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INCIDENCE MATRICES, INTERVAL GRAPHS AND
SERIATION IN ARCHAEOLOGY

Davip G. KENDALL

The work of Fulkerson and Gross on incidence matrices
shows that the question, whether a given incidence matrix A
can be so re-arranged by rows as to bring together all the 1’s
in each separate column, can be settled if one merely knows
A through the symmetrised product A”A. Suppose it is known
that such a row re-arrangement exists; it is proved here that
A can then be re-arranged in the required way if one merely
knows A through the dual symmetrised product, AA”.

Thus A”A and AA” contain respectively (i) information
sufficient to decide on the possibility or otherwise of such a
re-arrangement, and (ii) information sufficient to determine a
sorting algorithm,

Implications for archaeology are briefly discussed.

For the mathematical background to this paper the reader is
referred to D.R. Fulkerson and O.A. Gross [1]; for archaeological
motivations he is referred to the author’s papers [3] and [4], and
especially to the latter. There it is pointed out that the mathematical
problems of recognizing incidence matrices with the ‘consecutive 1’s
property’ (i.e., zero-one matrices permitting a re-arrangement of rows
which bunches the 1’s in each separate column), and of sorting the
rows of such a matrix so as to bring the 1’s together, have much in
common with the archaeological problem of ‘sequence dating’ first
formulated in 1899 by Flinders Petrie. What distinguishes the two is
that in the archaeological situation one is concerned with zero-one
matrices permitting a re-arrangement of rows which only approxi-
mately bunches the 1’s in each separate column. (Normally the rows
represent say graves, and the columns represent objects or aspects of
objects which may or may not be present in a given grave. The re-
arrangement of rows determines the ordinal chronology of the graves,
and this in turn assigns a range of ‘sequence dates’ to each object
or feature). Despite this important difference, however, it is main-
tained here that the mathematical problems can be a convenient source
of tentative heuristic algorithms for use in the archaeological one.

Note that incidence matrices having the consecutive 1’s property
are those which after row re-arrangement have a single bunch of 1’s
(if any) in each column. It is useful also to have a name for incidence
matrices which display this pattern of 0’s and 1’s as they stand, no
re-arrangement of rows being necessary; we shall therefore call such
a matrix a Petrie matriz. Theorem 2.1 of [1] can then be formulated
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as follows: ©f A and B have the same shape and if ATA = B'B, then
A can be row re-arranged so as to become a Petrie matrix if and
only if this is true of B. Thus, if we are only interested in the
possibility (or otherwise) of casting A into Petrie form by sorting rows,
then the question can be answered even if A has been lost, provided
that the symmetrised product A”A has been recorded. In the ar-
chaeological context the corresponding question is not of primary in-
terest. One normally knows (or at any rate believes) that some kind
of chronological seriation is possible, and on the other hand one can
be virtually sure that no re-arrangement of the rows will create a
perfect Petrie pattern. The problem of primary interest here is not
that of deciding whether we are dealing with seriated material, but
rather that of constructing an acceptable seriation. (See, however,
the remarks in the final paragraph below.)

A graph-theoretic algorithm for casting a ‘consecutive 1’s’ matrix
into Petrie form was given by Fulkerson and Gross in [1]. Nothing
is known yet about the performance of this algorithm in the presence
of perturbations (i.e., when the best row re-arrangement of A is only
approximately Petrie). It seems likely that other procedures, sub-
optimal in the mathematical problem, may have a compensating ro-
bustness which will make them preferable when we come to deal
with the archaeological problem. One such sub-optimal procedure will
now be described, but first we must prove a new result which com-
plements the Fulkerson-Gross theorem.

We shall find the following definition useful; bearing in mind an
earlier mathematical approach [6] to sequence dating, we shall say
that a square symmetric matrix S is a Robinson wmatriz when, in
going (i) to the left, or (ii) down, from any position on the main
diagonal, the elements never increase. We now prove the

THEOREM. Let A be a row-permutation of a Petrie matriz. Then
the row-permutations which give to A the Pelrie form are exactly
those which, when applied simultaneously to the rows and columns of
S = AA?, give to that the Robinson form.

Proof. (1°) Because (PA)(PA)" = PSP”, it is clear that any per-
mutation applied to the rows of A acts simultaneously on the rows
and columns of S. Thus it suffices to show under the stated hypothesis
that A is Petrie, if and only if S is Robinson.

(2°) Suppose then that A is Petrie, and let us prove that S is Rob-
inson. For all zero-one matrices, S necessarily has a weakly dominant
main diagonal, and therefore we have only to show that neither of

(1) Sij>sik With j<k<7:
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and
{2) sy < sy WwWith 1 <j<k

is possible. Now (1) implies that, of those columns which have 1’s
in the ¢th row, strictly more have 1’s in the jth than in the kth row,
and this in turn implies the existence within A4 of a pattern

() +-+1--
(k) +++0---
(i) el

contrary to hypothesis. Similarly (2) leads to a contradiction.

(3°) Now suppose that S = AA" is a Robinson matrix. We must
show that A4, if it admits a Petrie sorting, is already a Petrie matrix.
First observe that if B is obtained from A by suppression of rows,
then BB” will be Robinson if AA" is so. Now if A is not already
Petrie, it must contain three rows displaying the pattern

c1...
.0---
N

Suppress all rows but these, and call the result B. There are eight
possibilities for the columns of B:-

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
a b ¢ d e I g .

Suppose that each occurs the indicated number of times, and bear in
mind that ¢ is strictly positive. The lower triangle of BB” will be

«
B8 v
0 13 4

where
a=a-+b+c+d,

B=a+b,
Yy=a+b+te+ [
o=a-+c,
eE=a-+ ¢,

{=a+c+e+g.
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We know that BB” is Robinson, and so we have the inequalities

et+c=a+b=a+b+c+d,
at+c=a+eza+c+etyg,
a+b=a+db+e+ f,
at+e=a+bt+e+ f.

These tell us that 0 < ¢ < min (b, ¢), so that each of b and e is positive.
Thus A contains the pattern

(i) 1 1 0
(9) 1 0 1
k 0 1 1.

Now A admits a Petrie sorting. Imagine such a sorting carried out.
The new row orderings must be (i% or ki)j or j(tk or ki), in order
to bunch the 1’s in the central column in the pattern displayed above,
but all four of these orderings wreck the bunching in either the first
or the last column. This contradiction implies that the matrix A must
already possess the Petrie property, as was required to complete the
proof of the theorem.

From the theorem it follows that S = AAT retains enough of the
structure of A to permit the construction of a row-permutation which
will restore the Petrie character to A, whenever such a permutation
exists; that is, in view also of the Fulkerson-Gross theorem, A”A tells
us whether there is a solution, and AA” then enables us to find it.

One way of finding a satisfactory permutation is of course to
permute the rows and columns of S until that matrix acquires the
Robinson form. This corollary therefore provides a justification for
what is very close to Robinson’s original procedure [6], although he
did not envisage applying it to AA”; he worked with square symmetric
matrices arrived at in a quite different way. The scanning of all
double permutations of rows and columns is however a very tedious
operation, and an impracticable one when the number of graves (i.e., of
rows and columns of S) is more than say 8 or 9. For a larger number
of graves than this one could of course scan just a subset of the whole
group of permutations, and a programme along these lines could be
worked out using the ideas of [2].

Another method of procedure stems from the fact that S has the
character of a similarity matrix; that is, we can think of s;; as an
indication of how like the 4th row (grave) is to the jth row (grave),
‘like’ here being associated with nearness in time. This observation,
combined with our knowledge that S does contain all the necessary
information required for the construction of a ‘petrifying’ permutation,
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strongly suggests that one should try the effect of using S as the
similarity matrix initiating a Shepard-Kruskal multidimensional scaling
(say in 2 dimensions). The details of multidimensional scaling will be
found in [5]; for our present purpose it suffices to say that this pro-
cedure generates a two-dimensional representation in which the <th
row (grave) is represented by a point P; in such a way that, as far
as possible, s,, > s;; when and only when P,P, < P;P;, the pairs (g, h)
and (4, j) being distinct. When we are dealing with the mathematical
problem, A being an incidence matrix with the consecutive 1’s pro-
perty, we should hope that the output of the multidimensional scaling
would suggest a linear ordering of the points (P;) which corresponds
to a permutation of rows restoring to A its Petrie character. When
we are dealing with the archaeological problem, A now being the row-
re-arrangement of a matrix which is only approximately Petrie, we
might expect in the same way to be led to a chronologically appropriate
seriation of the graves. For a rather artificial example, see [4]; ex-
periments with genuine data will be reported elsewhere.

Those who are familiar with multidimensional scaling will recall
that that program makes no use of the diagonal elements s; of the
similarity matrix. In the application suggested here this is entirely
natural, because a row-and-column permutation which gives to S the
Robinson form will do so whatever the diagonal elements may be,
because they cannot fail to dominate. Thus the diagonal elements
contain no information concerning the sorting permutations.

In view of the duality between the Fulkerson-Gross theorem and
the one presented here it is natural to ask whether ¥ = A”4 (which is
also a similarity matrix, this time for objects) could be used to initiate
a multidimensional scaling from the output of which one could decide
whether A is or is not the row-rearrangement of a genuine or ap-
proximate Petrie matrix. This matter deserves careful study, but
here we shall content ourselves with pointing out that the ‘duality’
referred to is slightly misleading. We cannot just exchange rows and
columns and proceed as before, because rows represent interments which
occur each at a single point of time, whereas columns represent ob-
jects or varieties and these persist throughout a period of time (during
which they are ‘fashionable’). Thus what is needed is a variant of
the multidimensional scaling programme which will represent columns
(7) by say disks (D;) in such a way that the area of D;N D; is an
increasing function of ¢;;. (Similarity is now associated with the extent
to which the ranges of the two objects overlap.) No such programme
has yet been devised. When one is available, then the complementary
or pseudo-dual procedure implied by the Fulkerson-Gross theorem could
be tried out.
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