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EXTENSIONS OF A FOURIER MULTIPLIER
THEOREM OF PALEY

JOHN FOURNIER

Let A be the class of continuous power series on the unit
circle T, that is those continuous functions / whose Fourier
coefficients f(ri) are 0 for negative indices n. It is known that
the most that can be said about the size of the coefficients of
such / is that they are square summable. For instance Paley
proved the following: Suppose that Σ7 I w(n) |2 = oo. Then
there is an / in A with Σo° \f(n)w(ri) | = oo. In other words
the I2 sequences are the only multipliers which map A into
the class of absolutely convergent power series.

The main result of this paper is that Paley's theorem can be ge-
neralized as follows: Let G be a compact Abelian group with a par-
tially ordered dual group Γ. Denote by A the class of continuous
functions f on G whose Fourier coefficients f(y) vanish off the non-
negative cone S of Γ. Let E be a totally ordered subset of S and
w be a function defined on E which is not square summable. Then
ΈtE I f(Ύ)w(y) I = oo for some / in A.

The class A when Γ is in fact a totally ordered group is a fre-
quently considered generalization of the algebra of continuous power
series. In this situation S itself is totally ordered so that Σs I w(τ) |2< °°,
whenever Σ | f(y)w(y) | < oo for all / in A. This was obtained for
G = Tn by Helson [4] and in general by Rudin [8, p. 222]. Their
proofs differed from Paley's although his method can be made to work
in the situations they considered.

Now the power series discussed in the first paragraph are the re-
strictions to the circle of those functions which are continuous on the
closure of the unit disc and analytic in its interior. From this point
of view it would be natural, when G = T2, to let A be the class of
restrictions, to the distinguished boundary of the unit bidisc, of func-
tions which are continuous on the closure and analytic in the interior
of the bidisc. These are precisely the continuous functions on T2

whose Fourier coefficients /(m, n) vanish off the first quadrant S of
Z2. The full analogue of Paley's theorem would be that every sequence
w with the Paley multiplier property, Σ | w(N)f(N) | < co for all /
in A, is square summable.

It is not known whether this strong version of theorem holds.
The Helson-Rudin proofs for the case when S is a half space depend
on a property of the analytic projection L taking trigonometric poly-
nomials Σr/(7)7(α) into Σs/CrMα). Specifically, || Lf\\p ^ Kp || / ||,
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for p < 1. The corresponding projection when S is the first quadrant
does not have this property [12, Th. 4] and [13, p. 208].

Except for this, however, the above mentioned proofs work in
the double power series case. A simple counterexample to the full
analogue of Paley's theorem would provide a simple proof that the
double analytic projection is not bounded from L1 to Lp for any p < l .
As Helson observed, by a theorem of Bohr [2, p. 468, Th. 5], there
are Paley multipliers on power series in infinitely many variables which
do not even tend to 0; so the infinite dimensional version of Paley's
theorem is false. This paper is the result of an attempt to settle
the question for two or more variables.

What our main theorem says about Paley multipliers w on double
power series is that Σΐ=i I w(Nk) I2 < °° for any sequence {Nk}ΐ=i, of
pairs of nonnegative integers, which is increasing in the strong sense
that the Nk are distinct and the sequences of first and second com-
ponents are nondecreasing. It follows easily that all such Paley mul-
tipliers w tend to 0 but perhaps not fast enough to make Σ s \ w(N) |2 <
oo. So it is still not known if the only Paley multipliers on double
power series are square summable. The proof of the main theorem
does not involve properties of the analytic projection, however, and
this suggests that Paley's theorem may not be as closely related to
the boundedness of the projection as the previous proofs suggest.

As we shall see in § 3, Paley multipliers can be thought of as
coefficients in a semi-lacunary series on a somewhat larger group than
G. The proof of the main theorem takes advantage of this fact and
the method can be applied to lacunary Fourier series in other situa-
tions. In order to present the idea in a simple setting, we begin in
§ 2 with such an application to semi-lacunary trigonometric series. In
§ 3 we use the same general approach to prove the main theorem.
Section 4 contains a discussion of Paley multipliers on power series in
several variables; a number of special results not depending on the
main theorem are obtained. In §5, we investigate Bohr sets, that is
those subsets of S whose characteristic functions are Paley multipliers.
It turns out that all such sets are finite unions of sets in each of
which no two elements are related under the partial ordering of Γ.
Finally, in § 6, we return to the subject of Fourier series whose re-
strictions to S are lacunary and obtain some information about such
series from our main theorem.

Notation and terminology have been taken from [8], which is a
good source for the facts which we shall assume in what follows.

2* We begin with an illustration of our method in a simple setting.

THEOREM 1. Let E — {mΛ}~=1 be a set of positive integers with
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mn+ι > 2 mn for all n. Suppose that f is a function in U(T) with
f(m) = 0 for all nonnegative m which do not belong to E. Then

Proof. We can assume that || / ||x = 1. Factor f — gh where g

and h are in U(T) with \\g\\2 = \\h\\2 — 1.

Then f(m) = l/2ττ Γ g{θ)h{θ) exp (-imθ)dθ
J—π

( 1 ) i.e., /(m) = <flr, χ n>

where χ(θ) = exp (iθ) and <(.,.)> is the usual inner product in the Hu-
bert space L\T).

By assumption the inner product in (1) is 0 for most nonnegative
m. The theorem is a consequence of the following result about such
inner products.

LEMMA 2. Let H be a Hilbert space and Mt c M2 c c MN be
closed subspaces of H. Let A19 A29 •••, AN be unitary linear opera-
tors on H with AιMιdA2M2d aANMN. Suppose that g and h are
elements of H satisfying:

( i ) AnheAn+1Mn+i for n = 1,2, . . . , J V - 1
(ii) g is orthogonal to the subspaces An+1Mn for n — 1,2, •••,

N-l.
Then ΣΠ<9,Anh>\2£4\\g\\2.\\h\\\

To prove the theorem let H be L2(T) and take Mn to be the closed
subspace of L2(T) generated by {χmh | - mn ^ m < 0}. Clearly

Λfi c ikί2 c c Mn c Mn+ι c .

Define An by Awfc = χOT Â: for all k in ί ί .
The subspaces AnMn are the closed linear spans in L2(T) of

{χmh I 0 ^ m < mn}. So, ΛΛίi c A2M"2 c c A%MW c An+1Mn+1 c .
Also as mw < mn + 1, A f̂e e An+1Mn+1 for all ^.

Finally An+ίMn is the closed subspace generated by

{χmh I mw + 1 - mn^m < mn+ι} .

Now mw + 1 — mΛ > 2 mn — mπ = mw so that mn+1 — mn ^ m < mn+1 im-
plies mn < m < mn+1. For such m, <(̂ , χmK} = f(m) = 0 by assumption.
Therefore ζg, ky = 0 for every generator A: of An+ιMn and hence for
all k in An+ίMn and (ii) holds.

The lemma applies for any fixed N to yield

N

71 = 1
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Therefore Σ?=i I/W> I2 ^ 4.

Proof of Lemma 2. Again normalize by assuming | | 0 | | = ||/&|| = l .
By Mo we shall mean the subspace of H consisting of 0 alone.

For n — 0,1, , N let feΛ be the orthogonal projection of h onto
Mn. Then the sequence kx — k09 k2 — klf , kN — kN_λ is orthogonal and

N

( o \ V II Z* h II2 — II l fr II2 < 1
1

Now for each n, An(h — kn) is orthogonal to AnMn. But for
m<n, AJi e Am+1Mm+1 c AnMny and Amkm e AmMm a AnMn. So for dis-
tinct m and n, An(h — kn) and Am(h — km), are orthogonal with norm
at most 1.

Write <flr, Awfe> = <(/, A. ίλ-fcJ) + <g, An(kn-kn^)y + <g, Awfcn-i> =
α» + δ» + cw say.

By (ii) cΛ = 0 for all w.
By BesseΓs inequality,

F i n a l l y \bn\ ^ \\g\\.\\An(K - kn^)\\ = \\kn - kn^\\ so t h a t b y (2)

The triangle inequality for I2 yields [Σf I <J9, Anh> |2]1 / 2 ^ 2.

Results like Theorem 1 are well known for lacunary series, i.e.,
series with f(m) = 0 for all m off E [14, p. 205, Remark (a)]. The
fact that the same is true for semi-lacunary series is implicit in an
argument of Rudin, [9, §5.7], and seems to be well known among
Fourier analysts. So the novelty of Theorem 1 lies in the method of
proof rather than the conclusion. On the other hand, the most general
situation in which our method works seems different from the one in
which the usual technique works; we shall compare them in § 6.

For the moment, let us remark that a simple modification of the
above handles the case when, for some λ strictly between 1 and 2,
mn+1 > Xmn for all n. It turns out that if / is as in Theorem 1 then
Σ ^ \f(m) I2 ̂  (Vk + I)2 II / II2, where k is an integer chosen so that
Xk ^ λ/(λ - 1).

3* In what follows, G will be a compact Abelian group and Γ
will be the dual group of G, with the group operations written addi-
tively. S will denote a semigroup in Γ which contains 0. We let A
be the algebra of continuous functions f on G for which f(y) is 0 off
S. For definiteness, the reader may find it convenient to imagine
that G = T\ Γ = Z\ and that S is the first quadrant in Z\
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Let M be the class of Paley multipliers on A, that is those se-
quences {w(7)}reS with Σ*l/(7)w(7)| finite for all / i n A. In other
words for each w in M, the mapping /—*{f(7)w(j)}res sends A into
l\S). In fact, by the closed graph theorem, this is a bounded linear
operator. So M is a normed linear space with the operator norm:

]| w \\M = s u p Σ l/(7)w(7) I (/ in A and || / Ĥ  = 1) .

Observe that if v is a sequence with | v(y) | ^ | w(y) | for all 7 in
S then \\v \\M ̂  || w |U In particular this is true if v is a truncation
of w which agrees with w on part of S and is 0 elsewhere.

For any sequence e(7) = ± 1 we have that | Σ s ε(7)/(7)^(7) | ^
II v) lU ll / I loo. Therefore the mapping /—> Σ ^ ε(7)^(7)/(7) is a bound-
ed linear functional on A of norm no greater than | |w|U By the
Hahn-Banach theorem it has a norm preserving extension to all of
the continuous functions on G. This means that there is a bounded
regular Borel measure μ on G with | | μ | | ^ \\w\\M and

= ί /
for all / in A. Taking / = 7 for any 7 in S we obtain:

= \ y(x)dμ(-x) = I Ύ(-x)dμ(x) =
j 0 J<?

The property that for every choice of signs 5(7) there are mea-
sures μ satisfying (1) characterizes M and was used by Helson and
Rudin in their proofs of Paley's theorem ([4] and [8, p. 222]).

Now S induces a partial ordering of Γ under the rule: 7i ^ 72 if
and only if 72 — 7i e S. The order relation is transitive and invariant
under addition but it may happen that 7X ^ 72 ^ 7i without 7L = 72.

We can now state and prove our main theorem.

THEOREM 3. Let weM and EczS be totally ordered under the
order induced by S. Then

Proof. It is enough to prove the theorem for \\w\\M = 1 and E
finite. Let 71 <£ 72 ^ ^ 7iV be the elements of E. Denote by v
the truncation of w to E: V(Ύ) = w(i) if ΎβE and v(y) = 0 otherwise.
As observed above \\v\\M ̂  1.

Let ε(7) be any sequence of ± 1 on S. There is a bounded re-
gular Borel measure μ on G with || μ \\ ^ 1 and £(7) = e(7M7) for all
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7 in S.
Fix K > 1. As E is finite there is a trigonometric polynomial P

on G with HPH, ̂  K2 and P(τ) = 1 on E [8, Th. 2.6.8]. Then / =
P*μ is a trigonometric polynomial with the following properties:
(2) | | / | | x ^ K\f(i) = 6(y)w(Ύ) on E and 0 elsewhere in S, and
/(7) = 0 off the support of P.

It is a theorem of Little wood [5] that, if for each choice of signs
there is an / satisfying (2) and with / = 0 off E, then ΣJE I w{y) |2 ^
BKA where B is a fixed constant. Our problem is to reach the same
conclusion assuming only that f(y) = 0 on the rest of S.

In order to make use of the random signs ε(γ) in the above, we
introduce the Rademacher functions. Let Q be the Cartesian product
of N copies of Z2, the additive cyclic group of order 2. Denote the
elements of Q by t = (tlf , tn) with each tj = 0 or 1. Define the
w'th Rademacher function τn by

1 if tn+ι = 0

By (2), for each t in Q we can find a trigonometric polynomial

f(t, x) on G so that ί |/(ί, x) \ dx ^ iί2, [/(ί, )Γ(^) = 0 off the support

of P and

if 7 =
( 3 ) " ^ /J x " 0 for all other y in S

Letting dt be the Haar measure on Q which assigns mass 2~N to

each point, we get \ \ \f(t, x) \ dxdt ^ K2. That is, if we assume for
JQJG

the moment that / is a measurable function on Q x G, then fe Lι(Q x G)
with norm no greater than K2.

In fact, / is a trigonometric polynomial on QxG, that is, a finite
linear combination of continuous characters on QxG, but to be sure
of this we must look at the set of such characters, i.e., the dual
group of Q x G.

To begin with, the complete set of characters on Q is the set of
Walsh functions ψ(m)(t)y m = 0,1, , 2N - 1 [3, pp. 376-377], which
are defined as follows. We write

m = 2ni + + 2Λ*, 0 ^ n, < n2 < < nk

and let ψ(m)(t) = rni(t) rn2(t) rnk(t), with the convention that
ψ(O)(t) = 1. R, the dual group of Q is the set of all such functions,
under multiplication.

The dual group of Q x G is R x Γ [8, Th. 2.2.2] so that the
products ψ(m){t)y{x) form the complete set of continuous characters
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on Q x G.
For fixed t, f(t, x) is a trigonometric polynomial on G whose

coefficients are 0 off the support of P. As Q and R are finite, all
functions on Q are trigonometric polynomials and in particular [f(t, )]A(7)
is a trigonometric polynomial on Q for each 7. So, the finite sum/(ί, x) =
Σjresuwp y(%)[f(t,-)]A(y) is a trigonometric polynomial on Q x G.

Write /(ί, B ) Λ = ΣϊίLV Σrerα(ra, 7)iKm)(ί)7(a). Clearly α(m, 7) = 0
unless 7 e supp P and in view of (3) we have

, , x , (w(7n) if 7 = 7n and m = 2"
( 4 ) α ( m , 7 ) = .

(0 otherwise for 7 in S

We have no information about α(m, 7) when 7 is in supp P but not
in S but this will not matter.

The proof now proceeds much as in Theorem 1 with the products
ψ(2n"1)yn playing the role of the thin set of characters {χmn}»=i.

F a c t o r f ( t , x) = g ( t , x ) h ( t , x) w h e r e g , h e L 2 ( Q x G) a n d \\g\\2 =
11 /} 11 — 11 f 111/2 < τr
II ^ I12 — II / | | i ^ -ft-.

For all m, 7

α(m, 7) = I I g(t, x)h(t, x)y(x)ψ(m)(t)dxdt ,
( 5 ) JQJG

i.e., a(m, 7) = <flr, ψ(m)7hy .

We wish to apply Lemma 2 with Anfc = ψ(2n-ι)ynk for all ifc in
U(Q x G). Assume for a moment that subspaces Mn can be chosen so
that the hypotheses of the lemma hold. Then, in view of (4) and (5)

I2 = Σ
1

which is what we want, as K is any constant larger than 1.
It remains to chose the Mn so that the assumptions of the lemma

are satisfied. This is the only part of the proof where the total or-
dering of E is used.

Let Mn be the closed linear span in L2(QxG) of {ψ(m)jh | (m, 7) Φ
(0, 0), 0 g m < 2n, -7« ^ 7 ^ 0 } . As 7i < 72 < < 7* it is clear
that MΊ C M2 C c Mn.

The set {^(m) | 0 ^ m < 2n} is the subgroup of the Walsh func-
tions generated by rQ, rx, •• ,rΛ_1. Therefore, Awikf% is the closed sub-
space generated by {ψ(m)jh | (m, 7) Φ (2n~\ 7W), 0 ^ m < 2 % , 0 ^ 7 ^ 7«}.
Certainly Aiik^ c A2M2 c c ANMN. Moreover

for n<N and (i) holds. Again this depends on the fact that 7n fg Ύn+1.
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Finally if m < 2n, rn is not one of the factors of ψ(m). So

ψ(m)ψ(2n) = ψ(m)rn = ψ{m + 2%) .

Therefore, An+1Mn is the closed linear span of

I (m, 7) =*= (2% 7»+1), 2 ^ m < 2*+1, 7»+1 - 7. ^ 7 ^ 7%+1} .

Now when m and 7 satisfy these restrictions, then γ e S a s 7«+i — 7* ^ 0,
and by (5) and (4), <g, ψ{m)jh)> = α(m, 7) = 0, That is <#, k} = 0 for
every generator & of An+1Mn and hence for every k in An+ίMn. (ii)
holds and the proof of the theorem is complete.

In fact the argument actually works under somewhat weaker as-
sumptions than those above.

DEFINITION. A set IczΓ is called convex if {7 | Ύ1 ^ 7 ^ 72} c /
whenever 7X and 72 are in I.

THEOREM 4. Lei I(zΓ be convex and w be a sequence defined on
I. Define

II w ||7 = sup Σ 1/(7)^(7) I (fe C,(G), || / |U = 1) ,

where d(G) = {/e C(G) |/(τ) = 0 o / /}. Lβί £ c / 6e totally ordered.
Then Σ*

Outline of proof. The method of Theorem 3 works in this
situation. The main change is that statements which held for all 7
in S in the proof of Theorem 3 now hold for all 7 in /. Lemma 2
applies with Mn taken to be the closed linear span in U(Q x G) of
{ψ{m)yh I (m, 7) Φ (0, 0), 0 ^ m < 2W, and ^ - 7 ^ 7 ^ 0}. We omit
the details.

In the special case G = T, S = {n | n ^ 0}, I = {n | nt ^ n <* ̂ 2}, I
itself is totally ordered and we conclude that Σ/1 w(w) |2 ^ 4 || w ||*.
With the constant 4 replaced by a much larger one, this was obtain-
ed by Steckin [11, Lemma 2] as a consequence of Paley's theorem.

The definition of | |w| | z makes sense for any set / and does not
depend at all on S. Furthermore a set may be convex with respect
to several orderings of Γ. For instance, let G = T2, Γ = Z2,1 = first
quadrant in Z2. We can take S to be any quadrant and in each case
I is convex with respect to the order induced by S. So, S plays an
indirect role in Theorem 4 which may be restated as follows:

THEOREM 4'. Let I be a subset of Γ. Define \\w\\f as before.
Then Σ # I w(y) I2 ̂  4 || w ||7 for any set Ed which is totally ordered



EXTENSIONS OF A FOURIER MULTIPLIER THEOREM OF PALEY 423

under some ordering of Γ with respect to which I is convex.

4* We now treat the case of power series in a finite number of
variables. That is, G=T\Γ=Zn, and S={N=(NlfN2, , Nn) | N3^
0 for all j}.

The main theorem tells us that, when w is a Paley multiplier, 4
||w||Sf is a uniform bound on ^E\w(N)\2 for all totally ordered sub-
sets E of S. Unfortunately, such sets E are essentially one dimen-
sional. For instance, the Nγ axis {N in S\ N3 = 0 for j > 1} is a
maximal totally ordered subset of S.

It is possible, however, to give bounds on Σz> I w(N) |2 for some
sets D which are not as thin as totally ordered sets. For simplicity
we prove the following theorem only for the case n = 2.

THEOREM 5. Fix an integer L>0 and let D be the set

{NIL^N^SL and N2^0}.

Then for every w in My Σz> I W(N) I2 ̂  36 || w \\2

M.

Proof. Since truncation does not increase norms in Mt assume
that w = 0 off D.

Let Kn(θ) be the Fejer kernel Σ ; = _ κ [1 - | m \/(n + 1)] exp (im θ).

Put K(θ) = exp (i2LΘ)[2K2L^(θ) - KL^(Θ)]. Then (l/2τr)Γ | K(θ) \ dθ ^

3, K(m) = 1 if L ^ m ^ 3L, and K(m) = 0 if m < 0. Define a measure

v on T2 by ί 2f(θ,φ)dv(-θ, -φ) = (l/2τr)Γ f(θ,0)K(-θ)dθ. Then
II v II ^ 3, 0 = l^on D, and 9(iV) = 0 if N, <0.

Now let S, be the half space {N\ N2 > 0, or iV2 = 0 and iVL ^ 0}.
w can be thought of as a Paley multiplier on CSl(T2), the continuous
functions whose coefficients vanish off Sx. For, suppose that / is such
a function. Let g = f*v. Then g eA and || g ||co ^ 3 || / 1 .̂ Extend
w to S1 by setting it equal to 0 on the rest of Sλ. Now,

Σ \f(N)w(N) I = Σ I §(N)w(N) I ̂  || w IU || flr |U ^ 3 || w IU || / || .
-Si i5

So, as a multiplier on CSl, w has norm a t most 3 | | w | | M . I t follows

from the main theorem t h a t

The same kind of conclusion can be obtained in dimension n for
sets D of the form:

{NI Nn ^ 0 and L3 ^ N3- ^ 3L, for j = 1, 2, . . , n - 1}
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where L19 L2, •• ,LΛ_1 are any fixed nonnegative integers. Of course
the last coordinate need not be the one that is free in the above.

As we shall see in the next section, the main theorem implies
that, in the context of power series in a finite number of variables,
w(N)—+0 as N—> oo whenever w e M. This fact can also be derived
from the following lemma of Helson.

LEMMA (Translation Lemma). Let G be a compact Abelian group.
Suppose that μ is a finite regular Borel measure on G and {7n}? is
a sequence of distinct elements of Γ. Define measures Xn by dXn(x) =
yn(x)dμ(x). Let Xn—>σ in the weak star topology. Then σ is singular
with respect to the Haar measure of G [8, Lemma 3.5.1].

THEOREM β. With G = Tn and S as above, w(N)—>0 as N—> co
for every Paley multiplier w.

Proof. Suppose that the theorem is false. Let w have the pro-
perty that I w(N) I ^ 1 on an infinite set B of JV's.

First assume that B contains an infinite sequence {N(k)}? such
that for each k and all j , N!-k) ^ k. Then in fact the sequence can
be chosen to be lacunary in the sense that for each k and j , Njk+1) >
2N{

j

k). Let v be equal to 1 on this sequence and 0 elsewhere. As v
is dominated by w, it is a Paley multiplier.

Therefore there is finite regular Borel measure /i on Γ 1 so that
μ(N{k)) = 1 for all k and μ(N) = 0 for all other N in S. Consider the
m e a s u r e s Xk d e f i n e d b y dXk(x) = e x p ( — i N { k κ x ) d μ ( x ) . F o r a l l k, \\Xk\\ ~
\\μ\\, so that a subsequence of the λ£s converges in the weak star
sense to a measure σ.

χk(0) = 1 for all k, so that σ(0) = 1. For any N Φ 0, Xk(N) = 0
for all large k. Hence σ(N) = 0 for N Φ 0. This means that dσ is
dx, the Haar measure on Tn. But by the translation lemma, dσ is
singular with respect to dx, & contradiction.

The preceding three paragraphs prove the theorem for the case
n = 1 as then any infinite B would contain such a sequence {N{k)}.

For n > 1, we conclude that B contains no such sequence. It
follows that there is an integer k for which the cone {N \N3 > k for
all j} does not intersect B. In other words B is contained in the union
of the (k + 1) n hyperplanes {N in S\ Nd = h} where j runs from 1
to n and h from 0 to k. The intersection of B with one of these
hyperplanes, for particular choices of j and h, is infinite. Let S1 be
the positive cone in Z*"1. Define a sequence v on Sλ by

v(Nlf N2, , Λ/V-0 = w(N19 N2, , Nj-19 h9 Nj+19 , Nn^) .

It is not hard to see the that v is a Paley multiplier on CSl (Tn~ι)
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with I v(N) I ̂  1 for infinitely many N in S1# The theorem follows by
induction on the dimension n.

The idea for the application of the translation lemma in the above
came from Rider's treatment of the infinitite dimensional case [7, § 3].
In fact Rudin made a similar application in [9, Th. 4] to obtain the
result in the one variable case.

So, for the case of power series in two or more variables Theorems
3, 5, and 6 provide a variety of restrictions which must be satisfied
by any Paley multiplier. We now give an example for the case of
two variables of a sequence which satisfies these restrictions but is
not square summable. It resembles one given by Bohr in infinitely
many variables [2, p. 468, Th. 5] and arose from a suggestion of Pro-
fessor Walter Rudin.

For m ^ 0, n ^ 0, let w(m, n) = l/(m + n + 1).
Observe that any totally ordered set E intersects the line lk =

{(m, n) I m + n = k} in at most one point. For any such E,

Σ I w(N) |2 = Σ Σ I w(N) |2 ^ Σ V(fc + I)2 = ^76 .
E k0 EΠl

Hence w satisfies the conclusion of Theorem 3.
Next let D be any set of the type considered in Theorem 5. For

k < L, lk Π D is empty and for any fe, lk n D has at most 2L + 1 ele-
ments. Therefore,

Σ i w(N) |2 - Σ Σ I w(N) |2 ^ Σ (2L + l)(k + I)"2

D k = L ijcΠD L

£ 2 L + 1 <£3

and the conclusion of Theorem 5 holds for w.
Finally, it is clear that w(N)—>0 as N—>°°.
On the other hand,

Σ I w(N) I2 - Σ Σ I MAT) |2 - Σ (£ + i)(* + l)~2 = °°
S k=0 lkΓ)S k=0

It is not known whether w is a Paley multiplier sequence. This
example shows, however, that in the context of power series in two
as more variables, our results do not imply that M = 12(S). The
question is therefore still open for the case of n variables,

5* We modify a definition of Rider [7, p. 558].

DEFINITION. Let G, S, and A be as in § 3. A subset B of S will
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be called a Bohr set if there is a constant K so that Σ * I /(?) I ^
K\\f\U for a l l / i n A.

In other words, B is a Bohr set if the sequence which is 1 on B
and 0 elsewhere in S is a Paley multiplier.

The reason for the name Bohr set is the following theorem of
Bohr [2, p. 468, Th. 5]. Let G be the complete direct sum Tω of
countably many circles and Γ be the direct sum Z™, [8, §8.7.9]. Let
S = {N e Z°° I Nj >̂ 0 for all j) and let A be the space of continuous
functions on Tω with coefficients supported by S. Let B = {NzZo°\Nj =
δi3 for some %}. Then Σ * \f(N) | ^ || / ||TO for all / in A. Other ex-
amples of Bohr sets and an account of the connection with Dirichlet
series appear in [7].

We use Theorem 3 to obtain necessary arithmetic conditions on
Bohr sets.

THEOREM 7. Let B be a Bohr set and K the constant of the de-
finition. Then every totally ordered subset of B has at most AK2

elements.

Proof. By assumption the multiplier w which is 1 on B and 0
elsewhere has norm at most K. If EaB is totally ordered, Σ # l =
Σ * 110(7) I2 ̂  4KΛ

Observe that the theorem certainly holds for Bohr's example B.
Totally ordered subsets of B have one element as no two elements of
B are related under the order induced by S.

DEFINITION. A subset B or Γ will be called unrelated if no two
elements of B are related under the order induced by S.

LEMMA 8. A subset B of Γ contains no totally ordered set with
more than K elements if and only if B is the union of at most K
unrelated sets.

Proof. It is obvious that such a union contains no totally order-
ed set with more than K elements.

Conversely, suppose that the totally ordered subsets of B have
at most K elements. Let E be a totally ordered subset of B, maximal
with respect to containment. We shall find a set Bx consisting of ex-
actly one minimal element from each such E. As E is finite the set
F of minimal elements of E is nonempty. By the maximality of E,
F is a maximal equivalence class in B: i.e., for any y in F, F = {7'
in B | 7 <Ξ 7' ̂  7}. Thus if IS" is another maximal totally ordered subset
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of B and Fr is the set of minimal elements of E' then either F—F'
or F and F' are disjoint. The axiom of choice yields a set i?x con-
sisting of one element from each such F, that is one minimal element
from each such E. By the maximality of the E'&, Bx is unrelated.
Moreover as every totally ordered subset of B is contained in such
an E,B ~ Bι contains no totally ordered set with more than K — 1
elements. The lemma follows by induction on K.

THEOREM 9. Every Bohr set is the union of at most 4if2 unrelat-
ed sets, where K is the constant in the definition of Bohr set.

Proof. Combine 7 and 8.
It can be shown that every unrelated subset of the positive cone

S of Zn is finite. This means that, for the case of power series in
n variables, Bohr sets are finite. This statement is equivalent to
Theorem 6, as it is easy to see in any case that there is an infinite
Bohr set in S if and only if there is a Paley multiplier which does
not tend to 0. In fact we can use Theorem 7 in place of the Transla-
tion Lemma in the proof of Theorem 6. Simply observe that the
lacunary sequence discussed in the second paragraph of the proof of
Theorem 6 is increasing with respect to the order induced by S and
can have at most 4iΓ2 elements, contrary to the assumption that it is
infinite. Therefore there is no such sequence and the last paragraph
of the proof of Theorem 6 applies.

We now turn to the case of power series in infinitely many vari-
ables; i.e., G is the complete direct sum Tω, Γ is the direct sum Z°°
and S = {N \ N3 ^ 0 for all j}. Bohr's example shows that there are
infinite Bohr sets in this case.

In [7, p. 560] Rider gives sufficient arithmetic conditions for a set
to be a Bohr set: Let B c S satisfy:

(c) the elements of B are linearly independent over the integers.
(d) whenever Ne S and N = Σ? βiN{i) where the β{ are integers,

Σf βi = 1, and the N{i)eB for all i, then NeB.
Then B is a Bohr set.
It is easy to see that these conditions force any such B to be

unrelated. For if N{1) < N{2) are in B, then by (d)

j|f (*> = JV(1) + k(N{2) - iV(1))

is in B for all k ^ 0. But M{2) + N{1) - 2N{2) - 0 contrary to (c).
On the other hand, an unrelated set need not be a Bohr set. For

instance let Bk = {N in S\ N3 = 0 unless j = 2k — 1 or 2k, and
ΣΓ N3 = k). Let B = \JT Bk. It is easy to see that B is unrelated.
Let w be the sequence which is 1 on B and 0 elsewhere. Apply
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Theorem 4' with I = S, using the order induced by {N in Z°° | JNΓ,. ;> 0
for j Φ 2k and N2k ^ 0}, to obtain: k + 1 = Σ * J w(-M) |2 ^ 4 || w \\2

M.
Therefore w is not a Paley multiplier and 1? is not a Bohr set. We
can modify this example so that it becomes an unrelated Sidon set
which is not a Bohr set.

Nevertheless any set consisting of exactly one element from each
Bk satisfies (c) and (d) and is therefore a Bohr set. It is not clear
whether every infinite unrelated set must contain an infinite Bohr set.

It is shown in [2] that there is a connection between Dirichlet
series and power series in infinitely many variables. Theorem 9 can
be restated as follows:

THEOREM. Suppose that B is a set of positive integers so that
there is a constant K, with Σ s I c(n) I ̂  K whenever there is a Dirich-
let series f(s + it) = ΣΓ c(n)n~s-u with | f(s + it) | ^ 1 for all s > 0.
Then B is the union of at most AK2 sets in each of which no ele-
ment divides any other.

6. Conclusions similar to Theorem 1 can be obtained under weaker
assumptions. Once again G, Γ, S, and A are as in § 3.

DEFINITION. A set δ c f is called a Sidon set if there is a con-
stant K so that Σ * I ZOO I ^ ^ Π I / I U for every trigonometric poly-
nomial / for which / is 0 off B, [8, § 5.7].

THEOREM 10. Let B be a Sidon set and I be a convex subset of
Γ. Suppose that f is in U{G) and f(y) — 0 whenever 7 is in I but not
in B. Let E be a totally ordered subset of B Π I. Then Σz? I/OO I2 ^
4 i P | | / | | ? . The constant K is the one appearing in the definition of
Sidon set and does not depend on I or E.

Proof. Let g be a trigonometric polynomial with g = 0 off /.
Put h = fag. Then h = 0 off B Π J and in particular off B. By the
definition of Sidon set,

< i ) Σ I g ( y ) f ( y ) I = Σ I £ ( τ ) I ^ K | | h m ^ K \ \ / | | x . \ \ g \ u .
I B

Since the trigonometric polynomials with coefficients supported on
/ are dense in C7(G), (1) holds for all g in CT(G). Putting W(Ύ) = f(y)
we have that || w\\z^K\\f \\lm By Theorem 4, Σ * I w(y) |2 ^ 4iP || / \\l

Observe that in the above / is arbitrary off /.

COROLLARY. Let E = {mj~= 1 be any Hadamard set of positive

integers {i.e., there is α λ > 1 so that mn+1 ^ Xmn for all n). Suppose
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that fe L\T) and f(m) = 0 for all m ̂  0 which are not in E. Then
ΈAE \f(m) \2 ̂  K\\ f \\l for some constant K depending on E.

Proof. It is well known that every Hadamard set is a Sidon set.
Theorem 10 applies with / — S = {m j m ^ 0} and B = E.

As a Sidon set need not be a Hadamard set Theorem 10 genera-
lizes Theorem 1.

If S is a half space, it is not necessary to know that E is a Sidon
set to obtain the conclusion of Theorem 10.

DEFINITION. A set EczΓ is said to be of type Λ(s), s > 0, if for
some r < s, there is a constant Brs so that || / ||s ^ Brs \\f\\r for every
trigonometric polynomial / whose coefficients are 0 off E.

In [9, Th. 1.4], Rudin shows that if there is such a constant Brs

for one r < s, then there are such constants Brs for all r' < s.
The following argument was shown to us by F. Forelli. It re-

sembles the one used by Rudin in proving Paley's theorem for half
spaces [8, p. 222], and is the technique mentioned at the end of §2.

THEOREM 11. Suppose that S is a half-space, that is, that Γ is
totally ordered. Let EaS be a A (2) set. Then there is a constant
K so that ΣE 1/(7) Γ ̂  K || / ||f for every f with f = 0 on S ~ E.

Proof. First suppose that / is a trigonometric polynomial. Let
g(x) = Σs/(7)7(ίc) be the analytic projection of /. There is a constant
K, so that IMIi/a^ ϋMI/lk [8, Th. 8 7 6]. The coefficients of g
vanish off E so that || g ||2 ^ J?(1/2)21| g ||1/2 ̂  K2 \\ f \\u say. Then

the desired result with K — (K2)
2.

We obtain the same conclusion for arbitrary / by convoluting /
with a sequence of trigonometric polynomials which form an approxi-
mate identity.

Every Sidon set is of type A (2) [8, § 5 7 7]. So when S is a half
space and / = S, Theorem 10 is a special case of Theorem 11. When
S is smaller than a half space, however, the proof of 11 breaks down
for the same reason as Rudin's proof of Paley's theorem: The analy-
tic projection may not be a bounded operator from L1 to Lr for r < l .

One reason for considering theorems like these is that by an argu-
ment due to Banach [1, Th. a], they are equivalent to theorems about
interpolating I2 sequences by Fourier coefficients of continuous func-
tions. We demonstrate this idea by applying it to Theorem 10.
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THEOREM 12. Let B be a Sidon set and I a convex subset of Γ.
Let E be a totally ordered subset ofBΠl and suppose that a sequence
v is defined on E so that ΣE I v(y) |2 < <*>. Then there is a function
f in C7(G) with f(y) = v(y) for all 7 in E. Moreover f can be chosen
with II / ||co ^ 2Kf \\v\\2 for any fixed Kf larger than the constant K
associated, with B.

Proof. Let D be the closed subspace of elements / of Cτ with
/ = 0 on E. Consider the bounded linear operator L: C2/D —* l\E)
defined by L([f]) = {f(7)}reE- We must show that L is onto and that
II I/"1 II g 2K. The range of L is dense in l\E) and L is one so that
L is onto if and only if L* is [8, p. 259, C l l ] .

Now (Cj/D)* = DL the annihilator of D in (Cz)*. Also (C7)* -
M(G)/(Cj)L where M(G) is the space of bounded regular Borel measures

on G and (C/)1 is the set of such measures μ for which 1 f(x)dμ( — x) =

0 for all / i n C7. Since the trigonometric polynomials in C7 are dense,

(C,y = {μ m M(G)\μ = 0 on / } . T h e n D - {μ + (CI)
L\β = 0 off E).

To any 12(E) sequence w associate the L2(G) function g(x) —
Σ r e e Φ W a ; ) . L*(w) is the coset g + (C7)

x in DL.
Pick μ in (C/)1 and a finite subset F of E. Let P be a trigono-

metric polynomial with P = 1 on F. Then the function h = (g + μ)*P
is a trigonometric polynomial. On I, //(γ) = 0 so that fe(τ) = g(Ύ)P(Ύ).
In particular fe(τ) = 0 on I — B. By Theorem 10,

But jj/^ϋ ^ \\g + Aί|| | | P | | i and | | P | | i can be taken arbitrarily close
to 1. Therefore ΣF \ w(y) |2 ^ 4K2 \\ g + μ ||2 for all finite subsets .F of
E. Hence ||flf + ^ | | ^ (1/2JBΓ)(ΣZ; I w(7) |2)1 / 2 for all /i in (CZ)L. That is,

=mΐ\\g + μ\\ (μeidV)

^ (1/2JBΓ) II W[U -

This means that L* is onto [8, p. 259, Cll] and IKL*)"1!! ^ 2K.
Therefore L is onto.

Moreover || L~ι \\ = \\ (L~γ \\ = \\ (L*)"11| ^ 2K.

A similar interpolation theorem can be derived from Theorem 11.
For the circle group, for instance, it is well known that if B is

a Sidon set of integers and v is a 12(B) sequence then there is a con-
tinuous / with II/IU ^ 2ϋΓ||i;| |2 and f(n) = v(n) on B [10, Th. 5.1].
Also if / = {n I nγ ^ n ^ n2} and v is 0 off If] B then the trigonometric
polynomial g(θ) = Σ r n s ^(^) exp (in θ) has the right coefficients but, as
B is a Sidon set, || 01|«, ^ 0-1K) Σ/ns I v(%) |, which may be much larger
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than 2JBL||V||2. SO the interpolating continuous function, in order to
have small norm, may need some nonzero coefficients off B. Theorem
12 says that such an / can still be taken as a trigonometric polyno-
mial with coefficients supported by the smallest interval / containing
the support of v.

This paper is based on my Ph. D. dissertation at the University
of Wisconsin. Many of the ideas arose in conversations with various
faculty members there. I would especially like to thank Prof. Frank
Forelli for suggesting the problem and supervising my research.
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