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COVERINGS OF MAPPING SPACES

M. N. DYER AND A. J. SIERADSKI

The purpose of this paper is to give conditions on a pair
of topological spaces (X, B) such that any covering p: E— B
induces a covering map
0. EX - p(EX)c BX

where p(f) = p°f and the mapping spaces have the compact-
open topology.

This is given in Theorem 1.1. In the classical theory of (connected)
coverings over a space B which is connected, locally pathwise connected
and semi-locally 1-connected, it is known that to each subgroup
Hc (B, b,) there corresponds a covering projection p: E— B for
which

p#(ﬂl(E, 60)) =H

for some e,€p7'(b). Section 2 gives a characterization of those
subgroups Hc 7 (B*, v) which correspond to a mapping covering
o: E¥ — B* for some covering p: E — B. Section 3 gives partial answers
to several questions about mapping coverings, such as when mapping
coverings are regular or universal.

1. Mapping coverings. Given a topological space X and a map
o: E— B, then p: E* — B*, p(f) = pof, is continuous if the function
spaces of continuous maps E* and B* are each given the compact-open
topology. In this section we prove

THEOREM 1.1. Let p: E— B be a covering projection for which
E and B are ANR’s, and let X be a compact Hausdorff space. Then
0: E¥ — B¥ is a covering projection of E* onto p(E*)cC B*.

Actually F is automatically an ANR if B is (see §3), so the
hypothesis of (1.1) is just a condition on X and B. We begin the
proof of (1.1) by considering two lemmas, the first of which is a
result in Spanier [6; 2.5.10].

LEMMA 1.2. Every Hurewicz fibration with unique path lifting
whose base space is locally path connected and semilocally l-commected
and whose total space tis locally path connected is a covering pro-
jection onto its image.

Since we eventually want to apply this result to the map p: E* —
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B* we need information about the local structure of the function
spaces E¥ and B¥. If X is a compact metrizable space and Y is an
ANR, then the function space Y¥ is an ANR ([4; p. 186]) and conse-
quently is locally contractible ([4; p. 96]). We now give a direct proof
of this local contractibility of Y* which does not require the metri-
zability restriction on X.

LEMMA 1.8. If X is a compact Hausdorff space and Y is an
ANR, then the function space Y* of continuous maps is locally
contractible in the compact-open topology.

Proof. Let the metrizable space Y be considered as a closed subset
of a convex set Z in a locally convex topological vector space L
(I4; p. 81]). Since Y is an ANR there exists an open neighborhood W
of Y in Z together with a retraction »: W— 7, i.e., 7|, = 1,.

Given a map fe Y* and a neighborhood P of f, we may assume
P=NL K(C;, U) where K(C; U)={9eY*:9(C)c U} for each
member of the collection {C;} of compact subspaces of X and corre-
sponding member of the collection {U;} of open subsets of Y. Since
W is an open subset of a convex set Z in a locally convex topological
vector space L, each open covering a; = {r='(U,), r~(Y — f(C;))} of W
admits an open refinement B; consisting of convex sets. For each
2e X and index ¢, let V,,; be a member of the covering B; which
contains f(x). Form the convex set V, = M~, V,,; for each ¢ X and
choose by the regularity of X a closed neighborhood A,c f~(V,) of
2. By the compactness of X, select points z, ---, z, of X so that
{A;j=A,:7=1---,m}is a collection of closed sets which cover X;
then let V; =V, an V,; =V, ;. Note that

1.4) CiNA,# @ implies V,NYcU,.

This follows from the facts that f(4;)c V;N Y and that V; is con-
tained in V;,;, a member of the covering B; which refines «;.
We define an open neighborhood of

feY* by K:J_ﬂ:K(AJ-, VinY).

Our first claim for K is that it lies in P, i.e., that for g€ K, ¢(C;) C
U(i=1,---,m). Since {4,;}™, is a cover of X, we need merely to
show that g(C; N 4,)c U, for all ¢,5. If C;N A; = @&, the result holds
trivially; if C; N A; # @, it follows from the relations

9(C:NnA4)cgA)cV,nYcl,
the last being due to (1.4).
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Our second claim on K is that it is contractible rel f in P.
Because Y is contained in Z, a convex subset of a topological vector
space, we can define a continuous function H: Y* x I x X— Z by
H(g, t,x) = tf(x) + (1 — t)g(x). Since on the member A; of the covering
{A;}™, both f and ge K take values in the convex subset V; c W, it
follows that H(K x I x X)cC W and therefore the composition »°H:
KxIx X— W—Y is well defined. The associated map 2: K x I —
Y ¥ given by h(g, t)(x) = r(H(g, t, x)) takes values in PC Y* since
rHEK xIx (C;NA))cr(HK x I x A))cr(V,;) and the latter is
contained in »(»(U;)) = U; when C;NA; # @. Thus h: K x I— P
is a homotopy rel f from the inclusion K < P to the constant map
K— fe P. This shows that Y ¥ is locally contractible.

Proof of Theorem 1.1. We first show that if o:E— B is a
covering projection and X is a compact Hausdorff space, then p: E* —
B* (and hence p: E* — p(E*)) is a Hurewicz fibration with unique
path lifting. For a homotopy #%,: Z— B¥ of a map h,: Z— B¥ which
lifts to a mapg,;: Z— E*, the associated maph,:Z x X— B is a
homotopy of the associate h{: Z x X — B which lifts to ¢;: Z x X — K.
Since p: F — B is a Hurewicz fibration, the homotopy #4; lifts to a
homotopy g;: Z x X— K of g, and therefore the associate g,: Z— E*
is a homotopy of g, which is a lifting of %,. This shows that g: E¥ —
B* is a Hurewicz fibration.

If w,v:I— E* are paths in E* which cover the same path
a: ] — B* and w(0) = v(0), then their associates @’,v:Ix X— F
agree on the subspace 0 x X of I x X and they are liftings of the
associate a’: I x X — B. Since a covering map has the unique lifting
property for connected spaces, the fact that 0 x X meets each com-
ponent of I x X implies that @ = v and hence w = . This shows
that p: E¥ — B* has unique path lifting.

In view of Lemma 1.2 the proof that p: E¥ — p(E¥) is a covering
projection is complete once it is shown that E* and p(E*) are locally
path connected and P(E*) is semilocally 1-connected. Since E* is
locally contractible by (1.3) the condition on E* is trivial; since B*
is also locally contractible the conditions on o(&£*)  B* follows from
the fact that the image of a Hurewicz fibration is the union of path
components of the base space.

There are two convenient corollaries of Theorem 1.1. In the first,
the notation (Y *), is used for the path component of the function
space Y* containing f: X — Y.

COROLLARY 1.5. If, in addition to the hypotheses of (1.1), v': X —
E is a lifting of viX— B, then p:(EY), — (BY), is a covering
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projection.

COROLLARY 1.6. If, in addition to the hypotheses of (1.1), X 1is
locally path connected and Hom (7 (X, x,), 7.(B, b,)) = 0 for every x, ¢ X,
b,e B, then p: EX — B* is a covering projection.

Corollary 1.5 is immediate. In (1.6) we are asserting that the
additional hypotheses imply the surjectivity of p: E*— B*. Since
0: E — B is a covering projection a necessary and sufficient condition
that a map f: (Y, y,) — (B, b,) with connected locally path connected
domain have a lifting (Y, y,) — (&, ¢,) is that in 7 (B, b,), fir (Y, y,) C
0., (E, e;). Thus the hypothesis Hom (7,(X, x,), 7,(B, b,)) = 0, for every
x,€ X, b, € B, implies that a map f: X — B has a lifting on each (path)
component of X. Because the components of a locally path connected
space are open and closed, liftings on the components of X determine
a lifting on all of X. Thus 0 is surjective.

2. Subgroups of 7, (B¥, v) realizable by mapping coverings. In
this section X will always represent a connected finite CW complex
of dim < n, B a path connected simple ANR, and v: X — B a selected
map. For convenience in stating the main theorem of this section,
we define K, = ker {r,: 7 ,(B*, v) — m,(B*, r(v))}, where r: B¥ — B*° is
the map induced by restriction to the 0-skeleton X° of X, and we
define ¢,: B* — B to be the evaluation mape, (f) = f(x,) at x,€ X°.

If p: E— B is a covering projection, it follows that £ is an ANR
(see §3) so that by (1.5) p: (E*),, — (B¥), is a covering projection for
each lifting v': X — E of v: X— B. We say a subgroup G cC x,(B¥, v)
can be realized by a mapping covering if there exists a covering
projection p: E'— B with fundamental group (e, ):(G) (that is, o,7,(E, e,) =
(e.,):(@)) and a lifting v": X — E of v: X — B such that the covering pro-
jection p: (E¥), — (B¥), has fundamental group G (that is, gz, (E*,?') =
G cn(B*, v)). When v: X — B is homotopic to the constant map, it
follows from [2;6.1] that the condition on the fundamental group of
0 is a consequence of that on the fundamental group of o.

THEOREM 2.1. A subgroup G Cw,(B*,v) can be realized by a
mapping covering if and only if GO K, and e,4(G) D v(7. (X, x,)).

COROLLARY 2.2. When X 1is simply connected, a subgroup G C
T (B*, v) can be realized by a mapping covering tf and only if it
contains Ks.

COROLLARY 2.3. Let 7(B) =0 for 1<t =<mn. Then a subgroup
G crw,(B*, v) can be realized by a mapping covering if and only if
G D Ky = H'(X; 7,1(B)) and (e,):(G) D vy(m (X, ).
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ExXAMPLE. Let X = S% E = S% B = P? the 3-dimensional real
projective space. P° is a topological group (SO(3)) = P*® is simple.
Let p: S®— P® be the antipodal identification map. The hypothesis
of 2.2 and 2.3 are satisfied for n = 2. Thus the only subgroups of
7,(P*, v) realized by a mapping covering are those containing K, =
H*¥S?, y(P%) ~ Z.

Let ¢: S? — P® be the constant map to p,c P®. It follows easily
from the spectral sequence in [3] and Theorem 6.1 of [2] that the
sequence below is split exact

0 — H¥(S% 1,(P?) — m,(P*, ¢) — m,(P*, ¢) — 0

where H*(S* m,(P*%)) ~ K, and 7, is induced by the restriction map 7.
P¢ is a topological group — P**’ is a topological group = m,(P*, ¢) is
abelian = 7,(P*, ¢) ~ Z D Z,.

Thus the only subgroups of =,(P*’, ¢) which are realizable by a
mapping covering are Z @ {0} and Z @ Z, which correspond to p: $** —
P** and I P* — P,

We give the proof of (2.1) after a few preliminary propositions.
The first involves exact couples of Federer [3] and is easily proved
from the data given there.

ProPOSITION 2.4. Let 0: W— Z be a map between path connected
simple spaces. Then p induces a map

pi: %Oi(X: w, f)— rgi(X, Z, to°f)

of the ith Fedsrer exact couples.. Furthermore, there is a com-
mutative diagram

2
E (W) L5 EL(Z)

| I

HYX: 7o (W) 25 HU(X: 7,00(2))

where v 1s an tsomorphism onto if p > 0 and into +f p = 0.

PRrROPOSITION 2.5. Let p: W— Z be a covering projection between
path connected simple spaces. Then for the map

pi: gz(X’ W, f)— gi(X’ Z, P"f)
of the i-th Federer exact couple,
pi: E:iq( W) - Ez,q(z) (7' = 2)

18 an isomorphism for all (p, q) satisfying either (a) if p =1, then
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p+qg>1or (b) if p=0, then ¢ = 1.

Proof. We proceed by induction on ¢ = 2. Since p: W—Z is a
covering projection, o,: 7w, (W)— m;(Z) is an isomorphism for j = 2 and
a monomorphism for 5 = 1. Then in the commutative diagram of
(2.4) vy, 7z and (0)* are isomorphisms for p + ¢ = 2, p = 1, hence
0 is an isomorphism here. For p =0, q = 2, 74, 7, are injective and
(05)* is bijective; consequently p* is injective. That p* is also surjective
when p =0, ¢ = 2 follows from the definition of Z*(X) in [3] and
the following statement which has the same proof as that of [6, 7.6.22].

(2.6) Let ¢ =2 and let h: X?*— Z be given such that 7| X" =
pof| X' Then since p,: 7, (W)—m,_(Z) is injective and p,:
r(W)—r,(Z) is surjective, there exists A’: X?— K such that

M| X =f| X and poh = h(rel X*7) .

We now assume that (2.5) holds for 1 =k — 1= 2, i.e., ,0’;~1 is
an isomorphism if (@) p=1landp +¢>1,or(b)p=0andg=k — 1.
If p=z1and p+q>1,(g=0), then in

ker {d: B}5{(W) — EF} (W)}

E: (W
p’qil ) {d E::ll,q——kﬂ( W) — E Pq (W)}
{I
E*(Z) = lfer {d: B;;(Z) — E; 2l i(Z))

im {d: B} _1ii(Z) — E;NZ))

We have Ef; (W) ~ E}f;(Z) by case (a) of the induction hypothesis;
ot (W) ~ EF o (Z) when p > 2 by case (a) and when p =1
by case (b); and E¥} (W) ~ EF},_,+.(Z) because if ¢ < k — 1 then
both are zero, and if ¢ =k — 1 then case (a) of the induction hy-
pothesis applies. Thus case (a) of (2.5) holds for p*.
To show that case (b) of (2.5) holds for p* suppose that index
p = 0. Here we must show that

Eo (W) = Eg (W)/im {d: B2 (W) — E5(W)

|

Ei(Z) = E(2)[im {d: B (Z) — Eo((Z))

is an isomorphism for ¢ = k. This is obvious since then E{; (W)~
E!;(Z) by case (b) of the induction hypothesis and E}%, (W)~
Bl 1 (Z) by case (a).

Before giving the proof of Theorem 2.1, we prove two lemmas.

LEMMA 2.7. If o: E— B is a covering projection with E a path
connected simple space and v': X — E 1s a lifting of v: X — B, then
there is a commutative ladder
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€z,

00— Ky — 7 (E*, v)—> E5E)—0

¢l 1(7»5 lp“

0 — K, —> m,(B*, v) -2 E=(B) —> 0

wn which the rows are exact and ¢ is an tsomorphism.

Proof. By a theorem on page 351 of [3], the images of
7'#: nl(EX’ 1)’) —_— ﬂl(EXOy ’I"(U')), 7'#: nl(BXy 1)) - ﬂl(BXOy ’7’(’0))
can be identified with the subgroups

E7(E) C EX(E) = H(X, () = ©(E),
E7(B) C E\(B) = H'(X, 7,(B)) = m.(B).

by means of diagonal homomorphisms:
4: (B, v'(2,)) — T (E*, r(v'))
4: 7(B, v(@,)) — (B~ r(v)) |

The identification process is natural in E, B and so there is a com-
mutative ladder as indicated.

To show that ¢ is an isomorphism we consider the following
normal chains (see [3, p. 35l]) for = (E*, '), 7 (B¥, v) and maps
induced by o

T (B*, v') -2 m(BY, v)

u U

Ho _— Go

u U

H, I G,
(2.8) U U

U V]

H,_, — G
u U
0 0

given by

H; = ker {r;: T(E*, v) —> 7 (B, r(v)))}

. =01 ... m).
G, = ket {ry: 7 (BY, ) — m(BY, ro) O™

Thus we must show K; = H i~ G, = K;,. By [3, p.351], there are
isomorphisms
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B geE), S~ En(B) (=0, n—1)

i+l 21

(2.9)

which can be shown to be compatible with the homomorphisms induced
by 0. Since E(F) = E!y(E) and E3(B) = E!(B) for k > max (1,
dim X — 4), Proposition (2.5) implies that

o= ES(E) — E7(B)

is an isomorphism for ¢ = 1. Via induction and the five lemma, these
isomorphisms together with those of (2.9) imply that all but the top
homomorphism of the ladder (2.8) are isomorphisms.

LEmMmA 2.10. Let p: E— B be a covering projection with E a
path connected (simple) space. If inm the commutative diagram

Es(E)C EX(E) A& H'(X, n(E)) = m,(E)

N

E2(B)C EX(B) A& H(X,r(B)) = r,(B)

2

&=

0T (E)) C E(B), then Ef(E) = m(E).

Proof. We will show by induction on & = 2 that Ef(F) = E’(E),
or equivalently, that df: Ef(F)— E}.(E) is zero. By (2.4) there is
a commutative diagram

dr,
T(E) ~ E:(E) D E}(E) — E}(E)
P#l lpf,o lpﬁo i lpﬁ‘,k
7(B) ~ E2(B) D E!(B) —> E(B)

in which pf, is an isomorphism for £ =2 by (2.5) and p’, is a
monomorphism for k¥ = 2 because p, is a monomorphism. In order to
prove d% is zero for k = 2, we need only show kerd} >im o}, for
k= 2. We proceed by induction on k£ = 2. For k = 2, the statement
follows from the relations

ker d3 D EX(B) D p (7 (F)) = Im 0, .

If we assume ker dj Dim pf, for j < k, k = 2, then E}(E) = Ef(E)
and hence 0,7, (F)) = im pf,. Then we have the relation

ker d; D E7(B) D 0,(7.(K)) = im pf,

which completes the proof by induction.

Proof of Theorem 2.1. Suppose that G C 7, (B¥, v) can be realized
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by a mapping covering, i.e., there exists a covering projection po: £ —
B and a lifting v: X — E of v: X — B such that p(7,(E*, v') = G and
O« (E, v'(%,)) = (e,)(G). Since we may assume that E is path connected
and simple, Lemma 2.7 is applicable. If follows from commutativity
of the diagram given there and the surjectivity of ¢ that

D (E*, V") D p(Kz) = Ky, i.e., GD K, .
Furthermore, we have relations
(6:):(G) = PIT,(E, v'(%,)) D v (X, %)) .

Conversely, suppose given G D K; and G’ = (¢,):(G) D v(7(X, ,)).
Using the subgroup G’ < E3(B) C m (B, v(x,)), it is possible to construct
a covering projection p: F— B with E a path connected simple space
such that o (7 ,(F, ¢)) = G'. Since v, (7 (X, x,)) C G’ C p,(7,(F, ¢)), there
exists a lifting v": (X, 2,) — (¥, ¢,) of v: X— B. Then by Lemma (2.7)
there is a commutative diagram

0 — Ky — 7(E*, v') &% Eo(B) — 0

b b

0 — K, — 7,(B*, ) &% Bry(B) — 0
in which ¢ is an isomorphism and im 0= = G’ = (e, )y(G) since E\(E) =
7.(E) by Lemma (2.10). It follows from some diagram chasing that
o (E*, v)) = G.

3. Miscellaneous questions. Many questions arise concerning
mapping coverings. In this section we consider certain ones and give
partial answers.

(a) Is a covering space of an ANR an ANR?

(b) If G is a properly discontinuous group of homeomorphisms
acting on an ANR E, is E/G, the orbit space of G, an ANR?

(¢) If o: E— B is a covering, what is card (7'(f)), f€ p(E*)?

(d) If p: E— B is regular, then is p: E*¥ — B*?

(e) When does a fiber p~'(f) lie in a single path component of
E* ie., when are all the lifts of f homotopic?

(f) When is p: E* — B* universal?

For convenience, throughout this section we assume that B is an
-ANR and X is a compact Hausdorff space.

(a) Since a covering space of an ANR is locally homeomorphic
to an ANR, it is an ANR provided it is metrizable (see [4], III, 7.9 and
8.7). So Question (a) now reduces to a consideration of metrizability.

THEOREM 3.1. If p:E— B is a covering with B metrizable,
then E is metrizable.
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The proof utilizes the characterization of T, spaces which are
metrizable due to A. H. Stone (see [1], page 196).

COROLLARY 3.2. Ewvery covering of an ANR is an ANR.

(b) Since p: E— E/G is a covering projection, the question, as
in (a), reduces to one of metrizability.

THEOREM 3.3. If a finite group of homeomorphisms G acts on
a metric space E without fixed points, then E|G is metrizable.

This again follows from Stone’s characterization.

COROLLARY 3.4. G finite, acting without fixed points on an
ANR E = E/G s an ANR.

(c¢) If X is connected and locally pathwise connected, then
fi(X, x) — (B, b) has a (unique) lift to f*:(X, x,) — (E, ¢), when
e, €07 (by), if fum(X, x,)) C o7 (E, e)). If E 1is path connected and
nonempty, the cardinality of p='(f)(f € p(E¥)) reduces to the following
question: How many conjugate subgroups of o,(m.(F, e)) contain
S (X, %,))?

THEOREM 3.5. Let p: E— B be a regular covering such that E
1s connected. For any fe p(E*), card p~'(f) = card po~'(b,), b, € B.

Proof. E, B ANR = E, B are locally pathwise connected. E is
connected = E, B are path connected. p is regular = that the group
G of covering transformations ~ 7, (B, p(e,))/0«(7.(E, €,)) — p~'(b;). Then
fepEX)=3f*: X—>E>5f=pof*. Then

07(f) ={gof*|ge G} — 07'(b)

because G acts transitively on o~'(b,) and any lift of f is determined
uniquely by the image of a single point.

With the same hypotheses as 3.5, we can show that any two
path components of E* lying over (B*), are homeomorphic. Specifically,

COROLLARY 3.6. If v, %" are any two lifts of v: X — B, then
(EX)v’ ~ (EX)v”'

Proof. p regular = 3 a covering transformation v: E— E>rv =
v"”. Then 7: E¥ — E¥ is a covering transformation of E* 5 7#(v') = v".
Thus 7: (E¥)v' ~ (E*)v".

For example, let X = S*=FE and B = P?, the real projective
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plane. Let a: S* — S*® denote the antipodal map, 7: S* — S?, the identity.
i 2 a because deg (7)) = 1 and deg (@) = —1. ..(S*); = (S*%), but if
o: S* — P? is the antipodal identification, then poa = pot = p: S? — P2,
Thus (S*%), ~ (S**); as components of S**° lying over (P*),.

(d) The answer is probably no in general, although the authors
have not been able to construct a counterexample. We prove the
following

THEOREM 3.7. Let p: E— B be a covering such that E, B are
simple, path-connected ANR’s. Let X be a finite CW complex. Then
the covering projection

0. E¥ — B*
is a regular covering onto P(E).

Proof. As in §2, the following is a commutative ladder of exact
sequences > 0, and o> are injective:

T(E*, v) L Bz(E)

/
0— K jp me 0

R A
where

E(E) Cw(HE, v'(x,))

A

E:(B) C m (B, v(x,))
commutes.

E, B are simple = E°(F), E(B) are abelian. We will show that
O« (E*, v")) is a normal subgroup of 7 ,(B*, v) for any v, v'3 pov’ = v.
Choose x € py(m,(E¥)), bem (B*). Then f(bxb™") = f(b)f(x)f (b))~ = f(x)
since E=(B) is abelian = bxb~'z~' = k€ K = bxb™' = kx € p.(w (EY)).

S0 (EX,v)) <]w(BY,v) for any wv,v'3pov =w.

Theorem 12 on page 74 of [6] = 0| x) ,: (E¥), — (B"), is a regular
covering for each v e p~'(v). Fix v € p~'(v). Suppose v"” e p~'(v) but
(E*), # (E*),,. Then by 3.6 3 a homeomorphism

7 (EY)y — (EY),, 270) =v" and pe7=p.

Hence a loop at v in B¥ lifts to a loop at ¢’ if and only if it lifts to
a loop at v”. Therefore p: E* — p(E¥) is a regular covering.
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(e) We quote a result essentially due to Serre, [5], Proposition
3, page 479.

ProprosITION 3.8. If G is a path-connected, locally path connected,
and semilocally 1-connected H-space, then each covering transformation
on any connected covering space E of G is homotopic to the identity
map 1: K — K.

COROLLARY 3.9. If p: E— B 1s a covering>B is an H-space,
then p~'((B*),) is path-connected.

(f) This question only makes sense when we are considering
(B*),. Let us ask: When is (F*), a universal covering over (B,),,
where pov’ = v?

THEOREM 3.10. If X is a CW complex of dim < n and E 1s an
n-connected space, then w (KX, v) =0 for all ve E¥.

The proof follows easily from Federer’s spectral sequence [3].
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