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SUBSPACE KERNELS AND MINIMUM PROBLEMS IN
HILBERT SPACES WITH KERNEL FUNCTION

BRUCE L. CHALMERS

The purpose of this paper is to extend the theory of
Hubert spaces with kernel function to obtain first the kernel
function of any subspace described as the intersection of the
nullspaces of countably many continuous linear functionals,
and secondly the solution of minimum norm to interpolation
problems involving countably many linear side conditions.
The results are then applied to obtain in §1 a class of
pseudoconformally invariant functions in O and in § 2 further
results on the classical interpolation problem involving point-
wise evaluation.

Any closed subspace of a Hubert space with (reproducing) kernel
function has itself a reproducing kernel. In § 1 (see also [8]) it is
shown that the Riesz representation of any bounded linear functional
in a Hubert space with kernel function is obtained by operating with
the linear functional on the kernel function itself (see Theorem 1.1).
Using this representation, one can display, in terms of the kernel
function of the original space, the kernel function of any closed
subspace defined as the intersection of the null spaces of at most
countably many bounded linear functionals (see Theorems 1.2 and 1.3).
By applying this representation to the Bergman space H% of all
analytic square integrable functions defined on a domain BaCn, one
obtains a large class of pseudoconformally invariant functions (see
Theorem 1.7 and Note 1.8). As an example are obtained important
invariant functions introduced and used by Bergman ([2]—[6]) and
others (e.g., [13]).

The solution of minimum problems of the type requiring the
infimum of the norm of functions under a finite number of bounded
linear side conditions in Hubert space with kernel function was
obtained in [7], by use of the Riesz representation of Theorem 1.1.
In § 2 of this paper is obtained a necessary and sufficient condition
for the existence of the solution to such minimum problems under
countably many bounded linear side conditions. When the solution
exists, it can be displayed in terms of the kernel function again by
use of the Riesz representation of Theorem 1.1 (see Theorem 2.1 and
Corollary 2.2). Applying these results one obtains necessary and
sufficient conditions for the existence of solutions to a large family
of interpolation problems, examples of which are given in the spaces
H{\zl<1} and the Hardy space iϊ2[|z|<l] (see Corollary 2.3—Corollary 2.8).
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!• Kernel functions of subspaces* Let H denote a general
Hubert space with inner product denoted by (/, g) and norm | | / | | =
(/> /) 1 / 2 where f, ge H. Let H° denote the space of all bounded
linear f unctionals on H. If j*f e H° has the Riesz representation
LeH, we denote this correspondence by ^f ~ L.

Suppose further that H is a Hubert space of functions {/(#)}
defined on a base set E and that H has a (reproducing) kernel
function K(x, y). Then we denote such a Hubert space by HK or
HK(E).

For fixed y the kernel function K(x, y) is the function providing
the Riesz representation in HK of the bounded linear functional
^f e HK° given by £?(f) = f(y) for fe HK. The following theorem
(see [8]) shows that not only point wise evaluation but all bounded
linear functionals on HK have a simple representation in HK in
terms of the kernel function K(x,y). In fact the representation is
obtained by simply applying such a functional to K(x, y) itself:

THEOREM 1.1. If £? e HK°,then &> ~ L(x) = ̂ fy(K(yy x)). (Here
the y subscript emphasizes that J?f is operating on K(y, x) in HK
as a function of y.)

Proof. L(x) = (L(y), K(y, x)) = (K(y, x), L(y)) = J^y{K(y, x)).

EXAMPLE. In the case of evaluation of the derivative at z in
, &>:f-+f'(z), then

_ dK(x,y)
dy

NOTATION. Suppose Jϊfm e H°, m = 1, 2, , n are linearly in-
dependent and that ^fm ~ Lm, m = 1, 2, , n. Then denote by D
the determinant of the n x n matrix Q = {(Lk, Lm)}nxn. Denote by
DVJR) the determinant of the (n + l)x(n + 1) matrix (Λi, ^ ) , where
v = (vlf , vn) is a row vector and w = (w19 , ̂ J 7 1 is a column
vector. Note also that in the case of HK, (Lk, Lm) = £fx

m(£fy

k(K(y, x))).

THEOREM 1.2. Suppose ^fm e HK°, m = 1, 2, , n are linearly
independent. Then, letting £f(t) = (Jϊfz

ιK(z, t), , Sfz

nK(z,t)), we
have that Dp{y](K(x, y))/D is the kernel function kn(x, y) of the
subspace Hn = {/ e HK; jSfr/ = 0 , r = 1, , n}.

Proof. Let kl{x, y) = J5f5i(ίΓ(α;, τ/))/D. For each fixed y, kl
equals K(x, y) + Σ?=i ^=5^-^(2, a;) for some constants c19 , cn and
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thus belongs to HK. For each r, ^fJkKx, y) — 0, since

(x, y)))

is a determinant of a matrix with the l s ί and rth rows equal. Finally
if fe HH, then (f(x), kl{x, y)) = f(y) + Σ?=i cr^

rf = f(y). So
kt(x, y) = kn(x, y).

THEOREM 1.3. Suppose ^fmeHK°, m — 1, 2, are linearly
independent. Let kn(x, y) denote the kernel function of the subspace
Hn = {/ G HK; ^frf = 0, r = 1, ., n}. Then l i m ^ kn(x, y) gives
the kernel function k(x, y) of the subspace H^ = {/ e HK; ^frf = 0,
r = l, 2, •••}, where in each variable the convergence is both in the
norm and pointivise uniform on each set E1 on which K(z, z) is
bounded.

Proof. Let ^fr - L r, r = 1, 2, . . If S is the subspace of HK
spanned by the {Lr}, then S is the orthogonal complement of Hw in
HK. Now orthogonalize {Lί9 L2, •••} by the Gram-Schmidt process
to get {M19 M21 •}. Thus K(x, y) = k(x, y) + ΣΓ=i Mr(x)Λίr(?/), and
Λ«(̂ , 1/) = ^(^ι 2/) + Έ*7=n+iMr(x)Mr(y), as is easily checked. Thus,

|| kn(x, y) - k(x, y) ||2 = || jfcn(a, 2/) ||2 - (Λn(a?, y), k(x, y))

- (fc(a;, y), kn(x, y)) + \\ k(x, y) ||2 - ifcΛ(2/, ?/) -

= Σ
r = n + l

for each fixed y e E. Furthermore, we have

2

2

I &»(α, V) - W%, V) Γ = I (&*(s, I/) - k(z, y), K(z, x)) \

^\\K(z,x)\\*\\k%{z,v)-k{z,y)\\

= K(x, x)[kn(y, y) - k(y, y)\ .

Hence for y fixed kn(x, y) —> k(x, y) pointwise uniformly on each set
E1 on which K(z, z) is bounded. Since

kn{x, y) - k(x, y) = kn(y, x) - k(y, x) ,

the same statements hold for fixed x.

Note 1.4. If HK is separable then any closed subspace of HK
is of the form H^ in Theorem 1.3.

EXAMPLE 1.5. If B is a bounded domain in C%, let

K = ϋΓs( ,(s, w)
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denote the kernel function of Hi Π
where
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(uυ) = 0 , ^ € S , y = l , 2 , . . . , m ] ?

with r\ < = rv ^ 0. Then by Theorem 1.2,

Krι

(ni HI

)

w) Sϋ-)

ψϊ\(Λ/ , (A/ j j\.rm ψm\lλ/ , vv J

If KB{Ur>oo) denotes the kernel function of

HSΓiifΛu") = 0 , ^ e B , i ; = 1,2, . . . ] ,

then KB{Urt00)(z, id) = lim,,,^ ίΓfiUr,TO)(j2;, w), by Theorem 1.3.

LEMMA 1.6. Let z* = z*(z) be a pseudoconformal transformation
of a domain B onto a domain B* in Cn. Then any closed subspace
HK of Hi is taken onto a closed subspace H*K* of Hi* by the
isometry T given by Tf(z*) = f(z(z*))((dz)/(dz*)) and K*(z*, w*) =
K(z, w)((dz)/(dz*))((dw)/(dw*)).

Proof. In [7] it was shown that if T: H.K^E,) —• H2K2(E2) is a
(surjective) isometry, then K2(w, z) — TXΐyiK^y, x))z)w.

As an immediate consequence of Lemma 1.6, we have

THEOREM 1.7. // HιK1 and H2K2 are any two closed sub spaces
of H£, then / ( ^ K2; z, w) = K^z, w)/K2{z, w) is a pseudoconformally
invariant function. (That is, if H?K* = T^Ki), i = 1,2, where
the isometry T is induced by a pseudoconformal transformation
from B onto B*, then K?(z*, w*)/K2*(z*, w*) - Kx(z, w)/K2(z, w)).

Note 1.8. If Hi is given as the intersection of the nullspaces of
the linearly independent bounded linear functional ^f1*™, m = 1,2, ,



SUBSPACE KERNELS AND MINIMUM PROBLEMS IN HILBERT SPACES 623

i = 1, 2, then we can write
for I(Kl9 KΛ; z, w), where £f e HK°
metry T.

* e (H*K*)° under the iso-

COROLLARY 1.9. If K denotes the Bergman kernel function of
the space HB, then

K(z,z) K-Z(z,z)

, z) KΓz(z, z)

K\z, z)

is a scalar-valued conformal invariant.

Proof. By Theorem 1.7 and Note 1.8, I(DZ; z, z), where DJ =
f'(z) in HI, is a conformal invariant. But by Theorem 1.2,

K(z,z) K-Z(z,z)

Kz(z,z) KΛ(z,z)

Now Dz£{Hι

B)°

[Kzΐ(z,z)K{z,z)]

Γβ*)°> where z—*z* and

dz'

This follows from the fact that if g(z*) = f(z(z*))dz/dz*, then f(z) =
g(z*(z))dz*ldz and f'(z) = g'(z*)((dz*)/(dz))2 + g(z*)(d2z*)/(dz2). So K(z, z) =
K*{z*, z*)(dz*)/(dz)(dz*)/(dz),

dz

and KΛ(z, z) = D:,{D%K*(z*, Z*)). But

dz* p n*τs*,.* ^r,dz*K*(z*, z*)
dz

D*,K*(z*, z*)??-
dz

dz

s*,F))

K*(z*, z*) Kτ.(z*, z*) dz*
dz

Hence Γ(DZ; z, z) = I(DZ; z, z)Kzz{z, z)jK\z, z) is a eonformal in-
variant. Shows that JB(z) = JB'(z*), i.e., JB{z) is a conformal invariant.

Similarly one obtains the following generalization of Corollary 1.9.

COROLLARY 1.10. // K denotes the Bergman kernel function of
the space Hi, then
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, Zn) =

K(z, z) KΓL(Z, Z)

KZl(z, z) KZιS-L(z, Z)

Kβn(z, z) KZnΓι(z,x)

z, z)

, z)

s, z)

is a scalar-valued conformal invariant.

2* Minimuin problems involving infinitely many side con-
ditions*

THEOREM 2.1. If S^m£ϊIΌ, m = l ,2, •••, are linearly inde-
pendent, consider μ = inf | | / | | under the side conditions Sfm(f) =
am, m = 1,2, •••. Then the problem has a solution if and only if
lim^oo 11 fn 11 = M < -o ? where fn yields inf | [ / 11 under the side con-
ditions J?fm(f) = am, m = 1, 2, n. Moreover, if a solution f
exists it is unique and is given by f' = lim^^oo/^, where \\ f \\ = M.

Proof. In [7] we showed that if S^m~Lm, m = l,2, ,nγ

then fn = -Dτ

a{Q)ID, where L = (LL, , Ln) and a = (α1? , α j 7 7 .
If l i m n _ | | Λ | | = Jlf < oo, then

But if m^n, we have that (/w, /m) = | | / n ||
2, since (/n, fm) is obtained

by replacing the first row in the determinant form of fn by

0(1,,, Lm) . (Ln, fm) = - Oα,

Thus | | / n - / » | | 2 = | | / « | | 2 ~ IIΛIΓ. So {fn} is a Cauchy sequence
converging to feH and | | / | | = limΛ | | / w | | = M. Clearly £fmf =
lim^oo ^mfn = αm. Suppose .ί^w(^) = αw, m = 1, 2, . Consider
u = g - f. Then .2-m(u) = 0, m = 1, 2, , and thus

= lim Σ (

n—><χ> lc = ί

(u, f) = (u, lim/J = lim (u, fn) = lim (u, Σ cίn

Then | |^r| | 2 = \\f\r + \\u\\2 and ||flf|| ^ | | / | | , while

On the other hand if t h e problem has a solution /, then

= 0 .

which implies that l i m , ^ 11 fn \ \ = M < oo. Then the argument above
applies to show that in fact / = \im.n^oofn and so | | / | | = M.
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COROLLALY 2.2. // H = HK in Theorem 2.1, then the solution
is given by

( 1 ) f(x) = - lim

and

0 j&t\K(z, JZ?(K(z, x))

Q.

IQ.'

l l / l l 2 - - l i m
Qn\

where Ql — {-S^r(«^s(ϋΓ(2;, ^))}WXil. iϊerβ the convergence is in the
norm as well as being pointwise uniform on every set on which
K(x, x) is bounded.

Proof. Again, as in [7], if ^fm e HK°, m = 1, , n, are linearly
independent then μ = inf | | / | | under the side conditions £fm(f) = am9

m = 1, , n, has the unique solution f(x) = —DY^(0)/D with μ2 —
-Dl(0)/D, where £f(x) - {£fΛ\K{z, α?)), , J2fz

n(K{z, x))). The co-
rollary then follows from Theorem 2.1.

COROLLARY 2.3. / / ^meHK°, m = 1,2, ••• are linearly in-

dependent, then there exists an f in HK such that ^fm(f) = amy

m = 1, 2, ' , if and only if

— lim —

0 a,

a,
an

Qn

If a solution exists, the one of minimum norm is then given by
formula (1).

Proof. There exists such a function / if and only if there
exists one of minimum finite norm in HK, and the statement follows
from Corollary 2.2.
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COROLLARY 2.4. Let {zn} be any sequence of points in the ball
B = [\z\ <l\aCk, and let {wn} be any sequence of complex numbers.
Then a necessary and sufficient condition that there exist a square-
integrable analytic function f on B such that f(zn) = wn, n = 1, 2, ,
is that

az(w) — aZl,z2,:>(Wi, w2i •)

0 ~wλ . ~~

( 2 )

where if z5 — (z), •••, zk), z^zά — X z\zrj. If a solution exists, the

solution f(z) of minimum norm is obtained by replacing wά by

kl/(πk(l — formula (2), convergence is in the norm
and pointwise uniform on compact subsets of B.

Proof. The Hubert space HB of all square-integrable analytic func-
tions on B has the Bergman kernel function K(z, t) = kl/(πk(l — z^t)k+ι).
Then £f/(.Sf,'(K(z, x))) = K(zr, zs) = kl/(πk(l - zr~^s)

k+1), and the co-
rollary follows from Corollary 2.3, and the fact that K(z, z) is con-
tinuous on B.

DEFINITION 2.5. A sequence of points {zn} in the ball B =
[ | 2 | < l ] c C f c is called an H-S interpolating sequence if for each
sequence of complex numbers w = {wn} e S, there exists an fe H such
that f(zn) = wn.

COROLLARY 2.6. {zn} is an Hβ-S interpolating sequence if and
only if az(w) is finite for each w e S.

COROLLARY 2.7. Let {zn} be any sequence of points in the unit
disk [\z\ < 1], and let {wn} be any sequence of complex numbers.
Then a necessary and sufficient condition that there exist an analytic
function /, with square integrable boundary values on the circle,
such that f(zn) = wnJ n = 1, 2, , is that
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0 "w, ~

( 3 ) bz(w) = - lim

Wn

- zxzn

If a solution exists, the solution of minimum norm is obtained by
replacing w3- by l/(2ττ(l — zz5)) in formula (3), and this convergence
is in the norm and poίntwise uniform on compact subsets of

Proof The kernel function of H2 is the Szegδ kernel K(z, t) =
l/(2π(l — zt)) and the same argument applies as in Corollary 2.4.

COROLLARY 2.8. {zn} is an H2-S interpolating sequence if and
only if bz(w) is finite for each w e S.
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