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ON QF-1 ALGEBRAS

DENIS RAGAN FLOYD

Let A be a finite-dimensional associative algebra with
identity over a field %z, M an A-module which is finite-dimen-
tional as a vector space over k, and E = Hom; (M, M) the
algebra of linear transformations on 1. For acA. Let a;
denote the linear transformation of M given by ai(x) = ax,
for x€ M. Define the following subalgebras of E:

Ar = {az:ac A}
C ={feE: flax) = af(x) for each ac A, x € M}
D = {fe E: flg(x)) = g(f(x)) for each geC,xec M} .

Clearly, A; S D. Require M to be faithful. Then A is
isomorphic to, and will be identified with, A;. If A =D, it
is said that the pair (4, M) has the double centralizer
property.

A is called a QF-1 algebra if (A, M) has the double
centralizer property for each faithful A-module M,

The following results in the theory of QF-1 algebras are
obtained:

1. Let A be a commutative algebra over an arbitrary
field. Then A is QF-1 if and only if A is Frobenius.

2. Let A be an algebra such that the simple left A-modules
are one-dimensional. Suppose there exist distinct simple
two-sided ideals A, and A, contained in the radical of A, and
primitive idempotents ¢ and f, such that eA,f + 0, for k=1, 2.
Then A is not QF-1,

3. Let A be an algebra with the properties that the
simple left A-modules are one-dimensional, and the two-sided
ideal lattice of A is distributive. Then if A satisfies any one
of the following conditions, it is not QF-1.

(a) There exist, for r = 2, 2r distinct simple two-sided
ideals A,, contained in the radical, and primitive idempotents
e;, and ¢;, for 1 < u, v < r, satisfying e;, A, E;, + 0, where the
index pair (u, v) ranges over the set

1D, 20,22, 32, 33, rr—1 (rn, 1.

(b) There exist, for » = 1, 2r + 2 distinct simple two-sided
ideals A,, and AS, for (u,v)=(1,1), 1,2), -+, (r—1,r—1),
(r—1,7), and (p,v) =(1,1),(2,1),(3, r), and (4, r), and primi-
tive idempotents e,,, ¢;,, and e;, satisfying e;,A.,.e; # 0 and
ekpAﬁejv + 0, where (u, v) and (o, v) range over the index pairs
indicated above.

It is to be noted that the condition given in 2b is but one of

three conditions of that type which may be formulated.
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satisfying either of the other two conditions is also not QF-1.

A special case of (2b) is worth mentioning, namely the case where
the set of index pairs (u, v) which occur in statement is empty. There
are two variants of the case, rather than the usual three. This
special case appears separately in the following form: let A be an
algebra whose simple two-sided ideals are one-dimensional, and whose
two-sided ideal lattice is distributive. Suppose that either (i) ¢,A,e = 0
or (ii) ed,e, = 0, for £k =1,2,3,4, where the A, are distinct simple
two-sided ideals, and the ¢, and ¢ are primitive idempotents of A. Then
A is not QF-1.

The results (2a) and (2b) appear in Chapter 3, and are stated there
in terms which involve the notion of the graph associated with the zero
ideal of an algebra. The notion of the graph associated with A,, where
A, is a two-sided ideal of an algebra A contained in the radical of A
was first used by J. P. Jans in his dissertation. The results above
was stated in more elementary terms for the sake of brevity.

Introduction. Throughout this paper, an algebra will be a finite-
dimensional associative algebra with identity over an arbitrary field.
All modules are finite dimensional over these fields.

In 1946, C. Nesbitt and R. M. Thrall showed [5] that if A is a
Quasi-Frobenius algebra, then each faithful representation R of A is
equal to its own second commutator algebra R”. In 1948 Thrall [6]
initiated the study of the class of algebras A for which R = R” for
each faithful representation R of A. He called this class the QF-1
algebras, and showed by an example that it properly contains the
Quasi-Frobenius algebras.

Although results in the theory of QF-1 algebras have been ob-
tained since Thrall’s original paper, notably by Morita [3], a problem
whose solution was unknown to Thrall remains unsolved to this day.
The problem, which may be posed in the form of a question, is this:
Is the property “QF-1 ness” equivalent to one or more purely internal
properties of an algebra? By the expression “internal properties” is
meant properties of the algebra expressible in terms of the left, right,
or two-sided ideals of the algebra, in terms of the structure constants
associated with a basis, etc.

The main theorems of this paper, Theorems 1.1, 2.1, and 3.2,
may be viewed as contributions to the solution of this problem. The
first of these states that a commutative algebra is QF-1 if and only
if it is Frobenius. The latter class of algebras has several character-
izations which may be called “internal” in the sense of the previous
paragraph. The other results apply to algebras A which are required
to satisfy the first, or both of the following conditions:
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(i) The simple left A-modules are one-dimensional.

(ii) The two-sided ideal lattice is distributive.

The second results below is stated in terms which involve the
notion of the graph associated with the zero ideal of an algebra.
This notion will be defined in § 3. The results are as follows:

1. Let A be an algebra satisfying property (i). Suppose there
exist distinct simple two-sided ideals A, and A, contained in the radical
of A, and primitive idempotents e¢ and f, such that eA,f == 0, for
k=1,2. Then A is not QF-1.

2. Let A be an algebra which satisfies conditions (i) and (ii). If
the graph associated with the zero ideal of A contains a cycle, a
vertex of order greater than three or a chain which branches at both
ends, then A is not QF-1.

1. This section is devoted to the following theorem which pro-
vides a nice characterization of commutative QF-1 algebras.

THEOREM. A commutative algebra is QF-1 if and only if it s
Frobentus.

The “if” part of the theorem is true in general; each Frobenius
algebra is Quasi Frobenius, as was first established by, Nakayama [4]
and Quasi-Frobenius algebras are QF-1, as was shown by Nesbitt and
Thrall.

The proof in the other direction is facilitated by the following
lemma, the proof of which is omitted.

LEMMA. Suppose A is an algebra, and A;,1=1,2, .-+, n are
two-sided ideals of A such that A = A, + A, + --- + A,; where the
sum 1s vector space direct. Let ¢ denote the identity of A, and write
e=2e +e + --- + e, where e;c A,. Then:

(i) FEach e; is the identity for A..

(ii) A 1is Frobenius if and only if each A; is Frobenius.

(iii) A is QF-1 if and only if each A; is QF-1.

We proceed with the “only if” part of the theorem. Let A be
an algebra which is not Frobenius. We shall construct a faithful re-
presentation of A which is smaller than its second commutator algebra.

By virtue of the preceding lemma, we may assume A to be in-
decomposable as a module over itself. Then A = A/N is a simple A
module and each simple A-module is isomorphic to A. For proofs of
these statements, see [1]. Let (A:k) =t < co.

The set S(4) = {x e A: Nx = N = 0} is called the socle of A. It
is well-known that S(A4) is the sum of the simple (two-sided) ideals
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of A. The hypothesis implies that S(4) is not simple. For suppose
S(A) were simple. Let B be a basis for A containing s S(4), and
let f: A—k be that unique linear map satisfying f(s) =1, f(b) = 0,
be B ~ {s}. Clearly S(A) ¢ kerf. Therefore, since each nonzero ideal
of A must contain S(4), it follows that ker f can contain no such
ideals. This implies that A is Frobenius, a contradiction. Thus S(A)
is not simple. Let A, and A4, be distinet simple ideals of A.

Choose a composition series 0 = V,c V,c ... c V, = A satisfying
V,=34,4;, for j=1,2, and V,_, = N. By an inductive procedure,
a single basis for A may be chosen which contains a basis for V; for
each 7. We may assume that that part of the basis in V, but not
in V, is chosen from A,.

Let R denote the regular representation of A relative to the basis
chosen above. Let X; be the induced representation whose space is
ViV, for i =1,2, ..., n. Because the composition factors are all
isomorphie, it may be assumed that for each a ¢ A4, the matrices X (a)
are equal; denote their common value by X(«). R(«) is exhibited in
the following block form:

X(a)

Q@) P(a)

Yi@) Si(a) X(a)

Yi(a) Sia) X(a)

R(a) =

where X(a) and Y(«) are t x ¢t matrices, Q(«) and S;(@) are
(m—m—1)t xt and ¢ X (n —m — 1)t matrices, respectively, and
P) is an (n — m — D)ix(n — m — 1)¢ triangular matrix which has
n — m — 1 copies of X(«) on its main diagonal.

For i =1, 2, let y, denote arbitrary nonzero elements of A4;. For
xeN,yx =2y, = 0. In general, y,xe 4,. Thus, X(¥,), Q(y;) and P(y,)
are zero matrices and Y(y,) = 0,7 %= 5. The matrices Y,(y;) are non-
zero, since otherwise y; would annihilate 4, and hence y,1 = y, would
be zero, contradicting the choice of ;. Furthermore, Y,(y;) are non-
singular, by the following argument: consider the nontrivial linear
transformation T;: A — S; defined by Ty« + N) = y;v. Because A is
commutative, it is easily seen that the T; are A-homomorphisms, and
hence isomorphisms, since A and S; are simple. As Y,(y,) is the
matrix of T; relative to appropriate bases, it is nonsingular. Without
loss of generality we may assume that Y;(y,) is the ¢ x t identity
matrix, I, for ¢ =1, 2.

Let I be the 3 x 3 identity matrix, T the 8 x 8 matrix with 1’s
directly below the main diagonal and 0’s elsewhere. We observe, by
direct computation, that the matrix function
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I x X(a)
S(a) = | I X Q(a) I x P(@)
IXY(@)+Tx Y(a) IxS(a)+TxSx) IxX()

is a representation for A.

Let C represent a matrix in the commuting algebra (V) of V,
the space on which S acts. Then C must commute with the two
matrices representing y, and ¥,

0 0 0 0 0 0
0 0 0| and |O 0 0
IxI, 0 0 TxI, 0 0

This implies that C must have the form

C, 0 0
*x * O y
* 0 Cy
where C, (T x I,) = (T x I,)C,,. The matrix
lO 00
D=0 00
'Tz xI, 0 0

commutes with each matrix C having the above form, yet D = S(«),
for each we A. Thus, A is not a QF-1 algebra. This concludes the
proof.

2. From this point on, we consider algebras A over a fixed field
k with radical N such that A/N is the ring-direct sum of simple
ideals each of which is isomorphic to %.

Each algebra of this type admits a vector space decomposition

(1) A=S+N

where S is the direct sum of ideals of dimension 1 over 4. That is,
S has a basis of primitive orthogonal idempotents {e;}s =1,2, ---, n,
and 1 = Y e¢,. We call the {e;} the collection of idempotents associated
with the decomposition (1).

If I is a simple two-sided ideal of an algebra A it is not difficult
to prove the following facts:

(i) I is one-dimensional

(ii) There exists exactly one pair of indices (¢,7) such that
ede; == 0. For this pair of indices, ele; = I.
Theorem 2.1 gives the first of four conditions which imply that A4 is
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not QF-1.

THEOREM 2.1. Let A be an algebra, A, and A, distinct simple
two-sided ideals of A contained in N, and suppose e;A.e; + 0 for
kE=1,2, where e; and e; are (not mnecessarily distinct) primitive
idempotents of A. Then A is not QF-1.

Proof. 1t is clear that the condition ¢;4,e; + 0 remains true if
e¢; and e; are replaced by isomorphic idempotents. We may therefore
assume that if ¢; and ¢; are distinet they are nonisomorphic. Similar
assumptions will be made tacitly in the proof of Theorem 3.2. We
may choose a decomposition of A of form (1) such that the associated
collection of idempotent contains e; and e;.

We put the left regular representation B of A into triangular
form relative to a basis containing the {e,}, a basis for N, and a basis
b, for A,, k=1,2. Specifically, let xz,(a) be the coefficient of ¢, in
the representation of an element « in A in terms of this basis, and
let () be the coefficient of b, in the expansion of ae;, for k =1, 2,
Since the A, are annihilated on either side by the radical, it follows
that R has the form

z;(a)
P(a) Q@)
R = ’
@ yi(@) Sia) wia)
Yo(@) Sy a) 2()

and that there exist elements a, e A,, for k = 1,2 such that x;(«,),
xi(a,), P(e,), Q(e,) and S)(a,) are zero matrices, and such that y,(«,)
is 0 for I = k and 1 for [ = k.

Let T and T be as in the proof of Theorem 1.1. We observe by
direct computation, that the matrix function

I x zi(a)
S(a) = | I x P(a) I x Q(a)
Ixy(@)+Txyla) IxS(a)+TxS(a) Ixal(x)

is a representation for A. A comparison of S with the regular re-
presentation R shows that S is faithful.

Let V be the module on which S acts. If C represents a matrix
in the commuting algebra C(V) of this representation, then C must
commute with the two matrices

000 0 0 0
0 0 Of and |O O O
I 00 T 0 0
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which represent «, and «,. This implies that C must have the form

C, 0 0
(2) R0,
k * Cll

where C,,T = TC,,. The matrix

0 00
D=}j0 0 0
T 0 O

commutes with each matrix of form (2). However, D = S(a) for each
acA. Thus, S is strictly smaller than its second commutator algebra
S”. This concludes the proof.

3. For an algebra A, the symbol L, will denote the lattice of
two-sided ideals of A. In this section we consider only algebras A
for which L, is distributive. For such algebras, we define a graph,
G,, associated with the zero ideal of A. (This is a special case of
the notion of the graph associated with an arbitrary two-sided ideal
contained in the radical of A-a notion which was first defined and in-
vestigated in [2]). Let {4,}, be the collection of simple two-sided ideals
of A. Let ¢; be the collection of primitive orthogonal idempotents
associated with a vector space decomposition of A of the form (1).
The graph G, consists of a set of n symbols P, ---, P,, called the
vertices of the graph, and a relation R in this set defined by: P,RP;
if and only if there exists k such that e;A.e; + 0. If P,RP; obtains,
then P; and P, are said to be connected by an (oriented) edge. It is
clear that the definition of R does not depend upon the particular de-
composition of A of form (1).

We shall say that the vertex P¢ has right order = (left order 7)
if there exist distinct vertices P;, ---, P;, such that P,RP, (P;,RP))
hold for 7 =1,2,..-,7. The order of a vertex is the larger of the
two orders. A chain C is a set of vertices and edges

(P’L'17 PilRPiz)’ Piz! P'igRPi ) Pi:——l’ P; RP”:H P’ir’ (P”;T—HRP‘i

tr—1

20 " ) PiT_H) ’

such that successive edges are distinct, that is 4, # 7,., for v =
1,2, .-.,7 — 1. The parentheses indicate that the first and last edges
of the chain may have either orientation. The chain C, extends the
chain C, on the right (and C, extends C, on the left) if the last
vertex of C, is the first vertex of C, and identifying these equal
vertices makes C, followed by C, a chain. The chain C is a cycle if
it extends itself. Note that a cycle has an even number of edges.
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A chain branches at one end if it can be extended by at least two
distinet edges at that end.
The following lemma is crucial in the proof of the main theorem.

Lemma 3.1. Let P, RP; ,k = 1,2, ---,m be a collection of distinct
edges of G,. Then for each k there exists special element a,c A, and
representation R, such that:

(1) R, s a triangularized representation of A with the form

%5,
Rlc = Pk Qk ’
Y S, s,

where x; and x; are one-dimensional representations of A.

(2) Rya;) =0 for k=7, and R,(a,) has a 1 in the lower left
hand corner and zeros elsewhere.

(3) +>r, R, is a faithful representation for A.

Proof. Without loss of generality, we may assume that, for each
k,e; Awe;, #+ 0. (Observe that condition (ii) listed immediately preceding
Theorem 2.1 implies that to each simple two-sided ideal is associated
exactly one edge of G,). We choose a decomposition of A of form (1)
such that the associated collection {e¢;} of primitive idempotents contains
e;, and e; , all k. Select 8, #0 in A,. We may triangularize the
left regular representation R of A relative to a basis B containing
the {e;}, containing a basis for NN, and containing S, for each % (here,
distributivity of L, is used, in case m = 3). Let z,(«) denote the coef-
ficient of ¢; in the expansion of an element « in terms of the basis
first selected, and let y,(«) denote the coefficient of «, in the expansion
of ae; . Put A, =3 1{4::7 # k}, and B, = A/Ai. The representation
R, with space B, has, relative to the basis of B, induced by B, the
form described in (1). The elements «, described in (2) can be gotten
as the appropriate scalar multiples of 3, for each k. Finally, that
+3» , R, is faithful is a consequence of the distributivity of L,.

In terms of the graph G,, we can now state three other conditions
for an algebra to be QF-1.

THEOREM 3.2. If the graph G, of an algebra A has a cycle, a
vertex of order greater tham three, or a chain which branches at
both ends, then the algebra is not QF-1.

Proof. We consider separately the various cases. Assume that
G, has a vertex of order greater than three. We may assume that
the order of the vertex in this case is the left order, the other case



ON QF-1 ALGEBRAS 89

being handled analogously. Then there exist four distinct edges

P, RP;, for k=1, .--,4. By Lemma 3.1, there exist four representa-
tions
g
R, =|p, @,
Y, Sk Tsy,

and four special elements «,, k =1, 2,3, 4, satisfying the conditions
of that lemma.

Let I and T be as in the proof of Theorem 2.1, and let I, be
the 6 x 6 identity matrix. Then the matrix function

Iy xx;
(I, 0)xp, IxQ,

0, I) X p,
(I, I) X py
(I, T)x p,

0, I) <y,
(I, I) x ys
(I, Tyxy,

(£, 0)xy, IxS,

IxQ,

IxS,

IxQ,

IxS,

IxQ,

IxS,

Ixw,,

Ixu;
Ixux;

I3

Ixz

iy

is seen, by direct computation, to be a representation of A. A com-
parison of S with the representation +3i_, B, shows that S is faith-
ful. Let C represent a matrix in the commuting algebra & (V) of
V, the module on which S acts. In particular, B must commute with
the four matrices which represent «,, k=1, ---,4. By direct com-
putation one sees that this condition forces C to have the form:

c’ 0 0
0 C"0 0
* *
C =
0
C’ 0
0C'O0
0 0C O
* * 0 0 0
where C’ is a 3 x 3 matrix satisfying TC’' = C'T.
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Let D be the matrix of the same dimensions as C having the
submatrix (0, 7%) x 1 in the lower left hand corner and 0’s elsewhere.
Then DC = CD for each matrix C in & (V). However, D = S(a)
for each awe A, and thus S & S”, concluding the proof for this case.

Now suppose that G, contains a cycle. It can be shown that if
G, has a chain which has a repeated edge then G, has a cycle. Thus
we may assume that G, has a cycle all of the edges of which are
distinct. Let

Pil’ PilRley le, PizRPj e Pjr’ PilRPjr’ .P,;1

1?

be that cycle. Let R, R,,, --- R.., B,. be the representations associated
with the edges of the cycle by Lemma 3.1.

Tj,

R/.tv et P/l» Q,uv (#) ”) = (1y l)y (2y 1)9 cec (19 T) .
Yy, S,“, xi“

From the submatrices of these R,, construct a matrix function R,

X,
R=|P Q@
Yy S X,

which has the following description in block form (it is to be under-
stood that those portions of the matrix blocks not described are filled
with 0’s):

(i) X, is the direct sum of the representations I x x;, for
y=1,2,...,7; X, is the direct sum of I x T, for p=1,2,... 7
and @ is the direct sum of I x Q,, for

(#’ V) = (1’ 1)7 (2, 1)1 (2y 2)! M (T’ Z—)’ (17 T) .

(ii) P has I x P, directly below I x x;, and to the left of
Ix @, for (#,v)ed ~{(1,7)}, and contains T x P,. directly below
I x x;_ and to the left of I x Q..

(iii) S has I x S,, directly below I x Q,,, and to the left of
Ixa, for (p,v)ed.

(iv) Y has I x y,, directly below I x z;, and to the left of
I x Tiy for (¢,v)ed ~{(1,7)}, and contains T X y,;. directly below
I x »;, and to the left of I x ;.

Note that Y has the form
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Iy, T X yy.
I X Yy IXyy,
I Xy, IXuys,
I X Yy,

Ixy. '

I X yt,r—l I X yrr

One shows, by direct computation, that the matrix function con-
structed above is indeed a representation for A. Comparing A with
the (faithful) representation

+2 {R#v: (#7 D) = (17 1)! (2’ 1) ot (Z', T)y (ly T)

we see that R is faithful. Let C be the matrix representing an ele-
ment of the commuting algebra. Z (V) of V the module on which
R acts. Let a,, be the 2z special elements associated with the re-
presentations R,, by Lemma 3.1. Then C must commute with R
evaluated at each of these elements. Direct computation shows that
this forces C to have the form:

Cl

C =
% C’

where C’ is the direct sum of » copies of a 3 x 3 matrix C, satisfy-
ing C,T = TC,.

Now let D be the matrix of the same dimensions as R, which
has 0’s in all positions except the 3 x 3 position corresponding to the
upper right hand corner of the matrix Y. Require that the matrix
in the special position indicated by 7* Then DC = CD, and yet
D # R(a), for each ¢ A. Thus, RZ R", A is not QF-1, and the
proof is complete for this case.

Finally, assume that the graph of A contains a chain which
branches at both ends. It is enough to consider the case that all the
edges involved are distinct, for if they are not distinct the graph has
a cycle. Let the chain and its branches be as follows:

P, RP; P, RP;.
le, PilRle’ iy b Pj? .
P,RP; P, RP;,

There are two other cases to consider, depending on the orienta-
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tion of the first and last edges of C. These cases are handled an-
alogously.

Let R,,, for (#,v) = (1,1),(1,2), ---, (r — 1, 7), and RY, for (o, v) =
1,1),(2,1),(3,7), (4, 7) be the 2¢ + 2 representations associated with
C and its edges as given by Lemma 3.1.

Zj,
R, = P, Q. (#,v)=(@1,1),@1,2), -, (t — 1,7)
y/t,, S/lv xi#
and
2
Rf = Pyp Qf (109 V) = (1y 1)y (27 1)7 (3r T), (41 7'-) .
y, S o,

0

Form the matrix function R,

X,
(3) R=|P @
Y S X

from the submatrices of the R,, and R?, as follows:

(i) X, is the direct sum of I, X «; for v =1,2, .-+, 7; @ is the
direct sum of I, x Q. for (y¢,v)=(1,1),1,2),--+,(t —1,7), and
I, x Q), for (o,v)=(1,1),(2,1),3,7),(4,7); X; has I x &, + I x x,
in the upper left hand corner, I x w,, + I x w,, in the lower right
hand corner and the direct sum of I, x T,y for p=1,2,.-+,7—1in
the middle diagonal position.

(ii) P has I, x P,, directly below Iy x x;, and to the left of
I; X Q,,, and I; x P! directly below I, x x;,, and to the left of I, x Q¢.

(iii) S has (7, 0) x S! directly below I, x Q!, and to the left of
I x 5 (0, I) x St directly below I, x @ and to the left of I x m,,;
(I, I) x S: directly below I; x @, and to the left of I x #,; (I, T) x S
directly below I; x Q:, and to the left of I x x,, and I; x S,, direct-
ly below I, x Q,., and to the left of I, x iy for

(/"y v) = (1, 1)7 (1) 2), vee, (T — 1,7).

(iv) Y has I x y; + I X y} directly below I; X %; and to the left
of I xm, +Ixx,;(I,I)xy directly below I, X x;_, and to the left
of I x m,,; (I, T) x y: directly below I, x y;_ and to the left of I x x,;
and I, X y,, directly below I, x x; and to the left of I, x Ty Note
that Y has the following form:
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Ixuy
Ix yt
I, x y, I, X 9y,
Iy X Yy Iy X %Yy

Iy X Yoy
(I, I) x y¢
(I, T) x 9t

One shows by direct computation that R is a representation of
A. Moreover, a comparison of R with the faithful representation

+Z {R#u(#y 1)) = (13 1)’ (11 2)y ct Yy (T - 1) 7'-)} + 2 {Rﬁ(py U)
=(1,1),(2,1),3,7), 4, )}

shows that R is faithful.

Now let C represent an element of the commuting algebra & (V)
of V the module on which R acts. For convenience, we write C =
(Cipt, 7 =1,2,3, where the dimensions of the C;;’s correspond in an
obvious way to the dimension of the submatrices of R as exhibited
in (8). Let a,, for (#,v)=(@1,1),1,2),---,(zr —1,7), and af, for
(0,v) = (1,1), (2,1), 3, 7), (4, 7) be the special elements of A associated
with the representations R,, and R?, as described in the lemma. C
must commute with the matrices representing these special elements.
This implies that C,, C,; and C,, are zero matrices, and C,, and C,,
are 2z and 27 + 2 copies, respectively, of a 3 x 3 matrix C, satisfying
C,T = TC,.

Now let D be a matrix of the same dimensions as R(a) which
has 0’s in all positions except the 3 x 3 position corresponding to the
lower right corner of the matrix Y. Require that the matrix in the
special position indicated by 72 Then it is easily checked that
DC = CD; however, D + R(a), for each ac A; hence R Z R"; this
concludes the proof for the final case.

We conclude this paper with an example which illustrates the
incompleteness of the theory. Let k be an arbitrary field. The algebra
A of dimension 3 over k consisting of 2 x 2 matrices of the form

a 0
b c

where a, b, and ¢ are in k, satisfies the conditions that its irreducible
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representations are one-dimensional, and its two sided ideal lattice is
distributive. The representation of A consisting precisely of the above
matrices is not equal to its second commutator algebra. However, A
does not satisfy any of the conditions given in the hypotheses of
Theorems 2.1 and 3.2.

Thus, “QF-1 ness” is not a consequence of the negation of any,
or all, of the conditions stated in the hypotheses of these theorems.
A precise characterization of the class of QF-1 algebras, given in
terms of “internal properties” as defined in the introduction, has yet
to be found.

The author wishes to thank Professor Jans for his encouragement
and guidance in the preparation of this work.
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