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A REPRESENTATION THEOREM FOR MEASURES
ON INFINITE DIMENSIONAL SPACES

FRANZ HARPAIN AND MAURICE SION

If X is a locally compact, regular topological space, then
the well known Riesz representation theorem sets up an
isomorphism between the family of all bounded Radén outer
measures on X and the set of continuous positive linear
functionals on the family of continuous functions with compact
support in X. In this isomorphism corresponding elements, [
a linear functional and # a measure, satisfy the relationship
UI(f) = \fdy for all continuous functions f with compact support
in X.

Since an infinite product of locally compact, regular spaces
is in general no longer locally compact with respect to the
product topology, the Riesz representation theorem fails to
hold for such spaces. In this paper, an analogue of the Riesz
representation theorem is obtained for this case,

The main idea is to replace the various families mentioned above
by the following:

(i) A family & of cylinders whose elements act like compact
sets for a “pseudo-topology” &, where ¥ is closed under finite inter-
sections and countable unions and is a subset of the product topology.

(ii) A family M of bounded outer measures, related to & and
% in much the same way as bounded Radén outer measures are
related to compact and open sets.

(iii) A family F of functions depending only on a finite number
of coordinates, with respect to which they are continuous and have
compact support.

(iv) A family L of positive linear functionals on the linear span of F.

Under the added hypothesis of o-compactness of the coordinate
spaces, we show that L and M are isomorphic in such a way that
corresponding elements, ! in L and g in M, satisfy the relationship

W) = Sfdy for all fin F.’

Moreover we show that the elements of M can be viewed as the
projective limit measures of projective systems of bounded regular
Borel measures.

From the integrability of the members of F',it follows that all bounded
Borel functions which depend only on a finite number of coordinates are
also integrable. Thus the simple functions used by Silov [7] and the tame
functions used by Segal [6] and Gross [2] in the development of an
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integration theory on Hilbert space are included among the integrable
functions of the measures considered here. (For a good guide to the
literature in this area see the bibliography in Gross [3].) Our results
therefore not only characterize an important class of linear functionals
in terms of projective limits of regular Borel measures, but also enable
one to extend these functionals to a much wider class of functions
through a standard integral with respect to a measure, thereby obviating
the need to develop a special theory of integration in infinite dimensional
spaces for this purpose.

1. General notation.

(1) @ is the empty set.

(2) o is the set of natural numbers.

(3) R is the set of real numbers.

(4) <« is a compact family if and only if for every subfamily
& of &, if the intersection of any finite number of members of .o
is nonvoid, then the intersection of all members of .o~ is nonvoid.

(5) For f a function on X to R and A C X,

S| A is the restriction of f to A,
1, is the characteristic function of A4,
| flle = sup{| f(®)|:ze X},
fT(x) = max {0, f(x)} for xe X,
support f = closure {x: f(x) > 0} if X is a topological space.
(6) If fornew,a,isaset,a,c R, f,isa function on X to R, then
a, 1« if and only if a,C @,,, and U,.. 2, = «,
a, ! a if and only if a, < a,., and lim,., ¢, = a,
fulf if and only if for all zeX, f.(x) < fou(x) and
lim,., f.(2) = f(x).

(7) For I an index set and X, a set for each <¢l,
i X; = {®: z is a function of I with z, ¢ X, for each 7 ¢ I}.

(8) p is a Carathéodory measure on X if and only if g is a
function on the family of all subsets of X such that ¢#(2) = 0 and
0= p(A) = >neo t(B,) < oo whenever AC U,.. B, C X.

(9) For g a Carathéodory measure on X, A is p-measurable if
and only if Ac X and for every BC X, #(B) = (BN A) + p(B — A).
A, = {A: A is p-measurable}.

(10) p isa Z-outer measure on X if and only if x is a Carathéodory
measure on' X, & C _#,, and for every A C X, #(4A) = inf {u(B): Be &
and AC B}.

(11) g is the Carathéodory measure on X generated by 7z and
% if and only if ¥ is a family of subsets of X, 7(4) = 0 for every
AecZ, and for BC X u(B) = inf {3),. 5 7(4): 5# C &, 57 is countable
and BC U, .» A}
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(12) For X a topological space, ¢ is a Radon outer measure on
X if and only if p is a Carathéodory measure on X such that
(1) open sets are p-measurable,
(2) If C is compact then g(C) < oo,
(8) if A is open then p(A) = sup {¢(C): C is compact, C C A},
(4) if Bc X then p(B) = inf {¢£(A): A is open, B C A}.

(13) For X a topological space, g is the topological measure
cranked by 7 if and only if 7 is a function on the family of closed
compact subsets of X, 7,.(4) = sup {¢(C): C is closed compact and C C A4}
for A an open subset of X, and p is the Carathéodory measure on X
generated by 7, and the family of open subsets of X.

(14) REMARKS. We mention here two well known facts about
Carathéodory measures:

(1) The Carathéodory measure on X generated by v and &

is in fact a Carathéodory measure on X.

(2) If X is locally compact and regular and z is a function

on the family of closed compact subsets of X such that for A, B

closed and compact we have 0 < 7(4) < (AU B) £ t(4) + t(B) < =

and (AU B) = 7(A) 4+- z(B) if AN B = @, then the topological
measure cranked by 7 is a Raddén outer measure on X. (See for

example Sion [8].)

2. The family % of cylinders. Throughout this paper we
suppose that 7 is any index set and that for each te T, Y, is a locally
compact, o-compact and regular topological space.

2.1. DEFINITIONS.

(1) X =1L, Y.

(2) I is the set of nonvoid finite subsets of 7, ordered by in-
clusion.

For ¢,7el with 1y

(3) X, =1l.:7Y, is equipped with the product topology (which
is locally compact, o-compact and regular),

(4) .27 is the family of closed compact subsets of X;,

(5) m; (respectively m;;) is the canonical projection of X (re-
spectively X;) onto X,

(6) For Ac X, cyl A = w7 [A].

If no confusion is possible we will for ¢ e T identify ¢ and {¢}, Y,
and X,,. Thus Y, = X, = X, and %, = 7.

2.2. DEFINITIONS.

(1) & = {a: there exists te I and B¢ 2% with a = ¢yl B}. Thus
& is the family of cylinder sets which for some 7¢I have a compact
base in X,.
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(2) <, is the closure under finite intersections of the family of
complements of sets in &
(3) < is the closure of &, under countable unions.

The essential properties of & are the following:

THEOREM 2.3. & s a compact family.

COROLLARY 2.4. The closure of & under finite unions 1is a
compact family.

COROLLARY 2.5. If ae% and, for each mew,B,c%, with
aC U,eo B, then there exists Ne w such that a C U2, B,.

Proof of 2.3. Let .o be any subfamily of & such that for any
nonvoid finite BC.%” we have M..;& * @. For each aec.w let
t. € I be such that a = cyl 8 for some Be %%, . Let S = U... %, and
for each ¢te S choose a, ¢ .o with te<,, and let C;, = 7,Ja,]. Then C,
is compact in X, and C, # @. Let z be a fixed point in X with z, e C,
for each te S.

Then C = {xeX:x2,eC, for teS and z, =2, for teT-S} is a
compact subset of X with respect to the product topology. Now let
&# be the family of nonvoid finite subsets of &, Then <7 is directed
by inclusion. If for each Be <Z we let Ty = Uacp %, then T is finite,
For each Be <7 choose y?€Nsex BN nt «,. Then y?eC, for each
teT, and if 2® is defined by «f = y? for te Ty and «f = z, for
teT — Ty, then € N;.z B and 2 € C. Hence {x?; Be <&} is a net
in C, and since C is compact, this net has a cluster point z. If ae .7
then % € a for any B e <% with {a} © B. Therefore the net {z%; B ¢ <&}
is eventually in a for each ae.o. Hence x €« for each ac. and
SO Nuew & #+ Q.

Proof of 2.4. See Meyer [5] p. 33.
Proof of 2.5. Immediate from the definition of £, and 2.4.

The following well known elementary lemma will be needed later:

LEmmA 2.6, If iel, A, B are open in X;,v€ Z%; and vy AU B,
then there exist a, B e 2% with a C A,BC B and aU B = .

3. The family M of measures.

3.1. DEFINITION. M = {¢: ¢t is a bounded outer measure on X
such that
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(1) zc.z,
(2) p(A) =sup{p(a):ae % and ac A} for Ae 2,

(3) M(B) =inf{p(A): Ae = and Bc A} for BC X}.

3.2. DEFINITIONS. For any set function 7 on &

(1) 7 satisfies condition (a) if and only if z is bounded, 7 () = 0 and
foreveryieIanda,Be 95 0<t(eyla) <t (eylanNeylB) < t(cyla) +
(cyl B) and z(cyla UcylB) = t(eyla) + z(cylB) if anB = @.

(2) 7 satisfies condition (b) if and only if for every 1€ I, x e 5%,
te T — 1 and sequence C in 5% with C, C interior C,,, for n € and
C.,1X, if j=40U{t} and B,={reX;:zx|ica and «,cC,} then
7(eyl B,) 1 t(cyl @). (Note that we certainly have cyl 8, ] cyl @.)

(3) 7.(4) =sup{r(a):ae® and ac A} for Ae 2.

The key results of this section are summed up in the following

THEOREM 3.3. Let v satisfy conditions (a) and (b) and p be the
Carathéodory measure on X generated by v, and <. Then

(1) preM and pt agrees with t, on &,

(2) of vel, p(A) = p(eyl A) for AcC X, i) = 7 (cyla) for
ae %; and v; 1is the topological outer measure on X, cranked by t,,
then v; is a bounded Radén outer measure and pt; agrees with v; on

A«
For the proof of this theorem two preliminary lemmas are needed.

LeMMA A. Let 7 satisfy condition (b). Then for i,jel withiCj
and ae % we have t(cyl @) = sup {c(cyl B): B € .2%; and cyl B C cyl a}.

Proof. Follows easily from condition (b) and induction.

LeMMA B. If 7 satisfies conditions (a) and (b) then . is countably
subadditive on Z.

Proof. Let A,e % for new,e >0 and aec & withac U,.. 4,.
Foreachnew,A,=Unc, B.n WhereB,,, € Z,. Soa C U,co Umeo Ban and
hence by Corollary 2.5 there exist N, M € w such that « < U%_, U¥%_, Bon-
Let, for 0 <n < N, E, = UX,B,, and %, be such that E, = cyl 4,
for some A,C X; . Let i, be such that a = cylv for some ve %%
Let ¢ = 1,, U}, ©., then ¢ is finite and 4, 4. By Lemma A of this
section choose Be %%; with cylSca and z(a) < z(cylB) + ¢. Now
for 0 < n < N, m;[E,] is open in X; and B c x,[a] c Ui, 7,[E,].
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By Lemma 2.6 and induction we can, for 0 < n < N, find B, € 57
with 8, c z;[E,] and 8 = U2, 8.. Thencyl 8 = Ui, cylB,. Cc UV E,.
By condition (a) we have z(cylp) < S5 . 7(eyl8,). Hence 7(a) <
T(eyl B) +e=30lt(eylB,) e = S To(B,) + e = DeoTel(4) +6. Tt
follows that 7, (U,..4.)=sup {t(@):ae Zand @« CU,c.4.} = DT (4,).
We now proceed to prove Theorem 3.3.

Proof of 8.3(1) Since, by Lemma B, 7, is countably subadditive
on & and since ¢ is closed under countable unions we have for
Ae <2, m(A) = t,(A) and therefore for BC X, p¢(B) = inf {(A): Ae &
and Bc A}. Furthermore, since clearly p(a) = z(a) for each ae <&,
it follows that for Ae &, (A) = sup {(a): « ¢ Z and o A}. Now,
since p certainly is a bounded Carathéodory measure on X, all that
remains is to show ©°c _#.. So let Ae &, BC X and ¢ > 0. Choose
B'ez with Bc B and (B’ < u(B) +¢. Letae® withacB NA
and (#(B' N A) < ¢(a) + . Let Be @ with S B’ — aand (B — a) <
M(B) +¢e. By Lemma A we can suppose that a U B¢e % also. Then
PBOA) + (B~ A) = p(B'NA) + B — ) £ ) + 1B) + 2 =
MU ) + 2¢ = (B + 2 = p(B) + 3.

Hence (BN A) + (B — A) = p(B) for all Bc X. It follows that
o .

Proof of 3.3(2) Let vy, be the topological outer measure on X;
cranked by z,. By condition (a) and Remark 1.14.2 we have that v,
is a bounded Radon outer measure on X;. Let A4 be open in X,.
Since X, — A is closed and X, is o-compact, we can for n e ® choose
C,e 277 such that C, 1 (X; — A). Then 4 = N,..(X; — C,). Since
eyl (X; — C,) €« we have

(X — C,) = 11 (eyl (Xi — C) = 7 (eyl (X — C.)
= sup {t(B): Be & and B eyl (X; — C,)}
= sup {z (eyla): ¢ € 2 and e (X; — C,)}
= sup {t;(a): a e 27 and aC (X; — C,)}
=X, — C,).

I

Furthermore since the X, — C, are p,-measurable as well as y,-mea-
surable we have p,(4) = lim, ., p(X; — C,) = lim, ., v{(X; — C,) = v,(4).
Hence p; and v; agree on open sets. If D C X; then v;(D) = inf {v;(4): 4
isopen in X;and D C A} = inf {y,(A): A is open in X;and D C A} = p,(D).
Hence p; <y, always.

Now let Be . Given ¢ > 0 choose A open in X; with BC 4
and v,(4) < vi(B) +¢e. Since y,(4) = v;(B) + v, (A — B) we have
v;(A — B) < ¢ and consequently z,(4 — B) < &. But p;(4) < p1(A—DB) +



THEOREM FOR MEASURES ON INFINITE DIMENSIONAL SPACES 53

Hti(B) < p(B) + ¢. Hence

t:(B) = inf {¢;(A): A is open in X; and B C A}
= inf {v;(4): A is open in X; and BC A}

3.4. M as related to projective limit measures. Suppose that for
each t¢e I, &z is the o-ring generated by .27; and v, is a measure on
. We call {v;:1¢cI} a projective system of measures if whenever
1,5 ¢l with 1 j we have for Ae %

vi(4) = v, (' [AD .

We say that the projective system {v;: i€ I} admits a projective limit
measure vy if y is a measure on the o-ring <% of subsets of X generated
by {cyl B: Be <Z, for some i eI} such that for each 1el and Aec <7,
v(eyl A) = v,(4). Such a measure v, if it exists, is unique and can thus
be called the projective limit measure of the system {v;:7 ¢ I}.

For more general definitions of projective or inverse systems of
measures see Choksi [1], Mallory [4] or Meyer [5].

Now, if for 7€l we call vy; a bounded regular Borel measure
whenever v, is a bounded measure on <% such that for every Ae <

v;(4) = inf {v(B): B is open and A C B}
= sup {v;(C): Ce 247 and C C A}

we then have

THEOREM 3.4.1. peM if and only if it is a <-outer measure
on X and p| < is the projective limit measure of a projective system
{tt.: 1€ I} of bounded regular Borel measures p; on 7.

Proof. Suppose pre M. Then p is a Z-outer measure on X. If
pi(A) = p(eyl A) for A e =z, then clearly {¢;: 7¢I} forms a projective
system of measures and p|.<Z is clearly the projective limit measure
of this system. Using 3.3(2) one can easily check that each p; is in
fact a bounded regular Borel measure on .<Z.

Conversely let ¢ be a Z-outer measure on X and p|.<Z be the
projective limit measure of a projective system {y:7ec I} of bounded
regular Borel measures y; on .. Let for each 7¢] and ae 9%,
7(eyl @) = p(a). Then 7 is a set function on & satisfying conditions
(@) and (b). Let v be the Carathéodory measure on X generated by
7, and <. Then by 3.3(1), ve M. Clearly y|.<#Z is the projective limit
measure of the system {v;:ie I} where y;(4) = v(cyl A) for Ae 7.
From 3.3(2), we see that p; = v; for each 1eI. Hence ¢|.# =vy|.#
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Since c Z, |2 =v|Z and therefore, since both g and v are
Z-outer measures on X, we have ¢ =y. Hence pe M.

4. The representation theorem.

4.1. DEFINITIONS. (1) For ¢ e I, Cy(X) is the set of continuous real
valued functions on X; with compact support.

(2) For ieIl and heCy(X,), cyl h is the function on X given by
(eyl h)(x) = h(x|1) for every ze X.

(8) F = {f: there exists 1€ and ke Cy(X;) with f = cyl h}.

4.2, DEFINITIONS. (1) L = (I: 1l is a positive linear functional on
the linear span of F such that
(1) there exists K > 0 with |I(f)| £ K|| f||l- for all feF,
(2) if 4,5el with 1Cj, feC(X,) and, for necw, f, € C(X))
with cyl £, ] eyl f then l(cyl f,) 1 l(cyl f).}
(Note that in the definition of L above, condition (1) does not necessarily
imply condition (2).)
(2) For leL,7’ is the set function on & given by 7X(a) =
inf {l(f):1. =< feF} for aeZ.

Our basic theorem now is

THEOREM 4.3. For each le L there exists a unique p'e M such
that the relationship I(f) = S fayt holds for all feF. Moreover the
mapping l — ¢ is an tsomorphism between L and M.

For the proof of this theorem we will need three preliminary
lemmas.

LEmMMA C. For leL,iel and ae 5%,
tl(eyla) = inf {{(cyl f): 1, < fe Cy(X))} .

Proof. Suppose he F and 1., < h. We want to find fe Cy(X))
with 1, < fand cyl f < h. By definition there exists j € I and g € C(X)
such that 2 =cylg. Let k =1Uj. For ze X, let hy(z) = h(y) for
some y € X with y |k = z. (Note that 2,(z) is independent of y provided
y|k =z, and that cyl h, = h.) Since ge Cy(X;) and h,(2) = g(z|j) we
have that A, is uniformly continuous on X,. Hence if for xze X;

f*(x) = inf {h,(2): 2€ X, and 2|1 = x}
= inf {h(y):ye X and y|i = x}
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then f* is continuous on X;. Moreover it is clear that cylf* <h
and 1, < f*. Since X; is locally compact and regular there exists
feCyX,) with 1, £ f < f*. Hence 1, < f and cylf < k. It follows
that

i (cyl @) = inf {{(h): 1o = h e F}
= inf {l(cyl f): 1. = fe Co(Xy)} .

LEMMA D. Let le L, 1el,axe 2;. Then for every € > 0 there
exists A open in X, with a« C A such that for any je€l with 1Cj
and feCyuX;) with ||flle =1 and {x: f(x) > 0} C ;' [A — a] we have
lieyl f) < e.

Proof. By Lemma C choose h e Cy(X;) with 1, <% and l(cylh) <
ti(cyl @) + ¢/2. Let

A= {o:(1+ ¢/l + 21yl h)h@) > 1} .

Then A is open and a < A. Now let jeI with 1 j. Suppose first
that ge C(X;) with 0 < g <1 and support g m;7[4 — a]. Let 8 =
7;; [support g]. Then «, 8 are disjoint compact subsets of A and so let
V, W be disjoint neighborhoods of « and £ respectively with VU W A.
Let v, weCy(X;) with 1, v <1, and 1, =w<=<1,. Then v + w <
1 + ¢/1 + 2l(eyl h))h and therefore

leylw) + l(cyl w) < l(cylh) + €/2
< 7tleyla) + e < l(cylv) + €.

Hence I(cyl w) < e and since cyl g < cyl w we have by condition (2) of
4.2(1), that l(cylg) < l(cylw). Thus l(cylg) < e.

Now let fe Cy(X;) with || fll. =1 and {z: f(x) > 0} Cc 77 [A — «a].
For ncew let B, = {=: f(x) = 1/n}. Then B,c.%; and B, C interior
B Let g,eCy(X;) with 1, =g =<1,  and let f, = f-g,. Then
support f,C B, Cmii[A—a],0=f,<1, and hence by the above
argument, l(cylf,) <e. Since f,1f" we have by condition (2) of
4.2(1), that l(cyl f,) ] l(cyl f*). It follows that [(cyl /™) < ¢ and there-
fore l(cylf) < e.

LemmMA E. For le L, Tt satisfies conditions (a) and (b).

Proof. Condition (a) follows easily from Lemma C using well
known standard arguments. To prove condition (b), let ie I, ae 57;,
te T — ¢ and C be a sequence in .9%; with C, < interior C,., for nc w,
andC, 1 X,. Letj=4U{t}and B, ={re X;:2|ieaand x,€C,}. Then
cylB, 1 eyla. Given ¢ > 0, by Lemma D, there exists A open in
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X, with ac A such that for any geCy(X;) with [[g]l. <1 and
{x: g(x) > 0} c 7;}/[A — ] we have l(cyl g) < e. Choose fe C,(X;) with
1, =f=1,and let k,eC(X,) with 1, <k, =1, .

For e X; let f.(») = f(@]1)-k.(x,). Then f,eCy(X,),1; = f, and
eyl f. T eyl f. By Lemma C choose %, e C(X;) with 1, < h, < f, and
L(eyl b,) =7'(cyl B,) +¢&. We note that f, — k., € Co(X)), || fo—hpuille =1
and {x: (f, — h.)(@) > 0} C7;'/[A — «]. Hence by Lemma D,

Leyl (fa — has)) <&
Since f, = fu— My + hayy Wwe have l(eyl f,) = L(eyl (fu—hus0) + eyl b,y)
<leylh,.,) + ¢ < th(eyl B,.) + 2¢.
Hence
t'eyla) = l(eylf) = limi(eyl f)
<liml(cyl b,y) + ¢ < lim 7' (eyl B,s1) + 2¢ .

new neEw

Thus z'(cyl @) < lim,,., 7' (eyl 8,) and since certainly the reverse in-
equality holds, we have 7'(cyl @) = lim,., 7" (cyl B.,).

Proof of 4.3. Let le L. By Lemma E, 7' satisfies conditions (a)
and (b) and hence by 38.3.1 the Carathéodory outer measure p¢' on X

generated by 7% and & is in M.

Now suppose fe F. By definition there exists ¢€ I and ke Cy(X)
such that f=cylh. If for every AcC X; we let pi(4) = p(eyl A)
then gcyl hdpt = Shdm. If for ae 2%; welet tia) = t'(cyl @) and let
vt be the topological outer measure on X; cranked by <!, then by
3.3(2), V! is a Raddn outer measure on X, and ! agrees with v} on all
yvi-measurable sets. Hence since & € C(X;) we have

ghdug - ghdyﬁ )

Furthermore if 1,(9) = l(cyl g) for ge Cy(X;) then [, is a positive con-
tinuous linear functional on C,(X;) and by Lemma C

tia) = inf {l(9): 1, £ ge Cy( X))} for aec 2#;.

Hence by the Riesz Representation Theorem I; and v} satisfy the re-
lationship

L(g) = Sgd»g for all geCyX)) .
Hence I(f) = L(cyl h) = L(h) = Skdvé = Skd;zﬁ

- Scyl hdy = S fdp .
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To show uniqueness, suppose e M and I(f) = S fdp for all fe F. For
each 1€l let p,(4) = p(cyl A) for AcC X, ti(a) = p(cyl o) for ae 577
and v, be the topological outer measure on X; cranked by z;. By 3.3(2),
y; is a Radon outer measure on X; and p; agrees with v, on 7,
hence also on .<Z. Furthermore for all fe Cy(X))

[ v = | s = st 1) = | sages = | a

and therefore by the Riesz representation theorem vy; = vi. It follows
that g; and ! agree on <%.. Hence the projective systems {y;| <Zi: i € I}
and {¢| <Z:1eI} are equal and so their respective projective limit
measures, which by 3.4.1 are | <# and p'| <z, are also equal. Since
& C % we have that ¢ and ¢ agree on < and so ¢t = ¢!, The mapping
{ — ¢t is now clearly an isomorphism between L and M.

5. Example to show that o-compactness of the coordinate
spaces is needed. Let R have the discrete topology (which is not
o-compact) and consider R* with the product topology. For ke Cy(R)
and x ¢ R?, let (cyl, h)(z) = h(x,) and (cyl, 2)(x) = A(x,).

Let F, = C(R?)
F, = {f: f = cyl, h for some ke C(R)}
F, = {f: f = cyl,h for some heC,(R)}.

Using the notations of this paper, welet T = {1,2}, Y, = Y, = R with
the discrete topology and define X, &, &, M, F and L as before.
First we note that F = F, U F, U F, and that since pairwise inter-
sections of F,, F, and F, consist of the zero element only, every f in
the linear span of F has a unique representation as f = f, + f. + f:
where f,c F, for n = 0,1, 2. For fixed z¢ R* (which equals X) define
I by I(f) = fi() + 2fi(z) + 2fy(2) for f in the linear span of F. Then

l € L but we shall show that there is no ¢ € M such that I(f) = S fdy for
all fe F. Suppose wedid findsuch a te M. Thenif A = {xe R v, =z}

we have 1,¢ F,C F and hence
(A = S Ldp =1(L) = 2-1,(5) = 2.
We next note that 1,,€ F,C F and so

D) = | Ladp = 1) = L@ = 1

Furthermore since A4, {#} and A — {2} are all pg-measurable we have



58 FRANZ HARPAIN AND MAURICE SION

(A — () = p(A) — p(le) =2 -1 =1

On the other hand A — {2} c R* — {2} which is in Z.
Hence

(A — {z}) = ((R* — {2})
= sup {¢(a): € & and a C R* — {z}}
=sup{l(1,):ac& and aC R* = {z}} =0

since I(1,) = 0 for any ae & with z¢ a. Hence A — {z} would have
to have measure zero and one simultaneously, which is impossible.
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