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ERGODIC PROPERTIES OF NONNEGATIVE
MATRICES-Π

D. VERE-JONES

This paper develops some properties of matrices which
have nonnegative elements and act as bounded operators on
one of the sequence spaces lp or lp(μ), where μ is a measure
on the integers. Its chief aim is to relate the operator pro-
perties of such matrices to the matrix properties (the value
of the convergence parameter R, UN-recurrence and i?-positivity)
described in detail in Part I. The relationships between the
convergence norm (equal to 1/22), the spectral radius, and the
operator norm are discussed, and conditions are set up for
the convergence norm to lie in the point spectrum. It is shown
that the correspondence between matrix and operator proper-
ties depends very much on the choice of the underlying space.
Other topics considered are the problem of characterizing the
operator norm in matrix terms, and a general theorem on the
structure of a positive contraction operator on lp.

The notation, terminology and results of Part I of this paper will
be assumed without further comment. Reference to equations and
theorems from that part will be in the form I (13); I, Theorem 4.1. etc.

The symbol lp(l ^ p < ©o) will be used throughout to denote the
(complex) Banach space, the elements of which are sequences of
complex numbers {xk} satisfying | xk \p < coy with norm

term wise addition, and scalar multiplication. More generally, if μ is
a fixed finite or sigma-finite measure on the integers, lp(μ) (1 ^ p < °°)
will denote the Banach space of sequences satisfying Σ\ xk \p μk < °o
and with norm {Σ \xk\

p μk}
llP. By L (respectively L(μ)) we shall

denote the Banach space of bounded sequences (respectively sequences
satisfying supλ | xk/μk | < °°) with norm || x W^ = sup^ | xk | (respectively
supfc I xk\μk I). It is well known that any bounded linear operator on
an lp space (1 ^ p < oo) is determined by an infinite dimensional
matrix, through the equations

(Ax)k = Σ a<a«*
i

(note that we have chosen the matrix to act on the left). The Banach
adjoint A*, acting on the dual space lq (1/p + 1/q = 1), is then repre-
sented by the transposed matrix:

(A*y)k = Σ akjVj
3
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The operator norm is defined by

and we shall leave it for the context to make clear the underlying
space on which the operator is acting, and with reference to which
the operator norm is defined. We have always || A \\ = || A* ||. A is
said to be a contraction if || A| | ^ 1.

A thorough discussion of these ideas is contained in Part I of the
monograph by Dunford and Schwartz [3], to which we also refer the
reader for the notions of resolvent operator, resolvent set, spectrum,
spectral radius, point spectrum, and mean ergodic theorem.

An operator on an lp space (1 <* p < oo) is positive if the elements
in its matrix representation are nonnegative. More generally, a posi-
tive operator can be defined as one which leaves invariant a suitably
defined positive cone. It is well-known that for a very wide class of
positive operators, which include all positive operators on lp spaces
(1 fg p < C*D) as defined above, the spectral radius is a point in the
spectrum—i.e., the positive real axis contains a point in the spectrum
of maximum modulus. For a discussion of this proposition see (for
example) Bonsall [1] and Schaeffer [13]. It may be regarded as a
rather weak generalization of the Perron-Frobenius theory to positive
operators. From the same point of view, the present paper is an
attempt to utilize the theory developed in Part I to investigate some
ways of strengthening this result.

2* Spectral properties of positive operators on lp spaces*
Suppose that the operator A on lp can be represented by an irreducible
matrix with nonnegative elements and convergence parameter R > 0.
(We should remark that the choice of lp, rather than any of the other
spaces I9(μ), is a matter of convenience only. All of the results in
this section hold equally for an operator on lp(μ), as can be seen
if only by mapping lp(μ) back onto lp by the one-to-one isometric
isomorphism which takes {yά} in lp(μ) into {Vjμ)lP} in lp. The essential
point is that throughout this section it is the operator, and by im-
plication the underlying space, which is assumed given). We start
by examining the relationships which hold between the convergence
norm 1/R of A and its spectral radius.

THEOREM 2.1. If A is a bounded linear operator on lp(l <; p <^ oo)
with spectral radius p, and if A can be represented by an irreducible,
nonnegative matrix with convergence parameter R, then

(1)
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where equality and strict inequality are both possible. In the case
of strict inequality, the interval 1/R ̂  λ ^ p of the positive axis is
entirely contained in the spectrum of A.

Proof. Since 1/12 is a singularity of the function (1/2)^,(1/2) =
Σa{if/zn+1, which can be identified with the i — j element in the matrix
representation of the resolvent operator of A (Equation I. (6)), it follows
that, a fortiori, 1/R is a singularity of the resolvent operator itself.
The converse is not true, however. To show this we give an example
of an irreducible matrix defining a bounded linear operator whose
spectral radius is not a singularity of the resolvent elements. Let A be
defined by the matrix

which can be regarded as a modified shift operator. If Σf{ ^ 1, the
matrix defines a bounded linear operator on Zx whose norm and spectral
radius are both equal to unity (this is most easily seen by considering
the adjoint: if e is the vector all of whose components are equal to
unity, we have ||(A*)*β|| = 1 for all n, so that the spectral radius is
at least equal to unity; yet the matrix defines a contraction). On the
other hand, it is easily verified that

(2) Tn(z) =
1 - F(z)

(where F(z) = ΣftZ*), so that if Σf{ <1, and F(z) is analytic in a disc
I z I < 1 + a (a > 0), then unity is not a singularity of the resolvent
elements. Slight modifications yield similar counterexamples for the
lp spaces with 1 < p < oo (for details see [17], §5.3).

This difficulty seems first to have been pointed out by Putnam
[10]; the counterexample given there is not irreducible, however.

The final statement of the theorem is rather deeper in character,
and is one of the few places where we have been able to apply results
from the general theory of operators leaving invariant a positive cone.
We make use of the following lemma, due to Schaeffer [13].

LEMMA 2.1. Suppose that the positive cones in the Banach space
X and its dual are both normalw, and that A is a positive operator
on X with spectral radius p > 0; then the resolvent operator R(X; A)
is positive if and only if λ is real, λ > p. (Note that the resolvent

w A cone K is normal if for xβK, y6K, || x + y\\ ^ || x | | , or more general ly

II % + y 11 ̂  a || x || for some a > 0.
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operator is defined only for λ in the resolvent set of A).

We now observe that the elements of the matrix representation
of iϋ(λ; A) are real and positive whenever λ 7> 1/1?. This would
lead to a contradiction with the necessary and sufficient condition of
the lemma if it was possible to have 1/12 < λ < p, and λ a point in
the resolvent set. Thus all points in the open interval (1/12, p) must
lie in the spectrum; since the spectrum is a closed set, the end-points
of the interval must lie in the spectrum also.

This concludes the proof of the theorem.

We pass on next to a discussion of the spectral character of the
point 1/R and its relationship to the classification of the matrix as
12-positive, 12-null, or 12-transient. It might be conjectured that 12-
positivity was always associated with the situation where 1/12 belonged
to the point spectrum, but in fact this is not so and no completely
general statements of this kind seem possible.

A few examples will illustrate the sorts of difficulty that may
arise. In § 5 of [14] it is shown that if A is the irreducible part of
a subcritical branching-process matrix, then under mild conditions the
matrix is 12-positive (12 > 1) and every point in the range 1 < r ^ 12
is associated with an r-invariant probability distribution. Since the
matrix is substochastic, it defines a contraction operator on Z1# In
this case, therefore, we have an example of an 12-positive matrix for
which the interval (1/12 ^ λ < 1) lies in the point spectrum. On the
other hand, for a supercritical branching process, the reduced matrix
of transition probabilities is again 12-positive, with 12 > 1, and again
each point in the range 1 < r ^ 12 is associated with an r-invariant
vector, but in this case the invariant vectors are no longer summable,
so that the corresponding points λ = 1/r are no longer in the point
spectrum.

Similar difficulties arise in the case of 12-null and 12-transient
matrices. The semi-infinite random walk considered in §6 of [14]
furnishes an example of an 12-transient substochastic matrix for which
R > 1, p =z iy and 1/12 is in the point spectrum of the operator. A
variety of further examples, which can be constructed along the lines
of the matrix in § 2, show that the same sorts of situation arise also
for operators on lp with p > 1.

Such examples make it clear that the best we can hope for is
to find reasonably simple conditions on the operator or the matrix
that will ensure a better correspondence between matrix and operator
properties. One natural condition which suggests itself is that the
operator have bounded iterates. Even here, no real progress can be
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made unless we assume also that the convergence norm and the spectral
radius coincide. Under these two assumptions, however, a much more
satisfactory situation prevails. We start by examining the ^-positive
case.

THEOREM 2.2. Suppose that A is a positive operator on
lp(l ^ p < co), with spectral radius equal to unity and bounded
iterates, and that its matrix representation is irreducible with period
d ^ 1. Then the two statements

( i ) unity is in the point spectrum of both A and A*;
(ii) the convergence parameter R equals unity, and the matrix

is R-positive;
are equivalent, and either implies that

(iii) each of the points e2πimld (m = 1, 2, d) is in the point
spectrum of both A and A*;

(iv) each of these eigenvalues has index unity and is associated
with unique eigenvectors for both A and A*;

(v) A has no further eigenvalues on the boundary of the unit
disc.

Proof. We prove first (i) and (ii) are equivalent, then establish
the remaining properties.

The main difficulty in proving (i) —•* (ii) lies in the fact that we
cannot assume the eigenvectors to be nonnegative. (i) supplies us
only with the weaker information that unity is associated with left
and right superinvariant vectors. To get over this difficulty we shall
make use of the following property of superinvariant vectors.

LEMMA 2.2. If T is a nonnegative matrix, {uk} is a left super-
invariant vector, and u{ = 1, then for all j and for all n,

( 3 ) Σ uAI ^ Σ «J}

k

The lemma can be proved by induction in a similar manner to I,
Lemma 4.1, and we omit details. A similar result holds for right
superinvariant vectors, with the obvious changes.

Returning to the main proof, let {ak}, {βk} denote the eigenvectors
for A, A*, respectively, referred to in (i), and put uk — \ak\, tky = a{$
in the lemma above. From the assumption that A has bounded
iterates, the left hand side of (3) remains bounded as n—* oo. Hence
the sum Li3(l) is convergent. Further, multiplying (3) by v$ = | β5 \
and summing over j , we obtain



606 D. VERE-JONES

( 4 ) Σi
i

Letting n —•> oo in this expression, we see that the sum Σ3 Lii(L)vj is
convergent. But the vector {Li9 (l)} (i fixed) is a left subinvariant vector,
and {vk} is a right superinvariant vector, so that I, Lemma 5.2 and
I, Criterion III (following I, Lemma 5.3) apply, and we deduce that
the matrix representing A is iϋ-positive, with R = 1.

To prove the converse, we show that the left and right invariant
vectors (whose existence follows from the assumption of iϋ-positivity)
belong to lq and lp, respectively. Denote these vectors by {ak}, {βk}
respectively, and let {yk} be any vector in lq. Then, from the assump-
tion of bounded iterates,

where K is independent of n. Taking C — 1 averages, letting n
and using the fact (I, Theorem D) that C — 1 lim,^ aff = akl

we obtain from Fatou's lemma

(5) Σ** |y* l< -
A;

Since {#Λ} is an arbitrary lq vector, it follows from (5) by a standard
argument that {ak} is an lp vector.

If 1 < p < oo a dual argument shows {βk} is an iΓvector. For
p = 1, q = oo we have

Γ l w l f 1 w Ί
sup lim—Σ αίί* ^ lim sup < sup — Σ al? r ^ 1™ S UP II An II < °°

which, letting n—>oo, shows directly that sup/S*. < oo, so that {βk}
is an L vector.

This completes the proof that (i) and (ii) are equivalent. The
remaining properties are almost immediate corollaries of the results
established in Part I, in particular I, Theorem 7.1. Note that if {βk}
is the right eigenvector described above, and {xk} is any left eigen-
vector (used in the strict sense implying that the vectors belong to
the appropriate spaces) then the condition Σ \ xk \ βk < oo is satisfied.
This remark takes care of (iii), (v), and the second statement in (iv).
The fact that the eigenvalues have index unity is a consequence of
bounded iterates. If (I — Tfx = 0 for some vector JC, then

Tnx = x - n(I - T)x .

Dividing this equation by n and letting n —» oo it follows also that
(/ - T)x = 0. (cf. [3], Lemma VIII. 8.1). (In fact the property can
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be deduced from weaker assumptions by making use of the positivity.)
This completes the proof of the theorem.

There are various directions in which Theorem 2.2 can be streng-
thened and complemented, and we pass on now to a consideration of
some of these.

The first point to note is that it is sufficient in (i) to have unity
in the point spectrum of A, rather than in the point spectra of both
A and A*. To see this, we consider separately the cases p = 1 and
p > 1. In the case p = 1, the argument from (4) on carries through
as before if we put vό = 1 in (4), since this vector both belongs to
Zoo and is subinvariant. For p > 1 we can obtain the same result from
the mean ergodic theorem ([3], Theorem VIII. 5.1) which applies here
because the spaces lp(l < p < <χ>) are reflexive, so that the unit ball
is weakly sequentially compact. In this case, if unity is in the spectrum
of either i or 4*, the ergodic limit to which the operators converge
cannot be zero, so that the sequences alf cannot tend to zero, and
the matrix for A is necessarily 1-positive.

If the matrix for A is 1-null or 1-transient, similar arguments show
that no points on the boundary of the unit disc can belong to the point
spectrum. Thus if p = 1 and {ak} is an eigenvector for A associated
with an eigenvalue of unit modulus, we can put βk = 1 in I, Theorem
6.1 to justify taking C — 1 limits under the summation sign in the
expression a3 e"nΘ = Σkaktk

n

3K This leads to a contradiction if we assume
that the matrix representing A is null-recurrent or transient. If p > 1,
a similar contradiction follows directly from the mean ergodic theorem.

These remarks establish the following result.

THEOREM 2.3. Under the assumptions of Theorem 2.2, the matrix
representing A is 1-positive if and only if unity is in the point
spectrum of A. If the matrix representing A is either l-null or 1-
transient, A has no eigenvalues of unit modulus.

Theorems 2.2 and 2.3 form an extension of the work of Sidak
[15] and Holmes [4], who establish similar results for the special case
that A is an operator associated with a Markov chain (see the next
section for further discussion).

An interesting unresolved problem is to find further conditions on
the matrix which are necessary and sufficient to ensure that the
operator it represents has unity not only in its point spectrum, but as a
pole of the resolvent operator. It is shown in [18] that for p = 1
"geometric ergodicity" (i.e., the convergence radius is a pole of each
of the resolvent elements (1/2)^.(1/2)) is a necessary but not sufficient
condition. Whether geometric ergodicity is a sufficient condition when
p > 1 remains an open question. More easily established is the property,
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which holds also for more general classes of positive operators (see
[8]), that if the spectral radius is a pole, and the matrix irreducible,
then the pole is necessarily simple.

The results contained in part 1 also have implications for the
ergodic behaviour of operator iterates. Suppose that the conditions of
Theorem 2.2 hold, so that in particular the operator iterates are
uniformly bounded. Since the coordinate vectors are dense in the lp

spaces (1 ^ d < oo), and also in the space c0 of bounded sequences,
the element-wise convergence described by I, Theorem D can be extended
to weak convergence (co-weak convergence in the case p — 1) by a
double application of the Banach-Steinhaus theorem ([3], Theorem
Π-3.6).

This result is not a corollary of the mean ergodic theorem, because,
taking as a particular example the case when the matrix representing
A is aperiodic, it is convergence of the iterates themselves which is
asserted, and not convergence of the C — 1 averages. However, the
fact that the mean ergodic theorem asserts strong convergence of the
C — 1 averages leads one to hope that when the matrix is irreducible
and aperiodic, the C — 1 averaging can be dropped without upsetting
the strong convergence. We have not been able to obtain such an
extension in general, but we can prove that strong convergence holds
whenever the conditions of the Theorem 2.2 are satisfied and in
addition A is a contraction and its matrix is 1-positive. For the case
p = 1, this follows from I, Theorem 6.2, and was proved there as a
corollary. The case p > 1 can be obtained from a recent result of
Mrs. S.C. Moy's [7] concerning associated operators for Markov chains.
It will be convenient to leave the proof of this assertion until after
the discussion of associated operators in the next section. The results
concerning the convergence of operator iterates are then summarized
in the following theorem. (For convenience we restrict attention to
the aperiodic case; for periodic matrices corresponding results can be
formulated in terms of convergence as n —> oo along a suitable residue
class, and are readily deduced from the theorems in I, § 7.)

THEOREM 2.4. Suppose that A satisfies the conditions of Theorem
2.2, and that the matrix representing A is aperiodic. Then as n—+ °°
the operator iterates An converge weakly (co-weakly ifp = l) to their
ergodic limit and their C — 1 averages converge strongly to the same
limit. If, in addition, the operator is a contraction and its matrix
is 1-positive, the iterates themselves tend strongly to their ergodic
limit.

To end this section we add a few further remarks about the
case when A is a contraction operator. This condition imposes remark-
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ably stringent requirements on the left and right eigenvectors (for
eigenvalue unity) when they exist. Suppose that A is 1-positive, so
that the ergodic limit is nonzero; in fact its elements are given by
(using I, Theorem D)

( 6 ) Xi3 = β.a^Σaφ,

where {ak}, {βk} are the left and right invariant vectors.
From the fact that A is a contraction it follows readily that the

ergodic limit A is also a contraction. Then, substituting from (6),

Now the supremum on the extreme right is attained when {Xj} is
proportional to {βy1}, and Σάxάβά = \\β\\q. Thus the above inequality
leads to

This shows that in fact both sides must be equal and we have the
special case of equality in Holder's inequality. It follows that the
left and right eigenvectors must be linked by the equations

so that the right eigenvector is completely determined by the left
eigenvector (and vice versa if 1 < p < oo).

This result may also be regarded as an extension of a well-known
theorem of Riesz and Nagy ([11]; see also [12]) to the effect that if
A is a Hubert contraction, and AH its Hilbert-adjoint, then the
eigenvectors of A and AH coincide. The properties of positivity and
irreducibility are irrelevant to this theorem, as is the sequential
nature of the underlying space, and in fact the result we have just
proved has a quite general statement as follows (cf. [17], Lemma 4.7).

THEOREM 2.5, Let A be a contraction operator on a Banach
space X whose unit ball is smooth{2); then for every eigenvector x
of A, associated with an eigenvalue of unit modulus, there is an
eigenvector y of A*, associated with the same eigenvalue, and given
by the unique {up to constant factors) norm-determining element for
x in X*.

2 The unit ball in a Banach space is said to be smooth if there is a unique
supporting hyperplane at every point, i.e., if for every JC in X, there is a unique
linear functional y in X* such that \\y\\ = 1 and | (if, JC) I = | | J C | | . The symbol (if, JC)
is used here, and in the proof above, to denote the value taken by the linear func-
tional y at the vector Λ:.
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Proof. Since A is a contraction, we have

II * II = (if, * ) = (υr

where λ is the eigenvalue (of unit modulus) for which x is an eigen-
vector, and we have chosen y to have unit norm. It follows from
this chain of equalities and inequalities that in fact equality must
hold at every stage, so that

(λ-^if, x) = 1

and

II λ"ιA*if || = 1 .

Now these two equations assert that X~ιA*y is a norm-determining
element for x. We have assumed, however, that to every element
in X there is a unique norm-determining element in X*, and so
y — XA*y. This proves the theorem.

3* Associated operators* In the previous section, the operator,
rather than the matrix, was taken as the given quantity, so that
there was no question of altering the underlying space on which the
matrix was assumed to act. In this section we take up the opposite
point of view; given a nonnegative matrix, on which spaces does it
induce a bounded operator, and what are the spectral properties of
the operators so induced ? Many of the difficulties described in the
previous section stem from an inappropriate choice of the underlying
space; conversely, the main result of the present section is that (for
an irreducible matrix) it is always possible to find a σ-finite measure
on the integers, say μp(.), such that, after suitable normalization, the
matrix defines a bounded linear operator on the space lp(μp) with
norm, spectral radius and convergence norm all equal to unity.

The idea behind this result appears to go back to Nelson [9], who
observed that the transition function P(x, A) of a Markov process with
subinvariant measure μ{.) defines a contraction operator on each of
the spaces Lp(μ). This observation has been used for a variety of
purposes by (among others) Kendall [6], Sidak [15], Holmes [4], Moy [7]
and the author [18]. It extends also to the present context, with
the extra complication that the measure μ(.) must be chosen separ-
ately for each p. Because of this it is rather more convenient to
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standardize the sequence space than the matrix, so that instead of
the same matrix T acting as an operator on each of a range of
spaces lp(μp), we consider instead a sequence of associated operators
linked to the original matrix by the similarity transformations (8),
and acting on the standard sequence spaces lp. In other words, it is
convenient to map the space lp(μ) onto the space lp by the isometric
isomorphism which takes the vector {xk} from lp(μ) into the vector
{̂ fc/4̂ } in lp. It is clear that (apart from the scale factor) the spectral
properties of the operator will be unchanged by such a similarity
transformation.

These considerations lead to the following formulation of the main
result; in this form it can be considered as the generalization of a
result attributed to Kolmogorov (see [2]) that every finite irreducible
nonnegative matrix is similar to a stochastic matrix.

THEOREM 3.1. Let T be an irreducible matrix with convergence
norm R and left and right Rsubinvariant vectors {ak}, {βk} respec-
tively. Then for each p (1 ^ p ^ oo) the matrix Tp with elements

defines a contraction operator on the sequence space lp.

Proof. The proof depends on an application of Holder's inequality.
If u is any ^-vector, we have to show that the vector

v = ϊ >>

with elements

belongs to lp, and || v \\p ̂  | | u \\p. If we write ak = uk{βόlβk)
ι^{tkjR)^

bk — (aklaίy
ίq(tkjRYlq, then from Holder's inequality, we have

Σ
k

k I I bk I ̂  ( Σ I ak \*y<> ( Σ I h \«y>«.
k k

But Σk I bk \
q = {TLlas)IhahtkiR ^ 1, since {ak} is left j?-subinvariant.

Hence,

Σ I vj \* ^ Σ (ΣI ak I') = Σ I uk I- "Σλβilβk)tkiR ^ Σ I uk \*
j j k k j k

where the last step uses the fact that the vector {βk} is right R-
subinvariant. This inequality proves the theorem when 1 < p < oo;
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we leave the reader to supply the modifications required when p = l
or p = oo.

Further properties of the associated operators follow from the
theorems in the previous section. It is readily verified that the
matrices Tp all have convergence parameter equal to unity, and are
1-transient, 1-null, or 1-positive according as the original matrix T
is R~transient, i?-null, or 12-positive. Theorem 2.1 implies that the
spectral radius of Tp is equal to unity. If T is JS-positive it follows
from Theorem 2.2 that the operator on lp induced by Tp has a simple
eigenvalue, associated with a unique eigenvector, at each of the
points e

2πimld(m = 1, , d) where d is the period of T. If T is JS-null
or iu-transient, then the operator induced by Tp has no eigenvalues
on the boundary of the unit disc.

These remarks apply if, in particular, T is a stochastic matrix,
R = 1, and we set βj = 1. This situation has been discussed in
detail by Sidak [15] and Holmes [4]. A slight extension of the
theorem is required to cover the case that T is stochastic and geo-
metrically transient (i.e., R > 1); if in the defining equations (8) we then
use unity in place of R, choose any subinvariant vector {ak}, and again
set β3- = 1, the previous chain of inequalities applies without modifica-
tion, and shows that the operator is still a contraction. But in this
case it may be possible that the spectral radius, and even the norm, is
strictly less than unity (some examples to illustrate these possibilities
one discussed by Sidak [16] and Holmes [4]). Of course, it is still true
that in this case the operator has no eigenvalues on the boundary of
the unit disc.

One other feature of the matrices Tp deserves mention: they
possess left and right subinvariant vectors given by

uk = (akβhyι>

vk = (akβky«

respectively.
These relationships hold the key to one question which is suggested

by Theorem 3.1, namely, which contraction operators on lp can arise
as the result of the transformation of that theorem? Given an
arbitrary contraction operator A on lp, when does there exist some
nonnegative matrix T such that A coincides with the operator derived
from T by the Equations (8) ?

We have not been able to find a complete answer to this question
in purely operator-theoretic terms. The following result, however,
identifies the matrices which are representable in the form (8).

THEOREM 3.2. The necessary and sufficient conditions for a
matrix S to be an associated operator on lp(l ^ p < oo) are that the
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matrix be irreducible and that there exist a positive vector {μk} such
that

Uk = [A!p and vk = μψ

are left and right subinvariant vectors, respectively, for S.

Proof. The necessity is simply a restatement of Equations (9)
above. To prove sufficiency, we have to show that there exists a
matrix T which can be substituted into the right hand side of (8) to
yield si3 on the left hand side. In fact it is sufficient to take tiό = sih

with ak = uk and βk — vk above.
Note that in this theorem we do not require Σkμk <oo, so that

the vectors {uk} and {vk} are not necessarily elements of lv and lq.
As an immediate corollary to the above result, we obtain the

following theorem, which answers the original question in the special
case that the underlying matrix is iϋ-positive.

THEOREM 3.3. Suppose that the positive contraction operator A
on lp(l ^ p < oo) can be represented by an irreducible matrix. Then
A is an associated operator for an R-positive matrix if and only if
unity is in the point spectrum of A.

Proof. It follows from Theorem 2.5 that the condition of Theorem
3.2 is satisfied whenever A is a contraction operator and unity is in
its point spectrum. The converse follows from Theorem 2.2, which
shows that unity is in the point spectrum of the associated operator
whenever its matrix is 1-positive, i.e. whenever the original matrix
is jβ-positive. This concludes the proof.

The sufficiency part of Theorem 3.2 can be formulated in a slightly
different way, which suggests further generalizations of the preceding
result. We can restate it as follows.

LEMMA 3.1. Suppose that the matrix T is irreducible, and that
there exists a positive vector {μk} and a positive number p such that

Σ μ]lΠki ^ pμΫ

and

(10) Σ thiμψ £ pμψ .
3

Then T acts as a bounded linear operator on lv, and \\ T\\ ̂  p.

In this form it suggests the following conjecture.
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Conjecture. The matrix T acts as a bounded linear operator on
lp if and only if there exists a positive vector {μk} and a positive
number p such that Equations (10) are satisfied. Moreover, the norm
of the operator can be identified with the least number p for which
such a vector {μk} can be found.

Although we have not been able to prove this conjecture, note
that it gives the correct answer in two important special cases:

(i) if p = 1.
(ii) if the matrix T is iϋ-positive and irreducible, and the operator

norm is equal to the convergence norm.
To conclude this section we give the proof of the assertion of

Theorem 2.4, that if A is a contraction operator on lp(l < p < oo)
and its matrix representation is aperiodic and 1-positive, then the
operator iterates tend stongly to their ergodic limit. The proof
depends on the following result, which is due to Mrs. S.C. Moy [7]
(see also [8]).

LEMMA 3.2. If P is an irreducible aperiodic stochastic or sub-
stochastic matrix with finite subinvariant measure μ(.), and y e lq(μ),
then the iterates (P*)ny converge in lq(μ) norm to their ergodic limit.

Proof. Suppose first that y e lj(μ) (i.e. that y is a bounded
vector). Since μ is finite, y is also in lp(μ). From I, Theorem 6.1
it follows that, for each i, Σ, pfry,- -+ Σμsy3 . Since P is stochastic or
substochastic, the quantities Σάp\v )y5 are uniformly bounded as i and
n vary. Hence, from the dominated convergence theorem,

Thus the iterates (P*)ny converge in Zg-norm to their ergodic limits.
Now let y be an arbitrary vector in lg(μ). Since the bounded

vectors are dense in lq(μ), given ε we can find a bounded yr such
that 11 if — y'\\q < ε. Then, denoting the ergodic limit by 77,

| | (P*ry - Π*y \\q< \\ (P*)»υ - ( P * ) V \\q

+ || (P*)V - 77 V ||, + ||77*i/ - 77 V ||,

^ 2 ε + | | ( P * ) V - tfVII* .

The last term approaches zero as w—>oo, and since ε is arbitrary it
follows that the left-hand side also approaches zero. This concludes
the proof of the lemma.

To apply this result, we first reinterpret the lemma in terms of
associated operators. It is easy to see that any associated operator
(i.e., any operator whose matrix can be represented by the Equations
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(8)) is in fact an associated operator for a stochastic or substochastic
matrix. Indeed, a suitable matrix is given by (using the notation of
Theorem 3.1)

It therefore follows from the lemma that if Tp is any associated
operator on lp, and y is any vector in lq, the iterates (T*)ny converge
in ig-norm to their ergodic limits, provided only that the measure
{μk} = {akβk} is finite. The latter condition will be satisfied, in parti-
cular, whenever the original matrix is i?-positive.

Now suppose that A is a contraction operator on lp, (1 < p < oo)
with unity in its point-spectrum, so that the matrix is 1-positive. By
Theorem 3.3, both A and A* are then associated operators for R-
positive matrices. Consequently, if we apply the above argument to
A*, with xelp we see that the iterates Anx of the adjoint of A*
(which is A itself since the lp spaces are reflexive for 1 < p < oo)
converge in ip-norm to their ergodic limit. This completes the proof.

4* The ergodic decomposition of positive contraction oper-
ators on lp-spaces. In this section we shall examine the ergodic
behaviour of a simple class of operators with reducible matrix represen-
tations. Since the whole of the preceding discussion has been devoted
to irreducible matrices, we start with a few comments concerning the
structure of an arbitrary nonnegative matrix.

Exactly as in the stochastic case, we can say that the index i
communicates with the index j if there is a chain of indices ko,kl9 ,kn

with k0 = i,kn = j and tk.k.+ί > 0 (i = 0,1, , n — 1). If i communi-
cates with j and j communicates with i, then i and j intercommuni-
cate. This concept defines an equivalence relationship among the set
of all indices which communicate with themselves, the disjoint equiva-
lence classes from which we shall refer to as irreducible classes.
Note that a matrix is irreducible if all the indices form a single
irreducible class.

If C is an irreducible class, the remaining indices fall into three
mutually exclusive groups relative to C: those which communicate
with one (and hence all) of the indices in C; those with which one
(and hence all) of the indices in C communicates; those which enjoy
neither property. If we call these three groups S(C), A(C), N(C)
respectively, then

(i) columns whose indices belong to C contain zero entries in
rows whose indices belong to A(C), and hence nonzero entries only
for rows in S(C) or N(C);

(ii) rows whose indices belong to C contain zero entries in columns
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whose indices belong to S(C)9 and hence nonzero entries only in A(C)
or N(C).

It follows that by suitable relabelling of indices, any nonnegative
matrix can be partitioned into a sort of checker-board pattern, with
square blocks, corresponding to entries with row and column indices
from a particular irreducible class, centered on the main diagonal,
and the other nonzero entries following into restricted groups of rows
and columns. It is important to note that if C is an irreducible class,
and TG denotes the reduced matrix with row and column indices
restricted to C, then

(11) (TcT = (Tηc .

Thus, in examining the iterates of a reducible matrix, we may, so
far as the irreducible classes are concerned, restrict attention to the
reduced (and now irreducible) matrices formed by restricting row and
column entries to the class in question.

Under certain circumstances (for example, whenever the total
number of irreducible classes is finite), it may be possible to order
the irreducible classes {d} so that if i > j, then either C{ and Cj are
mutually inaccessible, or d is accessible from C3 . In this case the
appearance of the matrix is further simplified, so that the only nonzero
entries on the same level as one of the irreducible blocks lie to its
left.

In general, however, any further simplification of the matrix
structure will depend on special assumptions concerning the matrix
and its irreducible classes.

The purpose of this final section is to investigate some of the
simplifications which result from the assumption that the matrix acts
as a contraction operator on one of the lv spaces. We shall not
attempt to obtain a full decomposition of the matrix; our aim is to
investigate its ergodic behaviour, and to obtain a decomposition that
is relevant to this problem.

If p = 1, the matrix corresponding to a positive contraction operator
is either stochastic or substochastic; in this case it is well known
that the (C — 1 averages of) iterate elements tlf tend to zero unless
j belongs to a positive recurrent, irreducible class; that each such
class is associated with an invariant probability distribution; that any
invariant probability distribution can be represented as a mixture of
the invariant distributions associated with these classes; and, finally,
that a relabelling of the indices allows the matrix itself to be written
in the form
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(12) T =
Tr

N

where each of the T{ is strictly stochastic, irreducible, and positive
recurrent, and N is a dissipative matrix with the property that C — 1
averages of its iterate elements tend to zero.

The following theorem establishes a similar decomposition for con-
traction operators on the reflexive ^-spaces. The term ergodic contrac-
tion is used in this theorem to denote an irrreducible matrix which
defines a contraction operator on lp with unity in its point spectrum.
Some special properties of such matrices have been established in
Theorems 2.2, 2.5, and 3.3. " Eigenvector " is used throughout the
theorem and its proof as an abbreviation for "eigenvector associated
with the eigenvalue unity."

THEOREM 4.1. Let T be the nonnegative matrix representing a
positive contraction on lp(l < p < oo). Then T can be written in
the partitioned form

(13) Γ =

N

where each of the Tt is an ergodic contraction on lp, and N is a
dissipative matrix with the property that the C — 1 averages of its
iterate elements tend to zero.

The eigenvectors for the individual Tiy if extended by zeros for
all indices outside the corresponding irreducible classes, form eigen-
vectors for T as a whole, and conversely every eigenvector for T can
be represented as a mixture of the eigenvectors associated in this
way with the irreducible classes. A similar statement holds for
the transpose of T. Finally, if x is any vector in lp, the C — 1
averages of the iterates Tnx converge strongly to their ergodic limit,
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which can be represented in a similar partitioned form, with T{

replaced by an irreducible idempotent of unit rank, and N replaced
by zero.

Proof. The significant part of the proof lies in establishing the
following lemma.

LEMMA 4.1. Suppose that T is a positive contraction operator
on lp. Then the index i is in the support of an eigenvector for T
if and only if i belongs to an irreducible class, and the matrix
reduced to this class is 1-positive.

Proof of Lemma .4.1. Let u be any eigenvector, and S(u) its
support. We first note that there is no loss of generality in supposing
that u is nonnegative, for in any case, the vector with components
u'i = \Ui is superinvariant, (TV)* ^ u'i9 and from the assumption that
T is a contraction there can be no indices for which the inequality is
strict. Secondly, if ieS(u), where u is now nonnegative, then by
Theorem 2.5 i is also in the support of a nonnegative eigenvector
for the transpose of T.

Thus we can suppose that the index i lies in the support of a
nonnegative eigenvector u for T, and of a nonnegative eigenvector v
for its transpose. It is convenient to suppose also that u and v are
normalized so that u{ = v{ = 1.

From the minimality lemma (I, Lemma 4.1) it follows next that
for all k, Lik(l) ^ uk (note that the proof of this property does not
depend on the assumption of irreducibility). Hence ΣkLik(l)vk < oo,
and since the vector {Lik(l)} is left subinvariant and the vector {vk}
is right invariant

= Σ Lik(l)t
kΣ
k

kj

for every index k in the support of v (cf. I, Lemma 5.2). But (Equa-
tion I, (13))

= Σ Lik(l)tΣ tki

so that either L^l) = 1, or ti3 = 0 for every index j with vό > 0.
The latter possibility would imply Σύtiύvύ — v{ = 0, contradicting the
assertion that i is in the support of v. Hence Lu(ί) = 1, which
implies both that i belongs to an irreducible class (since it communi-
cates with itself) and that the matrix reduced to this class is 1-
recurrent.

Finally, the fact that this class is 1-positive follows from I,
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Criterion III and the inequalities Lik(l) ^ uk9 FH(1) ^ vk, which together
imply that Σk Lik(l)FH(l) < oo. (Note that from (11) this summation
is restricted to the irreducible class containing i).

This concludes the proof of the lemma, and we proceed to the
proof of the main theorem.

Let ^f denote the set of all indices contained in the support of
at least one eigenvector for T, and Λ" the set of all remaining
indices. From the lemma, every index in ^/έ belongs to an irreducible
class, and since the irreducible classes are distinct, ^ C can be divided
up completely into a finite or denumerable set of disjoint irreducible
classes, say Mlf , Mr, . If T* denotes the reduced matrix, with
row and column entries restricted to Mif it follows from (10) and the
lemma above that each Tt is irreducible and 1-positive.

If u denotes the (reduced) left eigenvector for Ti9 and u{ the
same vector augmented by zeros for the indices not in Mi9 then u{ is
clearly super invariant, and so, from the assumption that T is a con-
traction, actually invariant. Hence, using the notation of the first
paragraph of § 4, the set S(M4) is empty. But a similar argument
applies also to the transpose of T, and so A(Mt) is also empty. (Note
that the argument breaks down at this stage if p = 1, which accounts
for the difference in the representations (12) and (13)). This establishes
the representation (13). The assertion that the C — 1 averages of
iterate elements with row and column indices in Λ" tend to zero
then follows readily from the mean ergodic theorem and the definition
of Λ^. The form of the ergodic limit follows from (11) and the
results already established for irreducible matrices. Finally, the strong
convergence of the C — 1 averages of iterates Tnx follows from the
mean ergodic theorem. The proof of Theorem 4.1 is now complete.
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