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BERGMAN KERNEL FUNCTIONS AND THE THREE
TYPES OF CANONICAL DOMAINS

SHOZO MATSUURA

The objects of this paper are to extend J. Mitchell’s
theorems on minimal domains of moment of inertia for
sufficiently wider class &% and to discuss the relations among
the three types of canonical domains in the _& -equivalent
class, Some of the results are that, (i) a domain D is the
minimal domain of moment of inertia of the [0, I,;0]”-
equivalent class if and only if the following holds:

My™Z 0)=27Z for ZeD,

where My *(Z,0) is the minimizing function of the (0, I,; 0),-
class, and (ii) if A, B and C are the sets of Bergman’s
minimal domains, Bergman’s representative domains and
Mitchell’s minimal domains ¢f moment of inertia with the
same center in the ¢ -equivalent class respectively, and if
any one of the three relations AnB+¢, An C +#¢ and
BnC # ¢ holds, then it follows that A > B = C.

J. Mitchell [5] has recently proved the theorems of minimal
moment of inertia for complete circular domains in the space C*. In
our paper [10] we have extended them for bounded Bergman’s
minimal domains by making use of the Bergman kernel function.
But there are two restrictions which can be removed. One of them is
that the transformations W = F(Z) considered must belong to the class
., (the set of holomorphic mappings which preserve the volume of
the initial domain), and another is that the domains considered must
be Bergman’s minimal domains.

In §4 of this paper we shall remove these two restrictions and
extend the theorems of minimal moment of inertia for wider class
& of transformations without volume preserving property.

In the case of several complex variables, the analogue of Riemann’s
mapping theorem does not hold even for simply connected domains.
As the canonical domain corresponding to the unit circle in Riemann’s
mapping theorem, the representative domain is intrecduced by S.
Bergman. Another object of this paper is to discuss the relations
among the three types of canonical domains, i.e., Bergman’s minimal
domains, Bergman’s representative domains and the minimal domains
of moment of inertia (abbreviated as the moment minimal domains)
in wider class & [§3, §4].

The main results are Theorem 5 in §3 and Theorems 10 and 12
in §4.
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364 SHOZO MATSUURA

Our theorems obtained in this paper can be extended to the
cases of m-minimal domains, m-representative domains [3], [4], [10]
and m-moment minimal domains [10] (m =1). Therefore, for simplicity,
we treat the case of m = 1, which is our case.

In §’s1, 2 and 3 we treat minimal, representative and moment
minimal domains and the relations among them under the restricted
initial conditions of transformations. In §4 we shall discuss the
three types of canonical domains mentioned above under the extended

class &# and in particular, we attach importance to the moment
minimal problem.

1. Preliminaries. In various extremal problems, mapping func-
tions which may be meromorphic or many-valued can be successfully
used. In order to treat such problems, we must extend the concept
of a domain and its Bergman kernel function.

We assume that each domain with which we deal is a generalized
domain (which is called a “domain” hereafter) in C™ following M.
Maschler [3, p. 503], [4, pp. 765-770], which can be mapped holo-
morphically onto a bounded univalent domain in C". By a holo-
morphic mapping (or holomorphic vector function) of a domain D
onto a domain 4 we mean a one-to-one mapping which, except in a
denumerable number of analytic segments of manifolds of complex
dimensions < n — 1, can be described locally in the column vector

(1) W = W(Z) = (wZ), w(Z), ---, w.(Z)) ,

where w;(Z)(1 =1,2, ---,») are holomorphic scalar functions of
Z = (4 %y +++, 2,) €D with a nonvanishing Jacobian. But, in ac-
cordance with the remarks of M. Maschler [3], [4], we allow w,(Z)
(1=1,2,---,m) to be multi-valued meromorphic functions provided
that the Jacobian det (dW(Z)/dZ) is a single-valued meromorphic
function and does not vanish identically in D. In such a case we
identify in the image domain 4 the points which correspond to the same
point of D.

Hereafter, we shall use, except for Greek letters, upper-case
letters for vectors and matrices and lower-case letters for scalars.

It is known that such domains D and 4 possess Bergman kernel
functions k,(Z, X), Z,XeD and k(W, Y), W,Y = W(X)ed4, and
the relation

Fy _ v dW(Z) dW(X)
(2) ky(Z, X) = kW, Y)det 77 det e

holds. k,(Z, X) is holomorphic with respect to Z and X, and
belongs to % D) which is a class of single-valued holomorphic
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scalar functions f(Z) square integrable in the sense of Lebesgue in
D, namely

(3) (f2 1o = | 142) P, < 40,

where dv, is the Euclidean volume element of the Z-space. If D is a
bounded domain, then %k,(Z, Z) > 0, Z< D, holds.

We first define the differentiation of matrix functions with respect
to vector variables. Let F(Z) be a matrix function

Ifu(Z) cee flm(Z)
F(Z) = ( ,
JulZ) <+ fia(Z)
where fi;(Z) ¢t =1,2,---,1;7=1,2, .-+, m) are scalar differentiable
functions of Z = (2, 2, -+, 2,)’, and d/dZ is the differential operator
of row vector type:
d 0o 0 0
4 = =Ty =y sy .
(4) iz (Eizl oz, 8z,,>

We define the differentiation as follows:

(5) F(Z) ;17 x F(Z) .

Here the Kronecker product of two matrices A and B = (b;;) (nota-
tion: A x B) denotes
Abn Ab12 e
A X B: (Ab21 Abzz"') )

where A may be an operator of matrix type.
For convenience, we note here some differential formulas. Let
the functions A, Band b of Z= (2,2, -+, 2,) be (k x1), (I xm)

matrices and a scalar, respectively. The following formulas can be
easily calculated:

d dB
et = A=,
(6) —ZAB = (I x B) + A
dA _ dA (dW W
_ ] I 9 A:A y
(7) dz dW( iz ‘> e

W = (w(Z), w(Z), «-+, w,(Z)) ,
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dAb _ dA x b dA db
8 = X b+ A
(8) az dZ dZ tAXTZ az’

where I, denotes an identity matrix of order & (k: positive integer).
Next we define the transposed conjugate differential operator
d/dZ* as follows:

d d o 0 ay =
9) -2 Az % A(Z <——,——,---,—-—)><AZ.
(9) az* (%) = az* (2) = 0z, 0%, 0z, 2)
Throughout this paper, vectors and matrices marked with the symbol
" or * denote the transposed or transposed conjugate vectors and
matrices, respectively.

Let us put

v &
10 Ty(Z, X —log ky(Z, X), Z,XeD,
(10) (% X) = —msrs log o X)

then ds* = dZ*T,(Z, Z)dZ is a Kihler metric of D and T,(Z, Z) is
positive definite. The quantities k,(Z, X) and T,(Z, X) play important
roles in this paper.

2. Bergman’s minimum problems.

DerinITION 1. (i) (X, X,; P),-class denotes the class of holo-
morphic vector functions

W(Z) = (wi(Z), w(Z), «++, w,(Z))
in a domain D in the Z = (¢, z,, - -, 2,)’-space which satisfy, at a non-
branch point P = (p,, 0 -+, p,)’ € D, the following initial conditions:
(11) WPy =x,, WP _x  detx, =0,

az

where X, X, are (n x 1), (n X m) constant matrices, respectively.
And the class of image domains by the mappings belonging to the
(X,, X,; P)p-class is called the [X,, X,; P]”-equivalent class.

(ii) (x;; P),-class denotes the class of holomorphic vector func-
tions W(Z) on D, which satisfy the following conditions:

(12) WP =0, =z #0,

det dW(P)

az
where x, is a scalar constant. The equivalent class of image domains
of D obtained by the mappings W(Z) belonging to the (x,; P),-class
is called the [z,; P]”-equivalent class.
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REMARK 1. Because X, denotes a parallel transformation and has
no influence upon the situation of our theory, we will assume here-
after that X, = 0 without loss of generality. The (1; P),-class contains
the (0, I,; P),-class, and therefore the [0, I,; P]?-equivalent class is a
subclass of the [1; P]P-equivalent class.

THEOREM 1. (i) There exists the unique fumnction belonging to
the (0, X,; P),-class which minimizes the integral

as) |1F@) v, = | Fr@)F@)do,

where F(Z) e (0, X; P)y-class and dv, denotes the Euclidean volume
element of the Z-space.

Let M}*1(Z, P) be the minimizing function for (13) and N :(P)
the mintmum value of (13) for MY(Z, P), where P 1is nmot on a
branch manifold on D. Writing them as matrices, we have

(14) M¥(Z, P) = (0, X,)(H,(P, P))"'L(Z, P),
and
(15) k‘g)Xl(-P) = Spur [(Oy Xl)(HD(P! P))_I(Oy Xl)*] )
where
(16) H,(P, P) = (k""* k”’*) ,

'Zcoﬁ kn*
amn L,(Z, P) = (kD(Z’ p_))

ko(Z, P)
and

o g+ _

(18) ki (Z, X ):Wkl’(z’ X),
19) ki = kij(P, P) , ko = kp(P, P) .

(ii) For the (x,; P)y-class, the minimizing function W(Z) which
minimizes the integral

(20) S ldet dF(Z) lzdvz . F(Z)e(x; P)-class ,
D az

satisfies

@1 det IWZ) _ =7 Py = kil (2, P)

az
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and the minimum value of (20) for (21) is

(22) NAP) = wknw, = L8l
e

This theorem has been proved in [6] and our paper [10] for more
general initial conditions. Therefore, we omit the proof of this
theorem.

m7(Z, P) in (21) is the special case of (14) for the class of scalar
functions f(Z) with the initial condition f(P) = ..

The minimizing functions MZ*1(Z, P), m73(Z, P) are relative in-
variant under any holomorphic mapping W(Z)(det (dW(P))/dZ + 0)
[3; p. 503], [4; pp. 765-770]; that is, putting 4 = W(D),

(23) My™(Z, P) = M7*(W(Z), W(P) det L 2),
(29) mi}(Z, P) = mi(W(Z), W(P))det d__g’éz) ,

where Y, (v =0,1) and y, are determined for the function G(W)
such that G(W(Z))det (dW(Z)/dZ) belongs to the (X, X,; P),-class
by the system of equations

E‘%(G(W(Z)) det d‘g’éz >)L=P =X, (v=0,1),

(25)
GY@ =Y (v=01), Q= WP,
and
_ dW(P)
x, =y, det 4z

and P is not on a branch manifold.

The system (25) has one and only one solution, because
det (dW(P)/dZ) + 0.

These minimum problems were treated originally by S. Bergman

[1].

3. Minimal domains, representative domains and moment
minimal domains.

DEFINITION 2. Let W = W(Z) = (w(Z), wy(Z), -+-, w,(Z)) be a
holomorphic mapping of D in C” belonging to the (1; P),-class and
making (20) a minimum. The image domain 4, of D under W(Z)
is called a (Bergman) minimal domain of [1; P]”-equivalent class with
center at W(P) = 0 and W(Z) a minimal function.
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The next theorem is well known [4], [10].

THEOREM 2. (i) If W(Z) is a minimal function, then

awz) _ . _ ks(Z, P) 2
(26) det © 7 = mi(Z, P) = 2 mie D)

(ii) A domain D is a minimal domain of the [1; P]°-equivalent
class with center at Pe D if and only if

(2 my(Z, P) =1 for ZeD,
that 1s,
(28) ky(Z, P) = ky(P, P) for ZeD.

(iii) A minimal domain D with center at P 1is characterized
by the following property: Any holomorphic mapping F(Z) belong-
wng to the (1; P)p-class maps D onto a domain whose volume 1s mot
less than the volume of D.

REMARK 2. A minimal function which minimizes the integral
(20) is not uniquely determined. One of the minimal functions belong-
ing to the (0, I,; P),-class (c(1; P)y-class) is, for instance, given by

Wl(Z) Sﬁm})(t’ Roy * 0%y R P)dt + f(zzy MR zn)
Wz = wZ.(Z )| _ ' &Py ’
w(Z) 2ps

where f(z, ---,2,) is an arbitrary holomorphic scalar function of
(2 =+, %,) and is equal to 0 at Z = P = (py, Dy -+, D) [5, D. 230].

THEOREM 3. The function

Mi~(Z, P)

(29) WolZ, P) = =~ Z P

€ (0, I,; P),-class
18 absolutely invariant under any mapping belonging to the (0, I,; P),-
class.

Proof. This theorem is easily obtained by (23), (24). If X, =
©,--+,0/ =0, X, =1, then we have Y, =0 and Y, = I, for any
F(Z)<e (0, I,; P),-class by direct calculations (using (6), (7) and (8)).

DEFINITION 3. The image domain 4, = W,(D, P) is called the
(Bergman) representative domain of the [0, I,; P]?-equivalent class
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with center at the origin, and W,(Z, P) the representative function.
The next theorem is known [8], [9].

THEOREM 4. (i) A domain D is a representative domain with
center at P if and only if

(30) MynZ,P) _, _p  zeD,
myp(Z, P)

that s,

(31) Ty(Z, P) = TP, P), ZeD.

(ii) A domain D is a minimal and also a representative domain
with the same center at P if and only if
(32) MYyu(Z,P)=Z—P and my(Z,P)=1, ZeD,
that s,

33)  ky(Z, P) =k, (P, P) and kyZ, P)="FkyP,P), ZeD.

In the above, P denotes a parallel transformation of D. There-
fore we may take P = 0, without loss of generality. We shall take
P = 0 hereafter.

DEFINITION 4. The minimizing function W(Z)e (0, I,; 0),-class
which minimizes the integral

(34) I= SAF*(Z)F(Z)dvF :

where F(Z)e (0, I,; 0),-class and 4 = F(D), is called the minimal
function of moment of inertia (denoted as the moment minimal funec-
tion of the (0, I,; 0),-class), and the image domain 4, = W(D) the
moment minimal domain of the [0, I,; 0]°-equivalent class with center
at the origin.

THEOREM 5. (i) The moment minimal function W(Z) of the
0, I,; 0),-class, if it exists satisfies

AW(Z) _ ppor.
(35) W(Z) det === = M(Z, 0) .

The holomorphic function W(Z) which satisfies (35), if it exists,
18 determined wuniquely by the initial condition that W(Z) belongs
to the (0, I,; 0)p-class.

(ii) A domain D 1is the moment wminimal domain of the
[0, I,; 0]”-equivalent class if and only if
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(36) Mn(Z4,0) = Z for ZeD,
that is, by the motation of (10)
koo*ku*(Zy O) - km*kw*(Z’ O) , ZeD ,

2
00*

(37) Tx(0,0) =

where ko = k50, 0).

Proof. (i) For a function F(Z)¢€ (0, I,; 0),-class,

I= SAF*(Z)F(Z)dvF - EDF*(Z)F(Z) ldet ‘ﬂ; (ZZ) Izdvz ,

where 4 = F(D). It is clear that F(Z)det (dF(Z)/dZ) belongs to the
(0, I,,; 0),-class, thus by Theorem 1 the minimizing function W(Z), if
it exists, satisfies (35).

Conversely, if W(Z) satisfies (35), then for an arbitrary function
F(Z)e (0, I,; 0),-class, we have

2

dF(Z)

97 dv,

|, FX@F Z)v, = | F*(2)F(Z) Idet

_ SD l F(Z) det d—%rdvz > SD' Mn(Z, 0) Pdv,

B AW(Z) E, .
_ SD l W(2) det L2 fqy, — &W' W(Z) [dv, .

This shows that W(Z) is a moment minimal function belonging to
the (0, I,; 0),-class.

Now we shall prove the uniqueness of the moment minimal func-
tion which satisfies (35). For simplicity, without loss of generality,
we treat the case of W(Z) = (w(Z), v»(Z)), Z = (%, y)'.

Suppose that there exists the unique function W = W(Z), which
satisfies (35) and belongs to the (0, I,; 0),-class, on the representative
domain D, and let the function Z = Z(Z°) be the representative funec-
tion (uniquely determined by Theorem 3) which maps D, (an arbitrary
domain belonging to the [0, I,; 0]”-equivalent class) onto the repre-
sentative domain D, then we have

dW(Z) 0 AdW(Z(Z")) az°
Z t ——2 = Z(Z°%) det det .
W(Z) de 0z W(Z(Z")) de a7 e 07
On the other hand, by (23) we have
0
MUx(Z, 0) = MY(Z°, 0) det% .

Thus from (35) we obtain the unique function W(Z(Z°) = W%Z°)
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(¢(0, I,; 0)o-class) which satisfies

Wo(Z°) det %‘1 — M2, 0).

This shows that in (35) we may assume a domain D to be the
representative domain with center at origin, without loss of generality.
Now, on the representative domain D we have

Myx(Z, 0) = Zm(Z, 0) = (xm(Z, 0), ymy(Z, 0))

by Theorem 4. Thus, in place of (35), we have

38)  w(Z)det ‘”fl’;Z ) — emiZ, 0), (Z) deti%(zﬁ = ymi(Z, 0) .

As W(0) =0 and dW(0)/dZ = I,, in the neighborhood of the origin
we see that

(39) wZ) = 2u(Z), w(0) =1;  v(Z) =yi(Z), 5(0) =1;
and from (38) and (39) we have

(40) WZ) = ¥Z).

From (38) and (40), we obtain

(41) UZY(W(2) + o-2WZ) + v UZ) ) = M7, 0) .
ox oy

We may assume that

(42) mp(Z, 0) =1 + Cap®°Y’

a+p=1

(43) wWZ) =1+ Qo5 Y’

a+p=1

where c,s(@ + 8 = 1) are given coefficients and a.s(a + 8 = 1) have
to be determined. Substituting (42) and (43) into (41), we have

2
(1 + 3 aaﬁw"'yﬁ> <1 + > (@x+ B+ l)a,,,px“yﬁ> =14+ 3 ey’ .
a+f=1 a+pz1 a+g=1

In comparing the coefficients of z*y® on both sides, we obtain

¢ C 1 c 1
aqo — 10 a/OL — 01 R azo — 20 2 20 2

4’ 4 5 5 16

1 2 2
a, = g‘(cu - _Z“Cmcm), Moz = a0 _ %Cou ete.

Generally, as each a,; is a polynomial in ¢, and a;; ¢ +75 < a + B,
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1<a, j<B), we can thus determine a,(a + B8 = 1) uniquely by
recurrence.

If W(Z) exists in the neighborhood of the origin, by the method
of analytic continuation we can obtain tne unique holomorphic solution
of (85) on D except in a denumerable number of analytic segments
of manifolds of complex dimensions < n — 1.

(ii) Let D be a moment minimal domain. Putting

W(Z) = Z< (0, 1,; 0),-class ,
by Theorem 5 (i) we have
Z=My«(Z,0) for ZeD.
Conversely, if Z = My~(Z, 0) for Ze D, for any F(Z)¢< (0, I,; 0)p-
clags we have
I= S Z*Zdv, = S My *(Z, 0) M (Z, 0)dv,
D D
s dF(Z) dF(Z) _ S *
< * ar\4a) L4y, =
< SDF 2) det LAFz) det LDy, = | F@)F(Z)av,

because F(Z)det (dF(Z)/dZ) belongs to the (0, I,; 0),-clags. This
shows that D is a moment minimal domain.
From (ii), if D is a moment minimal domain, then

Fogor klo*)“1<kD(Z, 0)
ke ki) \Kor(Z, 0)

= T;l(o’ O) koo*k(n*(Z’ O)kz_ km*kD(Zy 0) ,
00*

Z = My(Z,0) = (0, L”(

where T,(0, 0) = (kopwkix — konkir)/kiw. Differentiating both sides of
the above, we have (37). The converse is proved by integration.

REMARK 3. At the origin the condition (37) is satisfied by an
arbitrary domain, but in general it may not hold on D.

ExAMPLE 1. In the case of a complex variable, (35) is reduced to
w(@)-TE) iz, 0) .
dz
Integrating the above, we have

Swwdw = gzm%(z, 0)dz ,
0 0

consequently
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W o b btz 0) = Rty 0))d
2 = o To(0, 0) o

Thus the moment minimal function w = w(z) is a two-valued func-
tion, but from the initial condition of w(z) (belonging to the (0, 1; 0),-
class) the only one moment minimal function is determined.

If D is the unit circle, by [1]

o 1
ko(® ) =

By simple calculations we have

kp(z, 0) = 7’;— = T

kox*(zy O) = _%z’ km*(O’ O) =0,

To(0, 0) = Kyl = 71'(——%) —- 2,

and hence

S:m‘};(z, 0)dz = ——%zg:?lr-<~%z>dz = S:zdz .

Therefore the unit circle is the moment minimal domain of the
[0, 1; 0]”-equivalent class with center at the origin, and the moment
minimal funection is

w2,

= =2, ie., w=1z¢e(0,1;0),-class .

5 = g ( )p

Thus for the unit circle the identity mapping is the only one moment
minimal function belonging to the (0, 1;0),-class. Further the unit
circle is an example of a minimal and also a representative domain
with the same center at the origin from (28) and (31).

THEOREM 6. If D 1is (a) a minimal and also (b) a representa-
tive domain with the same center at the origin, them D 1is (c) a
moment minimal domain with the same center.

In this theorem, we may exchange (a) or (b) for (c), respectively.

Proof. By Theorem 2, Theorem 4, and Theorem 5, necessary
and sufficient conditions for (a), (b) and (c) are
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My'(Z,0) _

W(Z,0) =1,
ma(% 0) m(Z, 0)

Z and M}~(Z,0) = Z for Ze D,

respectively. Therefore, any two of the above conditions are sufficient
conditions for the remainder.

It is known that there exists a minimal but not representative
domain with the same center, or a representative but not minimal
domain with the same center [3], [4].

Example of minimal and also representative domains with the
same center at the origin are Cartan irreducible symmetric domains
or more generally bounded complete Carathéodory circular domains.
Furthermore, they are simultaneously moment minimal domains with
the same center [3], [10].

4. Extended class. Let us consider the (0, X,; 0),-class, where
X, is an arbitrary constant (n X m) matrix satisfying det X, == 0.

LEMMA 1. The 0, X,; 0]°-equivalent class s equal to the [0, L,; 0}‘-
equivalent class, where 4 = F(D), F(Z) e (0, X,; 0),-class.

Proof. Let W(Z), WxZ) belong to the (0, X,;0),-class, and
4y, 4w, be the images of D by the mappings W.(Z), W.(Z), respec-
tively. We may assume the existence of the mapping p(W(Z)) =
Wy(Z) which maps 4, onto 4,, Because from the hypothesis on
domains, it may be assumed that D is a bounded univalent domain
and the existence of an inverse holomorphic mapping Z = Z(W,) in
the neighborhood of W, =0 follows from det(dW(Z)/dZ)|z;= =
det X, # 0. Then we can define a function Z = Z(W,) on 4, by the
method of analytic continuation. Put n = p(W,) = W, (Z(W,), then
we have a desired holomorphic mapping 7(W,) = W, on 4y,, which
maps 4y, onto 4y, Since W,(Z), W,Z) belong to the (0, X;;0),-
class, we have

N(W(0)) = 7(0) = W,(0) =0.

Differentiating both sides of H(W.(Z)) = W,(Z) with respect to Z and
putting Z = 0 yields that

dn(W,)
aw,

AWA(Z)
wi=0 dZ

_ AW(Z)
2= dZ

’
Z =0

that is,

0 x _ x
aw, ' T
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Thus we have

) _ ;.
aw, "

From the above, we see that 1 = 7n(W)) belongs to the (0, I,; 0)4W1"
class. Thus we have the following:

THEOREM 7. The image domain 4 of D under the mapping

(44) = XLM € (0, X,; 0),-class
my(Z, 0)

1s the representative domain of the (0, I,; 0),~equivalent class with
center at the origin. Thus we call (44) the representative fumction
of the (0, X,; 0)p,-class and 4 = W(D) the representative domain of
the [0, X,; 0]P-equivalent class.

Proof. It is clear from Lemma 1 that W(Z) belongs to the
(0, X;; 0),-class. By the holomorphic invariance of minimizing func-
tions (see (23), (24)) we have

aw
oy, 7
W(Z) = XMgI”(Z’ 9 _ X T O det az _ X MW, 0)
T T m(Z,0) T T aw — Trm¥i(W,0) °
mi (W, 0) det =
az
Differentiating both sides of
aw

Sa(Z, 0) = MW, 0) det 3

with respect to Z, and putting Z = 0, we have

8 _prora(0, 0) = I, = —%_ (0, 0) W) 3o, 2W(0)

az aw az az
0, 0L des AWO) _ y x
+ M¥1(0, O)dZ det 17 X, det X, ,
and thus
Y, = X7'/det X, .
For

mi(Z, 0) = mp(W, 0) det %

we have
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y, = 1/det X,

as well as the above. Hence we obtain

MW, 0) _ y YW, 0) _ MW, 0)

W=2X . -
ymu W, 0) my(W, 0)

" mi(W, 0)
Recalling Theorem 4, this shows that the domain 4 = W(D) is the
representative domain of the [0, I,; 0]‘-equivalent class.

COROLLARY 1. The unique mapping function W = W(Z) which
maps the representative domain D of the [0, I,; 0]”-equivalent class
onto the representative domain 4 of the [0, X,; 0]”-equivalent class
(the [0, I,; 0]*-equivalent class) with the same center at the origin,
where W(D) = 4, is

(45) W=XZ.

Proof. If D is the representative domain of [0, I,; 0]°-equivalent
class, then

ME-Z0 _ g 0 zep.

Thus by Theorem 7 we have the result.

THEOREM 8. If F(Z) belongs to the (x; 0)p-class mnormalized by
F(@0) =0 and |x,| =1, then the [x,; 0]°-equivalent class becomes the
[1; O}*-equivalent class, where F(D) = 4. The image domain 4, =
W(D) by a mapping such that

(46) det % — wmi(Z, 0) for ZeD

1s a minimal domain of the [1;0]‘-equivalent class with center at
the origin. Hence we shall call W(Z) a minimal function of the
[2.; 0]P-equivalent class with center at the origin.

Proof. For arbitrary two functions &= F(Z) and 7 = G(Z)
belonging to the (x,;0),-class normalized by |x,| = 1, we have the
relation

G(Z) = 9(&) = 7(F(2)) .

Differentiating both sides of the above with respect to Z, we have
dG(Z)|dZ = (dy/d&)(dF(Z)/dZ) and so
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dG(Z) &y . dF(Z)
d t 2\ — —4 7,
et =gy = detordet—op

Since det (dG(0)/dZ) = det (dF(0)/dZ) = x,, we have

detmzl.
dé

Thus 7 = 7n(§) belongs to the [1; 0]‘-equivalent class, where 4 = F(D).
By (21), (24) and (46), for a minimizing function W(Z) e (x,; 0),-
class we have

aw

AW(Z) _ 4mi(Z, 0) = m, (W, 0) det T

det
iz

b

that is,
my,(W,0) =1 for Wed,.

This shows that 4, is a minimal domain of the [x,; 0]”-equivalent
class, i.e., the [1;0]‘-equivalent class with center at the origin (by
Theorem 2 and the above).

Existence of the mappings which satisfy the equation (46) is
shown in Remark 2.

COROLLARY 2. The mapping function W(Z) (belonging to the
(x,; 0)p-class) which maps a minimal domain D of the [1;0]°-
eqivalent class with center at the origin onto another minimal
domain 4 of the [1; 0)*-equivalent class, where 4 = W(D), satisfies
the conditions

AW(Z)

(47) WO) =0, det == =u for ZeD,

and vice versa. This mapping is a wvolume preserving one. One
such mapping, for instance, is

(48) w=X7, det X, =z, .

Proof. By (21) and (24) we have

o aw aw

1 = L = 51 y 0 —_— = 1 Z 9 0 d t —
my(Z, 0) = xmp(Z, 0) = my(W, 0) det 7 ymi(W, 0) de 7
where y, = 1 since W(Z) belongs to the (w,; 0),-class. Since D and 4
are minimal domains of the [1;0]°-equivalent class and the [1;0]‘-
equivalent class respectively, by (27) we have my(Z, 0) = 1 for Ze D
and my(W, 0) =1 for We 4. Thus we obtain (47). The converse is
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clear from (24). The volume preserving property for W(Z) e (x,; 0)p-
class, |#,| = 1, is the consequence of the following:

aw
det SW.
9z

2

vol (4) = Lde = SD dv, = SDI x, |’dv, = Spdvz = vol(D) .

It is clear that W = X, Z, det X, = x,, satisfies (46).

Hereafter we shall use the initial condition (0, X; 0), normalized
by|det X| = 1. Cy denotes the set of (n X n) square constant matrices
X such that |det X | = 1. Let us introduce the wider class

(49) o = {y (0, X; 0),-class | X e CX} :

This extended class contains the (0, I,; 0),-class and admits a group of
transformations of D with a subgroup of the (0, I,; 0),-class. & con-
tains .7, = (U0, X;; 0),-class | det X, = 1} as a subclass, too. It holds

(50) F D (0, 1,;0),-class ,

where &, is equal to the (1;0),-class (see Definition 2).

THEOREM 9. (i) All minimal domains in the F -equivalent
class have the same wvolume, which is equal to the wvolume of a
minimal domain of the F|-equivalent class.

(ii) Al representative domains in the F -equivalent class have
the same volume, which 1is equal to the volume of the representative
domain of the [0, I,; 0]°-equivalent class.

Proof. (i) By Theorem 8 and Corollary 2, the mapping func-
tion W(Z) of a minimal domain D of the &, -equivalent class onto
an arbitrary minimal domain 4 in the & -equivalent class satisfies

det dVg(ZZ ) — det Xmh(Z, 0) = det X, XeC,.

Therefore

vol (4) = devw - ng det %(Zzl v,

- S |det X 'dv, = S dv, = vol (D) .
D D

(ii) By Corollary 1, the mapping function W(Z) of the repre-
sentative domain D of the [0, I,; 0]°-equivalent class onto an arbitrary
representative domain 4 in the & -equivalent class is

W =XZ, XeCy.
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Thus we obtain

vol (4) = gdde - Udet ﬂgfz_zl v, = vol (D) .

COROLLARY 3. Let A, B and C denote the sets of minimal
domains, representative domains and moment minimal domains in the
F -equivalent class, respectively. If AN B+ ¢, then B= AnNC.
(¢f. Theorem 12).

Proof. An arbitrary domain D e A N B belongs to C (by Theorem
6). By Theorem 9 (ii), B A holds. Thus we have Bc (AN C). On
the other hand, it is clear that an arbitrary domain D e A N C belongs
to B (by Theorem 6). Thus we have the result.

THEOREM 10. Suppose in the F -equivalent class mo domain
exists which is stmultaneously a minimal and representative with
respect to the same point (which can be chosen as the origin 0).
Then there does not exist in that class a domain which s stmul-
taneously a minimal and moment minimal. Further there does not
exist a domain which 1s stmultaneously a representative and moment
minimal with respect to 0.

Proof. Let A, B, and C denote the sets mentioned in Corollary
3. By hypothesis we have ANB =¢. If ANC +# ¢ (or BN C = 9),
that is, if a domain D belongs to A N C, then by Theorem 6, D must
belong to B. Thus AN B +* ¢. This is a contradiction.

REMARK 4. If ANC=¢, then ANB =¢ and BN C = ¢ hold,
and if BNC = ¢, then ANB =¢ and AN C = ¢ hold.

THEOREM 11. (i) The moment minimal function W(Z) of the
0, X;; 0),-class (where X, e Cy is fized) exists if and only if

(51) W(Z) det i‘.l.%’fzﬁ — X, det X, Mw(Z, 0) for ZeD.

(i) Suppose that a moment minimal function N(Z) of the
extended class F exists, then

(52) WZ) deti’ZlLZZ_) — X det XMY~(Z, 0),

where

(53) X = (det 2,)"* U252 = UTY0, 0)/(det TH(0, 0))1" .
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Here
(54) 2, = (0, I,)(H(0, 0))7%(0, L) = T5"(0, 0)/kooe

s a positive definite Hermitian matriz and U s an arbdbitrary
constant unitary matric.

Let D, and 4, be the moment minimal domain of the [0, I,; 0]°-
equivalent class and a moment minimal domain of the F -equivalent
class respectively, then the following inequality holds:

S n*ndvqgs Z* Zdv, .
4y Dygz

(i) 4 is a moment minimal domain of the F -equivalent
class if and only if

(55) i 0) =7 for ned

and

(56) 2, = (det 2 )1, (scalar matriz) ,

that 1s,

(57) 7,0, 0) = (det T,(0, 0))"I, (scalar matrix) .

Proof. (i) From (23) and (45)

Myn(Z, 0) = MoXT (7, 0) det Oé_VZV

and

W(Z) det d?l’éz ) — X, det X, M}(Z, 0)

— X, det X, MP¥T (7, 0) det %VZK

hold. Hence we have
W(Z) = MY~(W, 0) .

This shows that, from (36), 4 = W(D) is the moment minimal domain
of the [0, I,; 0]“-equivalent class ([0, X,; 0]”-equivalent class).

Conversely, suppose that W(Z) is the moment minimal function
of the (0, X,;0),-class. Since W(Z)det (dW/dZ) belongs to the
(0, X, det X,; 0),-class, we have

W(Z) det % = MyTeexy(7, 0) = X, det X, M5+(Z, 0) .
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(ii) This has been essentially proved in our paper [10].
(iii) By (2)
kD(Or 0) = ka(o, 0) ) kD,lO* = kA,w*X ’
kp,cn* = X*kd,m* ’ kD,ll* = X*kd,n*jf-
hold, where 4 = 9(D). Therefore we have
Q,=X0,X*, X = (detQ,)UR,™"",

and
(det 2,)"Q7 = [det (X2, X *)]'/"(XQ2,X*)
= (det 2,)"*(det 2,)"*I[;* = I, ,
because 2} = 2,.
If 4 =n(D) is a moment minimal domain of the & -equivalent

class, then 4 is the moment minimal domain of the [0, I,; 0]‘-equivalent
class. Furthermore from (36)

Mi=(n, 0) =5 for ned,
and the converse is true.

COROLLARY 4. (i) If D, and D, are the moment minimal
domains of the [0, I,;0]°Z-and the [0, I,; 0]°7-equivalent classes,
respectively, and W = W(Z) (which maps D, onto Dy) belongs to
the (0, X;;0),,-class, then the moment minimal function W(Z) is

uniquely given by
(58) W=WZ) =XZ.

(ii) If 4, is a moment minimal domain of the F -equivalent
class, then the moment minimal function n = (Z) (which maps D,
onto 4,) is given by

(59) n=0Z)=X7Z, X=(det2,,)UR;),
where X is defined in Theorem 11.

Proof. Since D, is the moment minimal domain of the [0, I,; 0]°2-
equivalent class,

My(Z,0) =2 for ZeD,
holds. From Theorem 11 (ii) it follows that

(60) W(Z) det ””ZZ’(ZZ ) — (det X)X, Myx(Z, 0) = (det X)X, Z
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is a necessary and sufficient condition that W(Z) (if it exists) is the
moment minimal function of the [0, X,; 0]°Z-equivalent class. On the
other hand, the function (58) satisfies (60) for Ze D,. Thus from
Theorem 5, (568) is the unique and holomorphic moment minimal
function of the [0, I,; 0]°Z-equivalent class.

(ii) As in (i), by (562) of Theorem 11, (59) is the unique moment
minimal function of .# up to the constant unitary matrices.

COROLLARY 5. All moment minimal domains in the F -equiva-
lent class preserve their volumes (cf. Theorem 9 (i), (ii)).

Proof. By Corollary 4, if W = W(Z) is the mapping which
maps a moment minimal domain D onto another moment minimal
domain 4 in the .# -equivalent class, then we have

W= WZ) =XZ, |detX,|=1.
Since
vol (4) = devw - SD det ﬁ% ‘v, = S | det X, [dv, = vol (D),
D

W = W(Z) is a volume preserving mapping.

THEOREM 12. Let A, B and C denote the sets of minimal,
representative and moment minimal domains in the F -equivalent
class, respectively. If any one of the relations AN B +# ¢, ANC # ¢
and BN C # ¢ holds, then AD B = C (¢f. Corollary 3).

Proof. If AN B = ¢, then all domains belonging to B are minimal
domains by Theorem 9 (ii) and all domains belonging to B belong to
C by Theorem 6. Further, by Corollary 5, C <A and hence by
Theorem 6, C < B. Thus we obtain AD B = C. In the case ANC#4¢
or BN C # ¢, we have an analogous result.

ExaMPLE 2. The Cartan domains (bounded irreducible symmetric
domains of the four main types) are defined as follows: The first
three types D,, D, and D, are represented by

where Z denotes an (n X m)-matrix on D, Z denotes an (n X n)-
symmetric matrix with diagonal elements multiplied by /2 on D,
and Z denotes an (n X m)-skew-symmetric matrix on D,. The fourth
type D, is the set of n-dimensional row vectors Z such that

122" | <1, 1—-22Z2% 4+ |ZZ'|* > 0.
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They- are all minimal and also representative domains [7], [10].
Therefore by Theorem 6 they are moment minimal domains of the
[0, I,; 0]”i-equivalent classes (¢ = 1, 2, 3, 4), respectively. Further,

TD,;(Oy 0) = (koo*kn* - km*km*)/kgo* = ku*/koo* = Ai (1, =123, 4)
hold, where
Al = (m + n)Imn ’ Az = 2(7’1/ + 1)In(n+1)/2 ’ As = 2(% - l)In(n—l)/2

and A, = 2nl, (property (57)). Therefore, they are moment minimal
domains with respect to & (D,) (¢ =1, 2, 8, 4), respectively. Further
in the & -equivalent class of each one of Cartan domains, the set of
all representative domains and the set of all moment minimal domains
coincide and they are a subset of the set of minimal domains.

ExamPLE 3. Bounded complete circular domains are minimal and
also representative domains with center at the origin [3]. Thus
each domain D of them is the moment minimal domain with respect
to the [0, I,; 0]”-equivalent class, but it may not be a moment
minimal domain of the .&# (D)-equivalent class without property (57),
which is equivalent to the “property A” mentioned in J. Mitchell’s
paper [7] in the case of bounded complete circular domains.
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