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SOME QUARTIC DIOPHANTINE EQUATIONS

J. H. E. COHN

Elementary methods are used to solve some quartic
Diophantine equations, of which x2 — dy* -f m is typical, where
m is an integer, positive or negative and d is a positive
integer with the property that the equation x2 — dy2 = 4 has
at least one solution x, y where both x and y are odd.

The cases m = ± 1 , ±4 have been treated previously and in these
cases the equations have been solved completely. The object here is
to try to extend the method to cover all other values of m. In view
of the greater generality of the problem, it is not surprising that
the theorems obtained are weaker. However, the method does give
a complete solution of the problem in many cases.

In the first place, let us consider the admissible values of d.
Clearly if x2 — dy2 = 4 is to have a solution with x and y both odd, it
is necessary that d = 5 (mod 8). Unfortunately this condition is not
sufficient, there are five values d = 37,101,141,189 and 197 less than
200 which satisfy it without the equation having any odd solutions.
There is no simple known necessary and sufficient condition, although
several sufficient conditions are known, and these do guarantee the
existence of infinitely many such d.

Secondly suppose that x2 — dy2 = 4 does have a solution in which
both x and y are odd. What can be said about the equation
x2 — dy2 = — 4? It is easily shown [see 2; §2] that this will possess
a pair of solutions x, y both of which are odd if x2 — dy2 = — 1 has
any solutions, and none at all otherwise. Again no simple necessary
and sufficient conditions are known for the existence of solutions of
x2 — dy2 = — 1; it is clearly necessary that d have no factor ==3
(mod 4), and it is known to be sufficient that d be a prime = 1
(mod 4). The main part of this paper will be divided into two parts;
in the first we suppose that x2 — dy2 = — 4 has at least one pair of
solutions both of which are odd; in the second we suppose that
x2 — dy2 = —4 has no solutions but that x2 — dy2 = 4 has at least
one such set of solutions.

1* We suppose here that x2 — dy2 = — 4 has a pair of solutions
xf y both of which are odd. Such values of d have been considered
in [1], and we shall use the notation and results from [1]. Thus if
the fundamental solution of x2 — dy2 = — 4 is 2a = a + bV~d , then a
and b are both odd and the fundamental solutions of the equations
x2 — dy2 = 4, x2 — dy2 = — 1 and x2 — dy2 = 1 are respectively 2α2, ah
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and a6; we have 2/3 = a - bV~d, nnV~d = an — βn and vn = α/W + β .
Now consider the equation #2 — dy2 = m. Of course there are

values of m for which this has no solutions at all; for example
x2 — 5y2 — 7 can have no solution as it cannot even be satisfied
modulo 5. Again however no simple set of sufficient conditions exists;
thus x2 — 229y2 = 3 has no solutions although it possesses solutions
in p-adic integers for every prime p.

Now suppose that x2 — dy2 — m possesses solutions. Since d = 5
(mod 8) it follows that if m is even, the factor 2 occurs in m raised
to an even power. Suppose first that 16|m. Then since d =5 (mod8),
both x and y must be even for any solution and so

(f)" -
If (l/4)m is still divisible by 16 we may proceed in like fashion.
Thus to find the solutions of x2 — dy2 = m it is sufficient to consider
only values of m that are odd, or are odd multiples of 4.

In the following, let m be any odd integer. Then the four
equations

x2 — dy2 = m, x2 — dy2 = 4m, x2 — dy2 = — m and x2 — dy2 = —4m ,

either all have solutions or none has solutions. For if x + yV d is
a solution of x2 — dy2 — m, then the other three equations have
respectively the solutions

2(x + yV~d); (x + yV~d)o? and 2(x + yV~d)az .

Conversely if x + y\/ d is a solution of x2 — dy2 — 4m, then since d
is odd, x and y are either both even or both odd; if both even then
\\2(x + yV d) is a solution of x2 — dy2 = m and the other solutions
follows as before, whereas if both are odd then exactly one of

(x + yV~d)a2 and (x + yV~d)β2

which are both solutions of x2 — dy2 = Am has both V and 'y' even,
since

(x + yV~d)a2 + (x + yV~d)β2 = (x + yV~d ){a2 + β2) = (α + 2/i/~5>2

and xyy,v2 are all odd. The other cases follow similarly.
We now suppose, in view of the previous remarks, that m is an

odd positive integer and that x2 — dy2 — m has solutions. Then as is
well known the totality of solutions of this equation is contained in
a finite number of classes Ku K2, " ,Kr and the conjugate classes
Kf, Kf, •••, K?, some of which may be ambiguous; see for example
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[3; p. 207]. In what follows, except in Theorem 1.1, each class must
be taken separately and we shall assume that we are considering only
one given class K. As a matter of fact, all the solutions in the
conjugate class K* differ from those in K only in order and the signs
of x and y which occur, and so we can eliminate discussion of K*.

Consider now the fundamental solution of x2 — dy2 = m in the class
considered. Let it be l/2(s0 + tj/~d) and define for each integer n,

sn + tnVd = (s0 + tQV~d)an .

Then s0 and tύ are both even and it is easily seen that the general
solution of the equation

x2 — dy2 = Am is ± s2n ± t2nV d

of x2 — dy2 = — Am is ± s2n+1 ± t2n+ιλ/ d

of x2 - dy2 = m is i - ( ± sδn ± t6nV~d) ,
Δ

and of x2 - dy2 = -m is — ( ± s6n+3 ± tQn+zV~d) .
Δ

(These are the solutions obtained from a class K and its conjugate
K*; if there are more classes, they will provide more solutions of
the same type.) It follows that to determine the solutions of, say,
x2 = dy* + m, we must find for what values of n if any t6n = ±2y2.
We shall therefore be interested in determining for what n it is
possible that either sn or tn equals hx2 where h ~ 1, —1,2 or —2.
Unlike the simple case m — 1, it will not be possible to establish
theorems which completely determine the possible n in all the cases
that can arise. We shall however indicate methods which often
enable the complete solution to be determined in any given case.

THEOREM 1.1. If m,d have no common factor =5 (mod 8) then
either (a) s6n Φ ±.2x2 and s2n+ί Φ ±x2 for any n, K
or ( b ) s6n+3 Φ ±2x2 and s2n Φ ±x2 for any n, K

or possibly both.

Proof. Since d = 5 (mod 8) and d has only factors = 1 (mod 4) it
follows that d has at least one prime factor p ~ 5 (mod 8). Suppose
now that (a) is false, say for example that sdn = ±2x2 for some
n, K. Then the equation x* — dy2 = m has at least one solution and
in particular the congruence

(1.1) a;*Ξm (modp)

is solvable. Now since (m, d) = 1 it follows that p\m and so a
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solution of (1.1) satisfies

(1.2) x2 ΞΞ ±mί (modp)

where therefore (m1 \ p) — 1, and so

(1.3) m$p-ι) ΞΞl,m = ml (modp) .

It now follows that xi — dy2 = 4m is impossible; for it would require
x* = 4m (modp), hence x2 — ±2m x (modp) which is impossible since

(±2m1\p) = (2\p)(m1\p)= - 1

since p = 5 (mod 8). Similarly x4 — dy2 = - m is impossible since it
would require #4 = — m (modp) and so

= — 1 (modp)

using (1.3), since p = 5 (mod 8), which is of course impossible. Thus
neither x* — dy2 = 4m nor a?4 — dy2 = — m has any solutions and so
for all n and ϋΓ both s6n+3 = ±2x2 and s2n = ±x2 are impossible.

The other cases of the theorem may be proved in like fashion.
This theorem has the advantage over the other methods below in

that it deals simultaneously with all classes K. However, it applies
only to sn and connot be extended to tn.

From the definition we have

sn + t%V~d = (sQ + uV~d)an

sn ~ tnV~d = (s0 - uV~d)βn .

Thus using the notation of [1]

2sn = so{an + βn) + to(an - βn

= sovn + dtQun

or

(1.4) sn = ( γ s

and similarly
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It therefore follows from [1 (15)] and the corresponding result for un

that

(1.6)

and

(1.7)

It may

(1.8)

and

(1.9)

&n + 12 —

tn + 12 -

also be shown that

$71 + 12 = Sn

tn + 12 = ^n

sn (mod 8)

tn (mod 8) .

(mod 16) if 3\n

(mod 16) if 3 n

These equations together with an evaluation of the first twelve values
of sn and tn enable a preliminary statement to be made about possible
values of n for which sn or tn can equal hx2; it is usually possible to
eliminate a considerable number of residue classes modulo 12 in each
case. Actually the sequences {sn} and {tn} are periodic modulo any
integer and this often provides extra information by a suitable choice
of modulus.

In the following k = 2r where r is a positive integer. This is a
slight departure from the notation of [1] for there k was only sup-
posed to satisfy 2 | A, 3|&. Then using formulae (4), (5), (16), (22) and
(23) of [1] and our (1.4) and (1.5) we have

(1.10) sn+2k = - s n (modi;*)

(1.11) tn+2k = -tn (modv4)

(1.12) v2 = 3 (mod 8)

(1.13) vk = 7 (mod 8) , if k = 2r and r ^ 2

(1.14) sn+2 = asn+1 + sn

(1.15) tn+2 = atn+1 + tn .

We now prove
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THEOREM 1.2. // h = ± 1 or ±2, k = 2r wΛere r ^ 1 and i/
(htn I %) = 1, then

( a )
( b )

( c )

( d )

( e )

( f )

tN

tN

tN

t.

t.

tN

Φ
Φ

Φ

Φ

Φ

hy*
-w
h

2 2

h

h

for
for

for

for

for

for

N = n +
N= n

ΛΓ= n +

N = n

N^n +

N= n

2k

2k

4

(mod 4k)
(mod 4k)

(mod 4k)

(mod 4k)

(mod 8)

(mod 8)

ifr

if r

if r

if r

^2

^ 2

with a similar set of results for s. In particular the result follows
if tn = hyl and (tn, vk) = 1.

Proof. ( i ) Let N = n + 2k (mod 4k). Then N = n + 2kl where
i is odd and so by (1.11)

UN — ^n+2kl

= (— l ) ^ w (mod Vjc)

= — ί w (mod I;*) .

Thus

(Λί^b*) = ( —Λί»|v*) = ( — l | v * ) = —1 by (1.12) and (1.13)

= ( - 2 h t n \ v k ) = ( - 2 \ v k ) = - 1 b y ( 1 . 1 3 ) i f r ^ 2

and

) I O = (2 I va) = - 1 by (1.12) if r =

and this proves (a), (c) and (e).
(ii) Let N = n (mod 4k). Then N — n + 2A;L where L is even

and so by (1.11)

= ίn (mod vk) .

Then (b), (d) and (f) follow in exactly similar fashion. The proof for
s is exactly similar, using (1.10).



SOME QUARTIC DIOPHANTINE EQUATIONS 239

THEOREM 1.3. If h = ± 1 or ±2 and if (tn,vk) = l and
(htn I vk) — 1 for all k — 2r with r ^ JB, £Aew

(a ) tNΦhy2 for N=n (mod 2β+1), JV =*= n
(b) tNΦ -hy2 for N=n (mod 2β+2)

( c ) tNΦ —y2 for N^n (mod 2R+1), NΦn if R ^ 2

(d) t* =* -—2/2 for N==n (mod 2*+2) if R^2
h

(e) ^ ^ —i/2 for N = n (mod 8) ifR = l
h

( f ) f =5* - A^2 for N = n (mod 16) or ΛΓ = n + 4 (mod 8)

if R — 1, with analogous results for s.

Proof. ( i ) If N ΞΞ n (mod 2β+1), N Φ n, then (JV — w) is a nonzero
integer divisible by 2R+1. Suppose that 2R+P+1 is the highest power of
2 which divides (N - n) where p ^ 0. Then if Λc = 2*+ί>, N - n = 2k
(mod 4/c) and (a) and (c) follow from parts (a) and (c) of Theorem 1.2.

(ii) It N=n (mod 2Λ+2), then if fc = 2R, N = ^ (mod 4Λ) and (b)
and (d) follow from parts (b) and (d) of Theorem 1.2.

(iii) Now Suppose that JB = 1. Then we may apply Theorem
1.2 (f) to obtain (e). To prove (f) we may use Theorem 1.2 (d) with
r — 2 and Theorem 1.2 (e) with r = 1. This concludes the proof.

It might be thought that the usefulness of these results might
be limited by the difficulty of ensuring that a given sn (or tn) has
no factor in common with any of the vk, and by the difficulty of
calculating (hsn \ vk) for the various values of k. This however is
not the case for by [l (11)], we see that if k = 2r, v2k = v\ — 2 and so
the residues of the sequence {vk} modulo any integer form a sequence
which is eventually periodic. It is thus fairly simple to find out
whether a given sn has any factors in common with any vk. Of
course, sometimes it does happen that (sn9.vk) Φ 1 and in these cases,
further discussion is necessary.

To illustrate the method, we append a detailed discussion of an
example, which displays most of the above points.

EXAMPLE. Consider the case d = 5, m = 11. Then a = b = 1, the
fundamental solution of x2 — dy2 — 1 is a6 — 9 + 4τ/ 5 and so using
the method of [3], p. 205, it is seen that the equation x2 — 5y2 — 11
has only the class of solutions whose fundamental solution is 4 + V 5 ,
and the conjugate class. Thus sQ — 8, tQ = 2 and we obtain the
following table of values
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n

-6

-5

-4

-3

2

^

0

1

2

3

4

5

6

7

«»

32

-19

13

- 6

7

1

8

9

17

26

43

69

112

181

mod 8

0

5

5

2

7

1

0

1

1

2

3

5

0

mod 16

0

10

8

10

0

*.

-14

9
g

4

- 1

3

2

5

7

12

19

31

50

81

mod 8

2

1

3

4

7

3

2

5

7

4

3

7

2

mod 16

2

4

2

12

2

We observe that Theorem 1.1 is applicable in this case; since sQ = 2 22,
we see that s2n Φ ±x2 and s6n+3 Φ ±2X2. Combining this with the
results obtained by using (1.6)-(1.9) we obtain

(A) sn = x2 implies n = 1 or 11 (mod 12)
(B) sn = — x2 is impossible
(C) sn = 2x2 implies n = 0 or 6 (mod 12)
(D) sn = -2x2 implies n = 0 or 6 (mod 12)
(E) tn = ?/2 implies w = 7 or 9 (mod 12)
(F) tn = -y2 implies n = 2, 3, 5 or 10 (mod 12)
(G) tn = 2?/2 implies n = 0 or 6 (mod 12)
(H) ί% = — 2y2 is impossible.

We now consider these possibilities in turn.

Since sβ l = Γ, it follows from Theorem 1.3, that n = — 1 is the
only n = 11 (mod 12) for which sw = #2. Also sx = 32 and since 3 \ vk

if k = 2 r and r ^ 2, it follows that sH ^ x2 if n = 1 (mod 8) and
nΦl. Also s13 = 3249 = 572. Now 57 = 3.19 and so modulo 19 we
find the residues of {vk}; they are 3, 7, 9, 3, 7, 9, and so 19Jfvk for
any k = 2\ Thus (s13, vk) = 1 if k = 2r and r ^ 2.
^ = 13 (mod 8) and n Φ 13. Thus we have

Thus sn Φ x2 if

sn Φ —x2; sn = x2 if and only if n = —1,1 or 13 .
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Since s0 — 2 22, it follows that sn = 2x2 and w = 0(mod4) is
possible only for n = 0; similarly since s_6 = 2 42, n — — 6 is the only
n = 2 (mod 4) for which sn = 2#2. It follows from (C) that n = 0, - 6
are the only values for which su = 2x2. Regarding sn = — 2#2, we see
from (D) that n would have to be even, and it is easily seen that sn

is positive for such n. Thus

8n Φ — 2x2; sn = 2xz if and only ίfn = 0or — 6 .

Now consider tn t_3 = 22 and so n = — 3 is the only n = 1 (mod 4)
for which tn = y2. Just as before t_6 = 32 and ί7 = 92 give the only
cases of tn = y2 with n = 3 (mod 4). Since £_2 = — I2, ίw ^ — i/2 for
n = 2 (mod 4), n Φ 2. Other even values of w are excluded by (F)
and odd values are impossible, since as is easily shown, tn > 0 if n
is odd. Thus

tn = V2 if and only if n = - 5 , - 3 or 7; tn = —y2

if and only if n — — 2 .

Finally, ίn = 2t/2 is only possible for even n; since ί0 = 2 and ίβ = 2 52

and since 5)(vk for any k = 2 r we see that, using (H).

ί w ^ — 2 ? / 2 ; ί n = 2^/ 2 i f a n d o n l y i f n = 0 o r β .

Summarizing these results, we have (listing only positive solutions in
each case):

( i ) The equation x4 = 5y2 — 44 has only the solutions (1, 3),
(3, 5) and (57,1453).

(ii) The equation x4 = 5y2 + 11 has only the solutions (2,1) and
(4, 7).

(iii) The equation x2 — 5y4 + 44 has only the solution (7,1).
(iv) The equation x2 = 5y4 + 11 has only the solutions (4,1) and

(56, 5).
( v ) The equation x2 — 5y4 — 44 has only the solutions (6,2),

(19, 3) and (181, 9).

2» We now consider values of d for which x2 — dy2 = — 4 does
not have solutions, but x2 — dy2 = 4 does have a solution for which
both x and y are odd. Although the results are broadly similar to
those of the previous case, there are some significant differences, and
we shall point these out and state results without detailed proofs. The
notation is now that of [2]. Thus 2a — a -f bλ/ d, the fundamental
solution of x2 — dy2 — 4, and β, un and vn are defined as before.

As before in considering x2 — dy2 = m it is sufficient to assume
that m is either odd or an odd multiple of 4. For any odd m, it
may be shown just as before that the two equations x2 — dy2 = m
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and x2 — dy2 = 4m either both have solutions, or neither has solutions.
However, unlike the previous case there is no special connection
between x2 — dy2 — m and x2 — dy2 — — m; indeed it usually happens
that when one of these has solutions, the other does not. It might
thought that this always happens, for in the case we consider
x2 — dy2 = — 1 has no solutions, but this is not so; d = 221 is a value
which satisfies all our conditions and yet both x2 — 221y2 = 25 and
x2 — 221y* = — 25 have solutions, namely (5, 0) and (14,1) respectively.
In any case the equations x2 — dy2 = m and x2 — dy2 — — m must be
considered separately. We thus consider x2 — dy2 = m where m is an
odd integer, positive or negative.

As before let K be one of the classes Klf K2, , Kr of solutions
of x2 — dy2 = m. Then if l/2(s0 + tQV d) is the fundamental solution
in K we define as before sn + tnV d — (s0 + to\/~d)an, and again we
wish to determine the possible n for which sn or tn equals hx2 where
h = ± 1 or ± 2 .

Care is required in the statement of a theorem parallel to
Theorem 1.1; as it stands the theorem is false in this case, since
for example both the equations x* — 21y2 = — 5 and #4 — 21y2 — — 20
possess solutions. The reason is that in the proof we require d to
have a prime factor p = 5 (mod 8) which does not also divide m. In
the first part, the existence of such a factor was assured; in this
part, d may not have any such factor at all. However, if this
proviso is made, we obtain in just the same manner.

THEOREM 2.1. If d has a prime factor p = 5 (mod 8) and p\m
then
either ( a ) sn Φ ±X2 for any n, K
or ( b ) s3n Φ ±2x2 for any n, K
or possibly both.

We obtain, just as before, in the notation of [2]

(2.1) 8n

(2.2) tn = ( γ

(2.3) sn+Q = sn (mod 8)

(2.4) tn+6 Ξ t% (mod 8)

(2.5) sn+6 = sn (mod 16) if 31 n

(2.6) tn+6 = tn (mod 16) if 3\n
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(2.7) sn+2k = ~sn (mod^) if k = 2r

(2.8) ίw+2fc = - t w (modv,) if k = 2 r

(2.9) v* = 7 (mod 8) if Jfc = 2r

(2.10) s n + 2 = α s w + 1 - sn

(2.11) ίm+f = atn+1 - tn .

I t will be observed that (2.9) differs slightly from the corresponding

(1.12) and (1.13), and this will slightly simplify the remaining theorems.
We obtain

THEOREM 2.2. If h = ± 1 or ± 2 , k = 2r where r ^ 1 and if
(tn9 vk) = 1 and (htn \ vk) = 1, then

( a ) tNΦhy2 for N = n + 2k (mod 4fc)
( b ) tNΦ -hy2 for N = n (mod 4A)

( c ) ^ ^ A^2 for N =n + 2k (mod 4A)

( d ) ^ Φ -—y2 for N = n (mod 4fc)
h

with a similar result for s.

THEOREM 2.3. If h — ± 1 or ±2 and if (tn,vk) = 1
<jtίn I vk) = 1 /or αW fc = 2 r ^ΐίfc r ^ β, £fom

( a ) tNΦ hy2 for N = n (mod 2*+1) , iV Φ n
( b ) tNΦ -hy2 for N ^n (mod 2Λ+2)

( c ) ίy ^ —y2 for N=n (mod 2β+1) , N Φ n
h

( d) ί* ^ -—a/2 for N^n (mod 2Λ+2)

α similar result for s.
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