pseudonorms (submultiplicative, con-
vex, symmetric functionals). For the basic properties of these algebras
the reader is referred to [1] or [9]. In this paper we shall restrict
our attention to complete algebras with identity element 1. If X\ is
a complex number we shall write “\” for “n-17,

The structure space of A is the set _# of all maximal ideals of
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A, endowed with the hull-kernel (2% —) topology. This space is always
compact and satisfies the T, separation axiom. The spectrum of A
is the set _#, of all closed maximal ideals of A.

DEFINITION 1.1, If SS A FS #,G < #, xc A, then

(i) HS)={Me_»z:8S< M}.

(ii) WS)={Me _#:S < M}.

(iii) kF(=k(F))=N{Me #:MecF}={xcA:xeM for each
Me F}.

(iv) K(G)=N{Me . 7Z:McG} ={xecA:xe M for each Me F}.

(v) H(z) = H({=}), h(x) = h({x}).

The hull-kernel topology is defined in terms of the closure operator:

(1.1) Cl, (F)= HK(F) ,
or
(1.2) Cl, (F) = N{Hx): FF < H(z)}, for each FF & _#.

A simple computation yields

THEOREM 1.1. The closure operator on _+#, which defines the
relative hull-kernel topology on _, s given by

(1.3) Cl,, (F) = hk(F)
or
(1.4) Cl,, (F) = N {h(x): F < h(x)}, for each FF& 7.

The spectrum can also be endowed with a second natural topology.
If Me_#, then M is the kernel of a unique continuous homomorphism
of A onto C [9, p. 11]. We identify M and the corresponding homo-
morphism, denoting the value of the homomorphism at an element x
of A by M(x), and endow _, with the relative weak —(w*—) topology
from A*, the conjugate space of A. This topology is the weakest
such that all of the functions #: _#;, — C defined by Z(M) = M(x) for
each x € A are continuous. We state without proof the basic proper-
ties of the mapping # — % of A into C(_#;) (cf [9, Props. 7.3, 8.1,
and 9.2] and [4, Ex. TM)).

THEOREM 1.2. The mapping x — % is @ homomorphism of A onto
a subalgebra A of C(_#,) which contains the constant functions and
separates the points of _#, The kernel of this homomorphism is the
radical F(A) of A, and F(A)=N{M: Me _#}=N{M:-Me _#}=
{rxe A: 1 + ax) is regular (invertible) for each x e A} is a closed ideal
wn A. Hence, _#, is dense in _#.
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DerFINITION 1.2. A commutative LMC algebra A with identity is
called regular provided that for each w*-closed subset F on _#; and
each point Me _#, — F there exists an element z of A such that
Z(M) =1 and Z = 0 on F (equivalently, xc kF — M).

TaeorEM 1.3. (Proposition II, p. 223 of Naimark [7]). The hull-
kernel topology on _7, is weaker than the w*-topology. They agree
iof, and only if, A ts regular.

DEFINITION 1.3. A commutative LMC algebra A with identity is
called w*-normal (respectively, hk-normal) provided that for each pair
F,, F, of disjoint, w*-closed (respectively, hk-closed) subsets of _#,
there exists x€ 4 such Z =0 on F, and £ = 1 on F,.

We note that if A4 is w*-normal, then A is regular, the two
topologies on _#, agree and _#, is a normal space. If A is hk-
normal, we cannot conclude that _#; with the Zk-topology is normal;
since, in general, the elements of A are not hk-continuous.

If {w, - -, 2z,} & A, we write h(z,, ---, x,) instead of h({x,, ---, z.}),
and denote the ideal in A generated by this family by (z,, ---, 2,).
We note that h(z,, ---,2,) = h((x,, -+-,x,)) and that Az, ---,2,) =
n{h(%)i’i =1,.--,m and H(x, ---,2,) = (N {H(z):7 =1, e, M

THEOREM 1.4. The first three statements about the finite family
{2, ++-,2,} S A are equivalent. FEach of these implies the fourth.

(i) My, -+, 2,) = ¢ implies (x,, -+, 2,) = A.

(RH)() My, ---, x,) = ¢ vmplies H(x, --+,x,) = 6.

(iii) H(xy, +--,2,) = Cl, h(®,, - -+, 3,).

(iv) Cl, (=, ---,2,) = N{Cl, h(z):2 =1, ---, m}.

Proof. (i) if, and only if, (ii): H(zx, ---,x,) = ¢ if, and only if,
(%, +-+,2,) is not contained in any maximal ideal if, and only if,
(xl, . .3 a;'n) - A'
(i) implies (iii):
Cl/ h’(xly 0y xn) = Hk(h(xly try xn)) = HK(h(xly M) xn))
S HK(H(.’X?“ tt xn)) = H(xly tt xn) .

Suppose M ¢ Hk(h(x,, ++-, %,)). Then kh(x,, --+,2,) + M = A and there
exist z € kh(x,, +++,®,), we M such that 2z + w = 1. Then iz, w) = ¢
and h(x, +--,x,, w) = ¢ (since h(x, ---,2,) S h(z)). By (i) we have
(@, +++,2,,w) = A and (we M) at least one x;¢ M. Thus,

MQH((U“ "°7xn) .

(iii) implies (ii): obvious.
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(iii) implies (iv): clear, since H(x,, ---, %,) = i, H(®;) .

We consider throughout the remainder of this section only algebras
which satisfy condition (hH) ((ii) of Theorem 1.4). We note the fol-
lowing formulation of (hH). If {a, ---,a,} & A we consider the equa-
tion >, a;x; = 1 and ask for condition on A which insure solvability
in A. (hH) is the assumption that the vacuousness of h(a, ---,a,)
is sufficient. Arens [2] gave sufficient conditions in terms of the
solvability of certain related equations in Banach algebras. We shall
show below that in F-algebras the vacuousness of h(a,, ---,a,) is
sufficient for the solvability of the equation in A.

THEOREM 1.5. Suppose F, and F, are disjoint subsets of _+#,.
The following statements are equivalent.

(i) Cl,F,nCl,F, = 4.

(ii) There exists x € A such that £ =0 on F,Z =1 on F,.

(iii) kF, + kEF, = A.

Proof. (i) if, and only if, (ii): Cl, F; = HkF;,,1=1,2, and
HEF, N HEF, = HEF, + kF,). The equivalence follows (kF is always
a closed ideal in A for F & _#).

(ii) if, and only if, (iii): If (iii) kF, + kF, = A we choose x € kF,,
yekF, such that 2 + y=1. Then Z=0 on F, and Z =1 on F,
The converse is immediate.

COROLLARY 1.5. Disjoint w*-closed (respectively, hk-closed) sub-
sets of _#, have disjoint closures in _# if, and only if, A is w*-
normal (respectively, hk-normal).

We now give our description of _#, assuming A satisfies (hH).
The result is stated in terms of a lattice compactification of _/#.
The basic facts about these compactifications may be found in [12]
and [13], and in the form used here in [3].

DEFINITION 1.4. A lattice <&~ (with respect to U and N) of sub-
sets of _#, is called an a-lattice provided that for each Be & and
Me 7, — B there exists De & such that Me D, BN D = ¢. & is
called a B-lattice provided that for each pair M,, M, of distinet points
of _/, there exists Be ¢ such that M, e B, M,e _#,— B. & is
said to be normal provided that for each pair B, D of disjoint mem-
bers of &~ there exists a pair B,, D, of elements of & such that
BB, D& D,BND =¢=B ND, and B, U D, belongs to every
ultrafilter in <° (in the presence of («), this is equivalent to the
statement that B, U D, = _#,).

w.F (=w(_#, &)) is the set of all ultrafilters in &, For each
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Ee & we define C(E) = {% e w: EcZ} and define a topology on
w< by taking the family {C(E): Ee <} as a base for the closed
sets (£ — C(E) is a lattice homomorphism of &~ into the power set
of ws”). The space w<” is always compact and satisfies the T,
separation axiom. The assumption that & is an a-lattice is equivalent
to assuming that for each Me _#, the family % = {Ee.&: Mec E}
is an ultrafilter in & If & is an a-lattice then the function
@ Ay— w.F defined by o(M) = &5 maps _#, onto a dense subspace
of ws” If &2 is an a-lattice, then (B) is equivalent to the state-
ment that @ is one-to-one. Normality of & is equivalent to the
statement that w ¢ is Hausdorff. If we fix a topology .7~ on _/#,
then ¢ is continuous (assuming («)) if, and only if, each element of
¥ is F-closed, and ¢ is a homeomorphism if, and only if, such ele-
ment of & is F-closed, <~ is a B-lattice, and <& forms a base for
the 7 -closed subsets of _#,. (For proofs, see Theorems 2.5 and 2.7
of [3]). Finally, if EFe <, then (pE)~ (the closure in w.<” will be
denoted by “) = C(E), and for any subset F of _#, (pF) =
N {C(A): F < A} (Theorem 2.6 of [3]).

LEMMA 1.6, The family <& = {h(xy, -+, 2.): {2, -+, 2.} & A} s
an a—, B-lattice of hk-closed subsets of _, which forms a base for
the hk-closed sets. Thus, the mapping (M — Zy) is a homeomorphism
of (_#,, hk) onto a dense subspace of w

Proof. The family < is closed under finite intersections, since
h(x,, -+, 2,) = = (2, - -+, 2,) for each finite family {x, ---, 2,} in
A. Moreover, h(xy, -+, 2,) Uh(y, -+, Yu) = n {h(:y,): 1=1,-+,m
j=1,.-.,m}, the latter being an element of <2 Thus, & is a
lattice on _#; consisting of hk-closed sets which forms a base for the
hk-closed sets of _#;.

If Me #, — h(z,, +-+,x,), then (®,+--,2,) + M = A and there
exists zeM such that Z2=1 on h(x, ---,2,). But this implies
Me h(z) and h(2) N M@, -+, 2,) = 4. Thus, & is an a-lattice. That
%~ is an B-lattice is immediate,

We note that in general < is not a normal lattice. For example,
if A is the algebra of all functions on the open unit disc D to the
complex plane which are analytic on D, then _#, and D are in a
natural one-to-one correspondence. In this case, &© is the lattice of
all discrete subsets of D plus the set D itself. It is clear that <~
is not normal.

THEOREM 1.6. _#Z 1is w<# (i.e., there exists a homeomorphism
o of # onto w¥ such that o(M) = (M) for each Me _#,).
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Proof. For each Me _ we let (M) be the subfamily of ¢~
consisting of all Ee & such that MeCl, E. It is clear that o(M)
is a filter in &% We use the criterion “A filter & in & is an
ultrafilter if, and only if, for each Eec & — & there exists Fe &
such that EN F = ¢” ([12, p. 105]) to establish that o(M) is an
ultrafilter. If Fe & — o(M), then E = h(x,, ---, x,) for some family
{#, +++,2,} iIn A and M¢Cl, Wz, --+,2,) = H(x, +--,x,). We have
My=N{HY, -+, ¥.): Me H(y,, -+, ¥n)} and this family is a descend-
ing family of compact sets of _#Z whose intersection is contained in the
open set .~ — H(x, ---,x,). Thus, there exists a family {y,, -+, Yu}
in A such that MeH(y,, +++,Yn) & # — H(%, ---,%,). But then
h(yY., =+, Y,) €e0(M) and is disjoint from h(xz, ---, x,).

If 77 is an ultrafilter in &%, we let Z#* = {Cl_, E: E€ Z}. Then,
Z* is a descending family of compact subsets of _# and has a
nonempty intersection. It is easily verified that there is a unique
element M of in NZ* and that o(M) = Z. It follows that the
mapping o is one-to-one, onto, and that for each Me 7, 6(M) = Z,, =
@(M). The equality o[H(%,, ---, z,)] = C[h(x,, ---, 2,)] for each finite
family {x,, ---,2,} in A yields the fact that ¢ is a homeomorphism,

We state without proof the following theorem on lattice ecom-
pactifications (cf. [3, Th. 3.1]).

THEOREM 1.7. If &' is a second a-lattice on _#, & S &',
and + is the mapping of _#, into w.~', then the following statements
are equivalent.

(i) If F,, F.e &', then F.N F,= ¢ if, and only if, (pF))~ N
(pFy)~ = ¢.

(ii) If F\, F,e &, then o(F,N F.)~ = (pF)~ N (pF,).

(iil) w’' = w (i.e., there exists a homeomorphism T of w<F’
onto w such that to(M) = (M) for each Me _#).

We apply this theorem to our situation. We identity .# and
w.< here and let & (hk) and &z (w*) denote the lattices of all hk-
closed subsets of _#;, and all w*-closed subsets of _#,, respectively.
W(_#,, .7 ) denotes the Wallman compactification of the topological
space (_#,, 7 ).

COROLLARY 1.7. _# = W(.#,, hk) if, and only if, A is hk-
normal. If A is regular, then (_#,, w*) is embedded homeomorphi-
cally in 7 and 7 = W(_#,, w*) tf, and only if, A is normal.
In this case, _# 1is Hausdorff and 7 = B_+#,.

Proof. The first statement is clear in view of Theorem 1.7 and
Corollary 1.5, where we let &’ = &’(hk). The second statement
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follows from the same two theorems, where &’ = & (w*). Finally,
if A is normal, then _/ is a normal space and W(_~;) (we suppress
.7 since the topologies agree) is Hausdorff [13, p. 119], hence . # =
W(_,) = B_+, (cf. [7, Exercises 5P and 5R] or [3, Th. 3.2]).

ExaMPLE 1.1. We give an example to show first that in general
a commutative LMC algebra can be completely regular, but not normal
(the concepts are equivalent for F-algebras, see § 2), and secondly that
7 may be B_., while A is not normal. We let 2 be the first un-
countable ordinal and w the first ordinal with countably many prode-
cessors, 2’ is the set of all ordinals up to and including 2, w’ the set
of all ordinals up to and including w, T’ = @zw’ with the product
topology (each of ', w’ being endowed with the order topology), and
T=T —{Q,w). Tis a locally compact Hausdorff space which is
not normal and BT = T’ (cf. [4, pp. 123-124]). We let A = C(T)
with the compact-open topology. Then (_#;, w*) = T, w* = hk on T
and . = 8T = T'. But A is not normal.

We next consider for a normal algebra A satisfying the condition
(hH) the problem of identifying the subspace of _# which consists
of the maximal ideals of A which are kernels of (possibly discontinu-
ous) homomorphisms of 4 onto C. We denote this subspace by _#.

Since A is normal, _# = B_#, and for each x e A the function
Z on _/7, is a continuous mapping of _#, into the one-point compacti-
fication C* = C U {=} of C. Thus % has an extension z*, a C*-valued
continuous function on w. ¥ (=pB_#;). Discussions of this extension
and of the realcompactification of a space are found in Chapters 7
and 8 of [4]. The realcompactification of _/7;, v_+, is the subspace
of B_+, consisting of all & ¢ B_~, such that for each ze C(_#)
7 e z*Y(C), i.e. z* does not take on the value «~ at &, where z* is
the extension of the mapping z: _#,— C* to B_#..

DEFINITION 1.5. v, 7, (the A-realcompactification of _,) =
{ ewsz: (%) e C for each x e A}.

THEOREM 1.8. If Zvecv, #, and Z = o(M), then M = {x e A:
**(z) = 0}.

Proo. If Me _# and o(M)= % €v, #, then the set I=
{reA:x*(z) =0} is an ideal in A. Moreover, if xze M, then
Z € C[h(z)] = h(x)~ and since z* is continuous on w.< and agrees
with Z on _;, 2*(Z7) = 0. Therefore, M = I and I + A(1¢ I). Hence,
M=1

THEOREM 1.9. The restriction of the mapping o0: # — w.¥ to
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%, 18 @ homeomorphism of _ .7, onto v, 4.

Proof. If 2 cv, ~#,and Z = o(M), then the mapping x— a*(%)
is a homomorphism of A onto C with kernel M and Me _/#.

If Me._# and % = o(M), then for each xe€ A there exists
re C(hv = M(z)) such that * — neM. We fix €A and the corre-
sponding (unique) »eC. If z—xeM, then Me H(x —)\) and
77 € Clh(z — \)]. This implies (x — N)*(Z) = 0. Since Ax (%) =
reC, wehave xx () =[(z — N) + Mx(Z) = (x —N)x (%) + N (%) =
reC and % euvu,. .

We wish to acknowledge here our indebtedness to Donald L. Plank of
the Case Western Reserve University who communciated to the author
theorems analogous to 1.8 and 1.9 for a real algebra A of functions
on a completely regular space X satisfying: BC(X) € A & C(X), where
BC(X) is the algebra of all bounded real-valued functions on X to R.

2. A special case. We consider in this section the special case:
A is a commutative Flalgebra with identity 1 — a complete LMC
algebra whose topology is given by a countably family of pseudonorms.
In this case we can assume that the family {p,};, satisfles: p,(x) =<
Doi(x) for each m = 0 and each v ¢ A. The fact the F-algebras are
inverse limits of Banach algebras is important for our purposes. We
let N, = {x e A: p.(x) = 0}, II, the natural map of A onto A/N, and
A, the completion of A/N, with respect to the norm defined by
| ]| = p(x). Each A, is a commutative Banach algebra with
identity. For each m = 0 there is a norm-decreasing homomorphism
I of A,,, onto a dense subalgebra of A, which is defined on A/N,, .,
by mx~1l,,x) = II,x and extended to 4,,,. For n <m, I A, — A,
is defined by the obvious composition. The resulting family of alge-
bras and homomorphisms is an inverse limit system and A is isomorphic
and pseudo-isometric to the inverse limit of this system. An important
consequence of this is the following fact. If {&,}7, is a sequence
where &, ¢ A, and II"¢, = &, whenever n < m, then there exists xc 4
such that II,x = &, for each n = 0. For details of this construction
and the basic facts about such systems, the reader is referred to [9].

We state without proof two theorems, the first is just Theorem
4.2 of [2] in our terminology, the second is immediate.

THEOREM 2.1. Suppose {a,, --+, a,} is a family of elements of A
such that (11 ,a,, ---, Il ,a,) = A, for each n=0. Then (a,, -+, a,) = A.

THEOREM 2.2, If {&,---,&,} 1s a finitte fomily in A, and
£, -+, &, have no common zeros on _.7(A,) (the structure space of
An)’ then (51) tt ety Sm) - An-
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The spectrum _ of A has the following structure. _~, =
U{~#*k=0,1,2, ...}, where each _~* is homeomorphic to .~ (4,),
the structure space of A,. The homeomorphism o, of _7Z(A4,) into
y is defined by [o.(M*|(x) = M*(Il,x) for each M*e _»/(A,) and
x e A.

THEOREM 2.3. If A is a commutative F-algebra with tidentity,
then A satisfies the condition (hH).

Proof. We fix a family {z,, ---, z,} in A satisfying h(z,, -+, 2,) =¢
and show H(x,, ---,%,) = ¢. We need only show that for each ¥ = 0
the family {/I,x, ---, II,x,} generates the improper ideal 4,. We fix
k= 0. For each 7 we have (II,x,)(M*) = z,(0,M*). Therefore, the
family {(I1,x,)", ---, (II,x,)"} has a common zero on .~/ (4,) if, and
only if, the intersection of _~/Z* and h(zx, ---,x,) is nonempty. We
have assumed that A(x,, ---,2,) is empty. Thus, Theorem 2.2 implies
I, «--, Ix,) = A, for each k£ = 0, and we obtain (z,, ---,2,) = A.

Thus, F-algebras always satisfy the conditions of Theorem 1.4
and .7 = w<. We next extend Theorem 2.1 to pin down further
the space .~ We note that Theorem 2.4 is immediate for Banach
algebras (since .7, = ) and false for commutative LMC algebras
in general (cf. Example 1.1 above).

THEOREM 2.4. If I, and I, are closed ideals wm A and 4if
h() N KI) = ¢, then I, + I, = A.

Proof. We shall construct two sequences in I1,4,, show that
they yield elements of I, and I, whose sum is 1. We let F, = h(l))
and F, = h(l,). Since the tail of a sequence is the important thing
in determining whether it corresponds to an element of A we assume
that 1N .2Z°+# ¢ and F,N 27"+ ¢. If not we begin the construc-
tion with the first integer % so that both F, and F, meet _#Z* and
define the first ¥ terms by the maps 7%, ¢ =0, ---, k — 1.

Since Fi\NF,=¢,0,(F,N _Z"No(FyN #")=¢ in #(4,)
for each m = 0. We first note that for each n» = 0 11,(I,)~ and I7,(I,)~
are closed ideals in A4, and /7,(I)~ + II.(I;)~ = A,. If not, then there
exists M"e(4,) such that /7,.(1)",1H.,1I)" < M". Then I,,, = M =
0,(M"), and Me F,N F,, a contradiction. By Lemma 7.8 of [9] I, is
the inverse limit of the sequence {/7,(I;)"} with the restricted homo-
morphism, for j = 1,2, and for each pair n, m,n < m, I™I,(I;)"] is
dense in /7,(I;)~, since the former contains /I*[/1,(I;)] = 11,(I;) which
is dense in 11,(I;)".

We first choose a sequence {¢,}7., of positive numbers such that
the series >, ¢, converges. Since I1(I)~ + II(I,)- = A, we choose
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&ell(I;)~,j =1,2 such that & + & = 1.
We next choose ¢/ in I1,(I;)~,7 = 1,2, such that ¢! + ¢} =1, then
choose »f in I1,(I;)~,5 = 1, 2, such that

| Tini — & 1| < min (54, &/4 max [ &) .

This is possible because I1j[/1,(I;)"] is dense in II(I;)~,j =1,2. We
let ¢/ =9i + @A — 9 —7),7=1,2. Then

fell(I)),j=1,28+¢&=1,

and || 136 — & || < €, for each j.

Proceeding inductively we choose for each n=1,5=1,2, & e Il (I;)"
such that || & — & || <e,, and & +& =1. Then for k=
0,1, -.-,7n — 1 we have

(3.1) 385 — I8 ] < e e

From this point on the construction is identical to that given in
the proof of Theorem 4.2 of [2]. We sketch the important steps.

We first fix » = 0 and let x;(n), = 1] for each k = n,j =1, 2.
{z;(n)}i-. is a sequence in I7,(I;)~ and satisfies

(1) ¥ (z;n + 1)) = x;(x), for each k=n + 1,7 =1, 2;

(i) x(n), + @y(n), =1,

(i) [l@i(m)e — @;(0)isp || < €prr + 0 + Epiye
Thus the sequences are Cauchy for each 7, j and converge to elements
x;(m) in II,(I;)~ for each » =0,7 =1,2, There exist x,el,%, €1,
such that /7,.(z;) = z;(n) for each » = 0,7 = 1,2, Thus, «, + 2, = 1.

COROLLARY 2.4.1. If F, and F, are disjoint hk-closed subsets of
Ay, then Cl , F, N Cl, F, = 4.

Proof. Letting I, = kF, and I, = kF, yields I, 4+ I, = A. Apply
Theorem 1.5.

COROLLARY 2.4.2. If A is a commutative F-algebra with identity,
then 7z = W(_#,, hk). Moreover, if A is regular, then A is normal
and 7 = W(.#2,) = B_#,.

Proof. The first statement follows from Corollary 2.4.1, Theorem
1.5, and Corollary 1.7. The second follows from Corollaries 1.7 and
2.4.1.

We note that Rosenfeld [11] has indicated a proof of part of
Corollary 2.4.2 (A regular implies A normal) using Silov’s theorem.
This theorem also yields a proof of Corollary 2.4.1, since F, U F} is
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hk-closed in _#, and is _#(B), where B = A/(kF,N kF,). However,
since the application of this theorem yields an element a of A such
that a=0 on F, and @d =1 on F, we can conclude only that
kF, + kF, = A. Thus, it does not appear that the proof of Theorem
2.4 can be simplified by the use of this tool.

THEOREM 2.5. Let I be a closed ideal in A and B = A/I. Then
B is a commutative F-algebra with identity, _.Z(B) 1s homeomorphic
to h(I) with respect to both the w*- and hk-topologies, and 7 (B) =
Cl i k().

Proof. The first conclusion follows from the open mapping theorem
for F-spaces (cf. [8, Lemma 11.3]) and the fact that the natural map
I of A onto B is continuous and open. The range of I1*: _~(B)—
#(A) is easily seen to be h(I) and it is also immediate that II* is
a w*- homeomorphism. For convenience we let F' = h(I) for the re-
mainder of the proof.

We show that for each £ S F, [I*'|hk(E)] = WE'[/*(E)], where
h' and k' are the h- and k- operators for B. M’'e [I*{hk(F)] if, and
only if, Mehk(E) (M = II1*M’) if, and only if, M(x) = 0 for each
xekE. And xzckFE if, and only if, M (x) = 0 for each M, e F if, and
only if, M([Ix) = 0 for each M|eIl*'(E). So ze€kK if, and only if,
Oz e k[T*(E)]. Thus, from above, M(x) = 0 for each xckF if,
and only if, M'(Ilx) = 0 for each [Ixek'[[I*'(E)], if, and only if,
M' e WE'[IT*Y(E)]. The equality is established and it is immediate
that [7* is a homeomorphism with respect to the Zk-topologies in
_#(B) and F.

For each x € A we have [I*[h'(lIx)] = h(x) N F. Thus, there is a
lattice isomorphism of &' = {h(&,, + -+, 5.): {51, <+ -, &} & B} onto &5 =
{E<S F:E = BN F for some Be }, and there is induced a homeo-
morphism of w’ onto w.<5. Therefore, 7 (B) is homeomorphic to
w.%%. For each MeCl ,,, F we define t(M) = {Ec : MeCl , E}.
M — (M) is a one-to-one mapping of Cl,,, F' onto w<5. From the
easily verified equation H(zx) N Cl ., F = C[h(z) N F'] it follows that
7 is a homeomorphism.
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