
PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 1, 1969

ON H-EQUIVALENCE OF UNIFORMITIES (II)

A. J. WARD

This paper, continuing previous work by the same author,
is concerned with the following problem: Given a metrisable
uniformity II for a set X, does there exist another (distinct)
uniformity 55 for X such that the two corresponding HaissdorfF
uniformities induce the same topology on the set, S(X) say,
of all nonempty subsets of X? Sufficient conditions for the
existence, and sufficient conditions for the nonexistence, of
such a uniformity 33 are given, together with related results
concerning the Hausdorff uniformities (derived from II and 55)
for S(XL), where Xγ is a subset of X, everywhere dense in
the topology derived from H.

The notation is that used in the previous paper [4]; Theorem 1
of that paper will be referred to as Theorem 1A, and so on. We
shall also say for brevity that a uniformity S3 is H-singular (over X)
if and only if there exists no distinct uniformity for X which is H-
equivalent to S3 on X.

!• iJ-equivalence on dense subsets* Our first theorem will allow
an improvement of Theorem 4A.

THEOREM 1. Let S3 be a metrisable uniformity for X (that is,
one with an enumerable base in X x X) and Xx a subset dense in
X, in the topology Ĵ ~(S3) induced by S3. Let 11 be another unifor-
mity for X, such that

(a) S'{U) c JΠ^S) on X;
(b) the restrictions Uu SSj of 11, S3 to X1 x Xγ are H-equivalent

on X19

Then if 11 and S3 are not H-equivalent on X the cardinal of X
must be measurable.

We achieve the proof by five propositions, the first two of which
do not depend on the metrisability of S3.

( i ) H e S3.

By Theorem 1A1, Ux and SSL are proximity-equivalent (on XJ; as
SSi is metrisable this implies 1^ c S3lβ Given UQ e 11, take a symmetric

3 3

UeU such that UaU0, and a symmetric Ve S3 such that V C\(X1x Xx)
1 The part of Theorem 1A actually used here was proved earlier by D. H. Smith,

[1, Th. 1].

207



208 A. J. WARD

c U. Given any x e X, since J7~~(U) c _^~(93) and Xι is dense in X,
we have F(α?) Π U(x) C\ XγΦ 0 . Thus if (x, x') e F there exist x19 x[
in Xi with (x, x,) and (α', x[) both in F Π U. Then

(a?lf ccj) G V Π (JCi

so that (x, xf)eUd Uo. That is, VaU0 so that J70 e 93.

(ii) 11,53 are proximity-equivalent on X; hence J7~(VL) — ̂ ~(9S).

3

Let A, B be 93-remote, say F-remote where F G 93 is symmetric.
Then A1 = F(A) ΓΊ Xi and £ x = F(5) ΓΊ XX are F-remote subsets of Xly

so (again since U^ <^Sί are proximity-equivalent) there exists symmetric
UeVi with Λ, Si ^/-remote. Then U{A^, UiB,) are [7-remote in X,
but as Xι is dense we have A a (Aj 93) c (Ax; IX) c J7(Aχ), where (A^ 93)
and (Aα, 11) are the closures of Ax in J^(93), ^^(11) respectively. Simi-
larly S c U{B^), so that A, i? are also ll-remote; the reverse implica-
tion follows at once from (i).

From now on we suppose U, 93 not ίZ-equivalent on X. It follows
from (i), (ii) and Theorem 1A that there exists a set EQcX which
is 93-discrete but not U-discrete.

(iii) If {En; n = 1, 2, •} is a sequence of disjoint subsets of Eo

then, for some N, U(En; n ^ JV) is U-discrete.

We can choose a base {Vn; n = 1, 2, •} of 93 such that each Vn
3

is symmetric, Vn+1 c Vn for all n, and Eo is Frdiscrete. Let

and let f:S-*X1 be such that, for all x in Eny (x,f(x)) e Vn (for each
n ^ 1). Thus if xeEm, yeEn are distinct (whether or not m — n)
we have (f(x),f(y)) ί Vu for otherwise we should have (x, y)e Vmo VΊ

3

o Vn c Fx. Thus / is one-one and St = /(S) is Fj-discrete. By (b) and
3

Theorem 1A, Si is also U-discrete, say [7-discrete where UeU is sym-
metric. By (i) above there exists N with VN c U. Repeating the
argument just used, we see that if m, n are both ^>N then (for xφy)

3

xeEm,yeEn imply (x, y) $ U, since F m o ί/o Vn c C7.

(iv) A finite or countable union of disjoint U-discrete subsets of
Eo is U-discrete.

By (iii) it is clearly sufficient to consider the union of two such
sets DUD2. As disjoint subsets of EQ, Dx and D2 must be 93-remote,
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hence by (ii) U-remote; it follows at once that if each is U-discrete
so is their union.

(v) There exists a subset Eoo of EQ, not itself U-discrete, such
that one at least of any two disjoint subsets of Em is U-discrete.

It is sufficient to consider the case of subsets which are comple-
mentary in Eϋ0 (and so by (iv) cannot both be U-discrete). We suppose
the proposition false and obtain a contradiction. By induction, there
exists (if the proposition is false) a sequence of disjoint subsets of
Eo, say {En, n = 1,2, •••} such that, for each n, neither En nor Eo\
(E, U U En) is U-discrete. (If this holds for n = p, since E = Eo\
(2£i U U Ep) is not of the required type, there exists Ep+ι c E such
that neither Ep+1 nor E\EP+1 is U-discrete.) But this contradicts (iii),
which implies that En is U-discrete for all sufficiently large n.

Finally, we write, for all EczXyφ(E) = 0 if and only if E Γ) Eoo

is U-discrete, <p(E) — 1 otherwise. Propositions (iv) and (v) assure us
that φ is a countably additive two-valued measure for X, nontrivial
since ψ(X) = 1 and <p(F) — 0 for every finite set F. That is, the
cardinal of X must be measurable.

Before applying this theorem to obtain an improved form of The-
orem 4A, we prove the following converse.

THEOREM 2. If & is any measurable cardinal, there exists a
space (X, 33), X of cardinal $ and 33 metrisable, and a uniformity
U(^33) for X such that U, 33 are proximity-equivalent but not H-
equivalent on X, while their restrictions to Xλ x Xu where Xx is a
certain dense subset of X, are H-equivalent on Xlm

Let Y be a set of cardinal ίϊ, A the set of ordinals a, 1 <^ a ^ ω,
and X — Y x A, also of cardinal ίϊ. We define a metric p for X,
and the associated uniformity 33, by writing

p[(v, oc), (2/\ O ] = l i t y * y ' ;

m~ι if y — y'y a = m, a! — ω ,

or if y = yf, a = ω,a! = m;

I m"1 — w11 if y — y\ a = m, α' = w;

0 if # = 2/', a = α\

It is clear that this is a metric, and that ^"(33) is the product of
the discrete topology on Y and the order topology on A. Let φ be a
nontrivial measure for Y with values 0 and 1; write JΓ — {E; EaY
and φ{E) — 1}. We remark that &~ is a countably intersective non-
trivial ultrafilter over Y. For E e ^ and 1 <: w < ω we define (E, n)
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as the set of points [(y, a), (y\ a')] in X x X such that either y = yf

and a — a! or y — yf and a, af both ^n or again #, 7/' both in E and
α, α' both ;>w. It is easily checked that the system {(E, n); Ee ^ ,
1 <L n < ω] is finitely intersective and is the base of a uniformity
for X, which we take for 11. Finally, we put Xλ = 7x(i\{o)}), /9-dense
in X.

The set {(#, ω); y e Y) is S3-discrete but not U-discrete; by Theorem
1A U and S3 are not if-equivalent on X. We prove that the remain-
ing conditions are satisfied.

( i ) 11, 93 are proximity-equivalent on X.

If P, Q are subsets of X such that ρ(P, Q) ^ N~\ then for each
y e Y the set {(y, a); a > N} meets at most one of the sets P, Q.
Write P o c 7 = f e ; 3 α , α > JV, (2/, a) e P} and define QQ similarly. Since
po n Qo — 0 y at most one of Po, Qo, and hence at least one of Y\P09

Y\Q0, is in ^ ^ : say Y\PoeJ^. Then for (y,a)eP and 0/',Oeζ>,
[(?/, «), (I/', <*')] g (Γ\P0, JV -f 1). Thus P, Q are It-remote so that U is
proximity-finer than S3: the reverse relation is trivial. (As S3 is metric
we now know that Uc33, a fact which is easily checked directly.)

(ii) The restrictions of U, S3 are iJ-equivalent on Xx.

Let PaXι be S3-discrete; say p(p,p') ^ N"1 if p Φ p' and both
are in P. Then for each y e Y there is at most one m with m ^ N,
(y, m) e P. The sets Ym = {y; (y, m) e P}, N ^ m < ω, are disjoint,
so there is at most one such m, say m = M, with 7 m e ^ . If ikf
exists it is easily checked that P is (YM, M + l)-discrete. If no M
exists then, since φ(Ym) — 0, all m ^ N, Yo = F\ί7(]Γm; m ^ N) must
be in ^~; again we check that P is (Fo, iV)-discrete. Thus every S3-
discrete subset of Xt is also U-discrete; by Theorem 1A, since (i) holds
and 11 c S3, the restrictions of U, S3 are if-equivalent on XlΦ

To obtain as wide a generalization as possible of Theorem 4A, we
remark that in the statement and proof of Theorem 2A it is essentially
irrelevant that Ka X; K may be any compact uniform space (with
uniformity SB), in particular, any compact T2 space with its unique
natural uniformity. With a view to a later application, we point out
further that when we say that an indexed set {y^ i e 1} is "F-discrete,
we mean that (yi9yj)sV and i,jel imply yί = yjί not necessarily

THEOREM 3. Let (X, S3) be a uniform space, S3 having an enu-
merable base, (B, SB) any precompact uniform space. Suppose there
exists a set of functions {fi:B—>X; ie 1} such that
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( i ) \J(fi(B);ieI) = X;
(ii) for each beB, the set E = {fi(b); i e 1} is V-discrete, for

some fixed FeS3;
(iii) the functions fit ί e I form an equi-uniformly continuous set.

Then, if (and in general only if) the cardinal of X is nonmeasura-
ble, S3 is H-singular over X.

COROLLARY. The theorem holds whenever I has nonmeasurable
cardinal.

We omit the details of the proof, which proceeds by extending
the functions /,- to map the compact completion of (B, W) into the
completion of (X, S3), almost precisely as in the first part of the proof
of Theorem 4A, and then applying Theorem 1. (It is known that if
the cardinal 5E of X is nonmeasurable then so is the cardinal of its
completion; in this case as S3 is metrisable the completion has cardinal
at most 2®.)

To prove the Corollary we observe that, whatever may be the
cardinal of B, each f(B) is precompact in a metrisable uniformity,
hence of cardinal (£, so that by (i) and the properties of cardinals we
know that the cardinal of X is nonmeasurable.

If the cardinality condition is dropped, the subspace (Xl9 S31
{Xx x X$) of Theorem 2 provides a counter-example. We take for B
the subspace {nr1; n = 1, 2, •} of R\ with the obvious mappings
fyin'1) = (2/ι n) e %i, for each yeY.

2* A simple sufficient condition for a metric uniformity to be
iϊ-singular* The criterion of Theorem 2A is intrinsic for the space con-
cerned, but rather complex. Our remark above, that K need not be
a subspace of X, strengthens the theorem but removes its intrinsic
character. We can however deduce, in the case when S3 is metrisable,
a simple intrinsic criterion sufficient for iϊ-singularity. The idea used,
and the basic lemma needed, can be stated without the assumption
of metrisability; the rest of the proof is essentially similar to that of
the well-known theorem stating that every compact metric space is a
continuous image of the Cantor set, though there are minor technical
complications.

We say that a uniform space (X, S3) is equi-uniformly locally
totally bounded (abbreviated as e.l.t.b.)2; and in particular F0-e.l.t.b.,
if and only if there exists Vo e S3 such that, for every Vt e S3, the
number of (distinct) points in an arbitrary F0-small and VΊ-discrete

2 I am indebted to the referee for pointing out that this is equivalent to saying
that 23 has a basis defined (in the usual manner) by a star-bounded [2, p. 94] collec-
tion of coverings of X.
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subset of X is bounded. We denote by N(VΊ) the greatest such
number (for a given Fo). We define similarly a (F0)-e.l.t.b. subset of X.

LEMMA. If X is V0-e.Lt.b., and if V, Fie93 are symmetric and
2

F c Fo, then there exists a set of at most N(Vi) sets Eny each V-dis-
crete, such that U VΊ(En) = X.

n

Proof. Let J? be a maximal Frdiscrete subset of X; since E is
maximal V^E) = X. Let Ei be a maximal F-discrete subset of E, E2

of E\Eίt E3 of E\(Et U E2) and so on; if and as soon as E1 U U En

— Έ we terminate the process. If x is any point of E, V(x) (being
Fo-small) contains at most N(V1) points of E. If, for any m,Em is
defined and x & Eγ U U Em1 then by the maximality condition each
of Eu , Em must meet V(x) n E. Thus m ^ NiVJ-1, as xeE; hence
# € Et U U Em for some m ^ NiVJ. Since a; is arbitrary in E we
have, for some m ^ iV^) , E' = Eι U U Em and so 1 = V^E) =

U U

THEOREM 4. // (X, SB) is a complete e.l.t.b. space, and S3 has a
countable base, then 93 is H-singular over X.

COROLLARY. The same is true if X is not complete, if its car-
dinal is nonmeasurable.

We suppose, for convenience, 93 defined by a metric p; we write
as usual F e for {(x, y); p(x, y) < ε}, S(E, ε) for Vε(E), and say ε-discrete,
ε-e.l.t.b. for Fe-discrete, Fε-e.l.t.b. Let then X be εo-e.l.t.b., and let
εi = εo/lθ. By the lemma, we can find a finite number NQ of disjoint
5ε2-discrete sets, say Eny 1 ^ n ^ No, such that U S(En, εx) = X. We
now take a sufficiently large index set /, the same for all n, and
index the points of each En as x^ri) (repetitions being allowed but the
whole of En being covered).

For each integer p*>l9 let Np be the maximum number of points
in any 2-pεΓdiscrete set of diameter at most 22-pε1(<ε0). We define,
in succession, for each x e Eo = U En and each finite set of indices nu

* jnp such that 1 ^ nr ^ Nr all r, a point y(x; nx , np) in such a
way that

( i ) U (S[y(x; O , (l/2)ej; l^n^NJ^ S(x, ej;
( i ) ' U (S[y(x; nt, , np), 2-»eJ; l^np^ Np)

3 -S[»(ίc; nί9 , ̂ _ x ) , ^-'ej for p > 1;
(ii) tfiKa?; raj, α] < ^
(ii)' p[y(x; nu . . . , np), »(a?; n l f , np^)] < 21-»e1, p > 1 .
By the definition of Np this is obviously possible (repetitions be-
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ing allowed).
Let K (compact) be the product of discrete spaces Do, D19 , Dpy

• •; Dp having Np members for each p >̂ 0. A point k of K may be
represented by a sequence of integers {k(p); 1 ̂  k(p) ̂  Np, p — 0,1, •};
the product—topology is induced by the metric d(k, kf) = 2~p if and only
if p is the least r such that k(r) Φ k\r) (and of course d(k, k) = 0). We
define /<(&) as l im^^i/^^O)]; k(l), ••• &(p)) It follows from our re-
quirements above, by standard arguments, that fi(k) is defined for all
ke K and that the functions fi are equi-uniformly continuous from
(K, d) into (X, p). Moreover, the set {/*(&); fc(0) = m} is compact and
contained in the closure of S(Xi(m), 2ε1) and, being dense (at least) in
S(Xi(m), εx), it contains S(Xi(m), εx). We note that, since the points y
are defined as functions of the points x, not directly in terms of the
indices ie/, if for any i, jel we have x^m) = αλ, (m) then /̂ (A:) = /,•(/?)
whenever k(0) = m. If however Xi[k(0)] and ^^[^(0)] are distinct then
(since En is 5εL discrete for each n) p(fi(k), fj(k)) ^ 5et — 4εL — ε1# Thus
all the conditions of Theorem 1A, as modified by the remarks follow-
ing Theorem 2, are satisfied, and our theorem is proved.

The corollary follows at once, with the help of Theorem 1, by
applying the theorem to the (metric) completion of X, which is clear-
ly also e.l.t.b.

3* Griteria similar to that of Theorem 4* There seems to be
a natural connection, at least for metrisable uniformities, between
local total boundedness and iϊ-singularity. The construction of the
counter-example in [3] depended essentially on the fact that the space
considered was, so to speak, "uniformly locally nontotally-bounded"; one
can make this notion precise and show that such a (metric) uniformity
is certainly not H-singular. The wide gap between these two oppos-
ing criteria may be somewhat narrowed; we give below two theorems
which say, very roughly, that in each case a finite number of small
portions of the space may be disregarded (as will be seen, the exact
expression is rather complicated). I have not however been able to
obtain any necessary and sufficient condition for iZ-singularity. (For
simplicity, our results are stated in terms of a given metric.)

THEOREM 5. If (X, p) is a complete metric space such that, for
each δ > 0, there exists a finite set E(δ) with X\S(E(δ), δ) e.l.t.b.,
then the uniformity 33 defined by p- is H-singular. The same holds
for X not complete, if its cardinal is nonmeasurable.

Proof. Suppose X ^-complete, and U ϋΓ-equivalent to 33 on X.
Given ε > 0, put δ = (l/3)ε and form E(δ). For each xm in E(δ) the
sets S(xm, δ) and X\S(xm, 2δ) are ^-remote, hence (Theorem 1A) U-



214 A. J. WARD

remote; that is, 3Z7m e U such that if p(xm, x) < δ and (x, y) e Um then
p(xm, V) < 2δ and hence ρ(x, y) < 3<5 = ε. By Theorem 4, IX and S3 in-
duce identical uniformities over the closed, hence complete, set X\
S(E(δ),δ). Since E(δ) is finite it easily follows that for some UoeU
we have (x, y)eU0=$ ρ(x, y) < ε, all x,yeX; that is, 11 z> 93. The
reverse inclusion certainly holds since 93 is metric and U, 93 are prox-
imity-equivalent .

As before, we deduce the corollary by means of Theorem 1. We
remark that it is easy to show by examples that Theorem 5 is effec-
tively stronger than Theorem 4.

Finally, we give a theorem in the opposite direction. Since the
construction and proof are very similar to those used in the special
case described in (2), they are given in a slightly condensed form.

THEOREM 6. Let (X, p) be a metric space such that, for some
δQ > 0, there exists in X a 2δϋ-discrete sequence {xn; n = 1, 2, •} of
distinct points, with the following property; for any δ,0 < δ -^ δ0,
there exists rj = η(δ), 0 < η ^ δ, such that, for every integer m and
every sequence {yn; n = 1, 2, •} satisfying S(yn, δ) c S(xn, δ0) for all
n, all but a finite number of the sets S(yn, δ) contain η-discrete sets
An each having more than m members. Then the uniformity 93 de-
fined by p is not H-singular over X.

Proof. Define δp inductively by δp+1 = (l/4)η{(lJ2)δp}, all p ^ 0
(so that δp ^ 2~3*>δ0 since η(δ) ^ δ). If and only if E is a 2^-discrete
set we define h(p, E, x) as max [0,1 — δ~ι

p+1p(x, E)], and dPfE(x, y) =
h(p, E, x) + h(p, E, y), except when there is a point z of E such that
x and y are both in S(z, δp+1), in which case dp>E(x, y) = \ h(p, E, x) —
h(p,E,y)\. We define a uniformity U with a sub-base consisting of
all sets of one of the forms

(a) {(x, y); dp>E(x, y) < ε}, where ε > 0 and E is 2δp-discrete;
(b) {(x, y); \f(x) — f(y) | < ε}, where / i s any uniformly continuous

function from (X, p) to the unit interval [0,1].
It is easily checked that 11 c 93, that 11, 93 are proximity equivalent
(because of the presence of the sets of type (b)), and that any 93-
(i.e., |θ-)discrete set E is also It-discrete, since, for some p, E is 2δp-
discrete. Thus, by Theorem 1A, II and 93 are iZ-equivalent.

It remains to prove that 11 Φ 93. It is sufficient to show that,
given any finite set of h-ΐunctions, there exists an infinite (1/2)<5O-
discrete set, at all points of which all the h-functions vanish; for as
the /-functions are bounded we can apply to them a "pigeon-hole"
argument and thus show that, for any given Z7eU, (x, y)e U cannot
imply p(x, y) <
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Suppose then that m0 of the given h-ίunctions have p = 0, m1

have p — 1, and so on up to mq with p — q say. Apply the condition
of the enunciation, first with d = (l/2)S0 and ra = 1 + m0, putting
3/Λ = xn. It can be seen, by calculating distances, that for any 280-
discrete set E and any given n there is at most one set S(y, δj,
y G An, which meets {x; h(0, E, x) Φ 0}. If therefore n ;> NQ (say) we
can choose xn>1eAn such that all the m0 /^-functions with p = 0 vanish
throughout S(xnΛ, δj: moreover S(xnΛ9 SJ c S{xn, (3/4)S0}. We repeat
the argument with /̂w = xn,i for n ^ No (and, say, #w = α;u for ^ < No),
putting m = m1 + 1, <5 = (1/2)^, and so on. Finally we obtain a set
of points {xn,q+1; n ^ ΛΓ̂ } at which all the given ^-functions vanish;
since xn,q+1 e S{xn, (3/4)δ0} the set {x%,9+1} is (l/2)£0-discrete.

As an example of the application of Theorem 6, let Xo be (cf.
[3]) the set of all bounded real sequences x = (x0, x19 x2, •) with the
metric p(x, x') = sup | xn — x'n |, and let X r be the subset of Xo defined
by xQ = r, 0 ^ xn ^ 1 for 1 ίg n 5g r, Xπ = 0 for n > r. The subspace
X = U (Xr; r = 1, 2, •) satisfies the conditions of Theorem 6, so that
the uniformity defined by p is not iϊ-singular over X. We note that
X is locally compact and tf-compact, so that a metric uniformity may
have quite a 'good' topology and yet not be iϊ-singular.

REFERENCES

1. D. Hammond Smith, Hyperspaces of a uniformizable space, Proc. Cambridge Phil.
Soc. 62 (1966), 25-28.
2. J. R. Isbell, Uniform spaces Math. Surveys 12 (1964)
3. A. J. Ward, A counter-example in uniformity theory, Proc. Cambridge Phil. Soc.
62 (1966), 207-208.
4. , On H-equivalence of uniformities (the Isbell-Smith problem), Pacific J.
Math. 22 (1967), 189-196.

Received June 30, 1966. This paper was written while the author held a visiting
position at the University of Washington.

CAMBRIDGE UNIVERSITY, CAMBRIDGE, ENGLAND






