SUFFICIENT CONDITIONS FOR A RIEMANNIAN MANIFOLD TO BE LOCALLY SYMMETRIC

Kouei Sekigawa and Shûkichi Tanno

Abstract

In a locally symmetric Riemannian manifold the scalar curvature is constant and each k-th covariant derivative of the Riemannian curvature tensor vanishes. In this note, we show that if the covariant derivatives of the Riemannian curvature tensor satisfy some algebraic conditions at each point, then the Riemannian manifold is locally symmetric.

Let R be the Riemannian curvature tensor of a Riemannian manifold M^{m} with a positive-definite metric tensor g. Manifolds and tensors are assumed to be of class C^{∞} unless otherwise stated. We denote by ∇ the Riemannian connection defined by g. For tangent vectors X and Y, we consider $R(X, Y)$ as a derivation of the tensor algebra at each point. A conjecture by K. Nomizu [4] is that $R(X, Y) \cdot R=0$ on a complete and irreducible manifold $M^{m}(m \geqq 3)$ implies $\nabla R=0$, that is, M^{m} is locally symmetric. Here we consider some additional conditions.

For an integer k and tangent vectors V_{k}, \cdots, V_{1} at a point p of M^{m}, we adopt a notation:

$$
\begin{aligned}
\left(\nabla_{V}^{k} R\right) & =\left(V_{k}, V_{k-1}, \cdots, V_{1} ; \nabla^{k} R\right) \\
& =\left(V_{k}^{t} V_{k-1}^{s} \cdots V_{1}^{r} \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{b c d}^{a}\right),
\end{aligned}
$$

where V_{k}^{t}, etc., are components of V_{k}, etc., and $\nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{b c d}^{a}$ are components of the k-th covariant derivative $\nabla^{k} R$ of R in local coordinates.

Proposition 1. Let $M^{m}(m \geqq 3)$ be a real analytic Riemannian manifold. Assume that
(1.0) the restricted holonomy group is irreducible, (1.1) $\quad R(X, Y) \cdot R=0$,
(1.2) $R(X, Y) \cdot\left(\nabla_{V}^{k} R\right)=0$ for $k=1,2, \cdots$.

Then M^{m} is locally symmetric.
Here we note that condition (1.0) means that it holds at some, hence every, point and condition (1.1), and (1.2), mean that for any point p and for any tangent vectors $X, Y, V_{k}, \cdots, V_{1}$ at p, they hold.

Proposition 2. Let $M^{m}(m \geqq 3)$ be a Riemannian manifold. Assume (1.1) and (1.2) and that
(1.0)' the infinitesimal holonomy group is irreducible at every point. Then M^{m} is locally symmetric.

Propositions 1 and 2 are essentially related to the following results.
Proposition 3. Let $M^{m}(m \geqq 3)$ be a Riemannian manifold. Assume that the restricted holonomy group H^{0} (the infinitesimal holonomy group H^{\prime}, resp.) is irreducible, and R is invariant by H^{0} (H^{\prime}, resp.). Then M^{m} is locally symmetric.

Proposition 3'. (J. Simons [5], p. 233) Let M^{m} ($m \geqq 3$) be an irreducible Riemannian manifold. Assume that R is invariant by the holonomy group H. Then M^{m} is locally symmetric.

Proposition 3 is a generalization of a result by A. Lichnerowicz ([2], p. 11), which contains an assumption of compactness. We remark here that condition (1.2) is equivalent to

$$
\begin{equation*}
R(X, Y) \cdot\left(\nabla_{V_{k}} \nabla_{V_{k-1}} \cdots \nabla_{V_{1}} R\right)=0 \text { for } k=1,2, \cdots, \tag{1.2}
\end{equation*}
$$

where $X, Y, V_{k}, \cdots, V_{1}$ are vector fields on M^{m}.
With respect to Nomizu's conjecture and the above propositions we have

Theorem 4. Let $M^{m}(m \geqq 3)$ be a Riemannian manifold. Assume that
(i) the scalar curvature S is constant,
(ii) $R(X, Y) \cdot R=0$,
(iii) $R(X, Y) \cdot \nabla_{V} R=0$,
(iv) $R(X, Y) \cdot\left(X, V ; \nabla^{2} R\right)=0$,
(or (iv) $R(X, Y) \cdot \nabla_{X} \nabla_{V} R=0$ for vector fields).
Then M^{m} is locally symmetric.
Theorem 5. Let $M^{m}(m \geqq 3)$ be a Riemannian manifold. Assume that
(i) the Ricci curvature tensor R_{1} is parallel; $\nabla R_{1}=0$,
(ii) $R(X, Y) \cdot R=0$,
(iii) $R(X, Y) \cdot \nabla_{V} R=0$.

Then M^{m} is locally symmetric.

In Theorems 4 and 5 , if $m=2$, then $\nabla R_{1}=0$ implies $\nabla R=0$.
In Theorem 5, if M^{m} is compact, (iii) can be dropped (A. Lichnerowicz [2], or K. Yano [6], p. 222).

In $\S 2$ we reduce proofs of Propositions 1 and 2 to that of Proposi-
tion 3, and next we reduce proofs of Propositions 3 and 3^{\prime} to that of Theorem 4. In §3 we prove Theorems 4 and 5.
2. Holonomy algebras. Conditions (1.1) and (1.2) imply that

$$
\begin{align*}
{\left[R(X, Y),\left(\nabla_{V}^{k} R\right)(A, B)\right]=} & \left(\nabla_{V}^{k} R\right)(R(X, Y) A, B) \\
& +\left(\nabla_{V}^{k} R\right)(A, R(X, Y) B) \tag{2.1}
\end{align*}
$$

for $k=0,1, \cdots$, where $\nabla^{0} R$ means R, and [$\left.T, T^{\prime}\right]$ for linear transformations T, T^{\prime} means $T T^{\prime}-T^{\prime} T$.

Now we show
Lemma 2.1. The condition (2.1) implies

$$
\begin{align*}
{\left[\left(\nabla_{W}^{j} R\right)(X, Y),\left(\nabla_{V}^{k} R\right)(A, B)\right]=} & \left(\nabla_{V}^{k} R\right)\left(\left(\nabla_{W}^{j} R\right)(X, Y) A, B\right) \tag{2.2}\\
& +\left(\nabla_{V}^{k} R\right)\left(A,\left(\nabla_{W}^{j} R\right)(X, Y) B\right)
\end{align*}
$$

for $j, k=0,1,2, \cdots$ And (2.1) is equivalent to

$$
\begin{align*}
{\left[\left(\nabla_{W}^{j} R\right)(X, Y), R(A, B)\right]=} & R\left(\left(\nabla_{W}^{j} R\right)(X, Y) A, B\right) \tag{2.3}\\
& +R\left(A,\left(\nabla_{W}^{j} R\right)(X, Y) B\right)
\end{align*}
$$

for $j=0,1,2, \cdots$.
Proof. We prove (2.2) by induction in j and by tensor calculus in local coordinates. By (2.1), (2.2) holds for $(j, k)=(0, k), k=0$, $1,2, \cdots$. Assume that (2.2) holds for ($j-1, k$), $(j-2, k), \cdots,(0, k)$, $k=0,1,2, \cdots$. Then, denoting by $\nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{u x y}^{p}$ the j-th covariant derivative of R and by $\nabla_{f} \cdots \nabla_{e} R_{q a b}^{u}$ the k-th covariant derivative of R, we show

$$
\begin{align*}
& \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{u x y}^{p} \nabla_{f} \cdots \nabla_{e} R_{q a b}^{u}-\nabla_{f} \cdots \nabla_{e} R_{u a b}^{p} \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{q x y}^{u} \\
& =\nabla_{f} \cdots \nabla_{e} R_{q v b}^{p} \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{a x y}^{v}+\nabla_{f} \cdots \nabla_{e} R_{q a v}^{p} \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{b x y}^{v} . \tag{2.4}
\end{align*}
$$

In fact, we have

$$
\begin{aligned}
\nabla_{t} \nabla_{s} & \cdots \nabla_{r} R_{u x y}^{p} \nabla_{f} \cdots \nabla_{e} R_{q a b}^{u}-\nabla_{f} \cdots \nabla_{e} R_{u a b}^{p} \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{q x y}^{u} \\
= & \nabla_{t}\left(\nabla_{s} \cdots \nabla_{r} R_{a x y}^{p} \nabla_{f} \cdots \nabla_{e} R_{q a b}^{u}\right) \\
& -\nabla_{s} \cdots \nabla_{r} R_{u x y}^{p} \nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{q a b}^{u} \\
& -\nabla_{t}\left(\nabla_{f} \cdots \nabla_{e} R_{u a b}^{p} \nabla_{s} \cdots \nabla_{r} R_{q x y}^{u}\right) \\
& \quad+\nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{u a b}^{p} \nabla_{s} \cdots \nabla_{r} R_{q x y}^{u} \\
= & \nabla_{t}\left(\nabla_{f} \cdots \nabla_{e} R_{q v b}^{p} \nabla_{s} \cdots \nabla_{r} R_{a x y}^{v}+\nabla_{f} \cdots \nabla_{e} R_{q a v}^{p} \nabla_{s} \cdots \nabla_{r} R_{b x y}^{v}\right) \\
& \left.-\nabla_{s} \cdots \nabla_{r} R_{u x y}^{p} \nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{q a b}^{u} \quad \quad \text { (by (2.2) for }(j-1, k)\right) \\
& +\nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{u a b}^{p} \nabla_{s} \cdots \nabla_{r} R_{q x y}^{u} \\
= & \nabla_{f} \cdots \nabla_{e} R_{q u b}^{p} \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{a x y}^{v}+\nabla_{f} \cdots \nabla_{e} R_{q a v}^{p} \nabla_{t} \nabla_{s} \cdots \nabla_{r} R_{b x y}^{v}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{a b b}^{p} \nabla_{s} \cdots \nabla_{r} R_{q z y}^{u}-\nabla_{s} \cdots \nabla_{r} R_{u z p}^{p} \nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{q a b}^{u}\right) \\
& +\left(\nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{g u b}^{p} \nabla_{s} \cdots \nabla_{r} R_{a x y}^{v}+\nabla_{t} \nabla_{f} \cdots \nabla_{e} R_{g a v}^{p} \nabla_{s} \cdots \nabla_{r} R_{b x y}^{b}\right) .
\end{aligned}
$$

The second and third terms vanish by (2.2) for ($j-1, k+1$). Therefore we have (2.4).

Similarly we can show that (2.3) implies (2.2), including (2.1).
By the theory of holonomy groups (cf. A. Nijenhuis [3]), the set of linear transformations

$$
\begin{equation*}
R(X, Y),\left(\nabla_{W} R\right)(X, Y),\left(\nabla_{W}^{2} R\right)(X, Y), \cdots \tag{2.5}
\end{equation*}
$$

for $X, Y, W_{1}, \cdots \in M_{p}$, the tangent space to M at p of M, spans a Lie algebra h_{p}^{\prime} called the infinitesimal holonomy algebra at p. h_{p}^{\prime} generates the infinitesimal holonomy group H_{p}^{\prime} which is a subgroup of the local holonomy group $H_{p}^{*}=H_{p}^{\circ}(U)$. Clearly H_{p}^{*} is a subgroup of the restricted holonomy group H_{p}°. If a Riemannian manifold is real analytic we have $H^{\prime}=H^{*}=H^{\circ}$.

The condition (2.3) implies that

$$
\begin{equation*}
[T, R(A, B)]=R(T A, B)+R(A, T B) \tag{2.6}
\end{equation*}
$$

for any $T \in h_{p}^{\prime}$. This says that R is invariant by T. Therefore, for any element $\alpha \in H_{p}^{\prime}$ we have

$$
\begin{equation*}
\alpha R(A, B) C=R(\alpha A, \alpha B) \alpha C \quad \text { for } A, B, C \in M_{p} . \tag{2.7}
\end{equation*}
$$

Thus, we have reduced proofs of Propositions 1 and 2 to proof of Proposition 3.

Since (2.7) or (2.6) is equivalent to (2.1), condition (2.7) implies conditions (ii), (iii) and (iv) of Theorem 4. Consequently, if we show that, under the conditions in Proposition 3 (3^{\prime}, resp.), the scalar curvature S is constant, then Proposition 3 (3^{\prime}, resp.) will follow from Theorem 4.

Let $E_{i}, 1 \leqq i \leqq m$, be an orthonormal basis at p. Then the Ricci curvature tensor R_{1} is given by

$$
R_{1}(X, Y)=\sum_{i} g\left(R\left(X, E_{i}\right) Y, E_{i}\right) .
$$

Since R is invariant by H^{\prime} or H° or H, we have $R_{1}(X, Y)=R_{1}(\alpha X, \alpha Y)$ for any $\alpha \in H^{\prime}$, or H^{0} or H. Since H^{\prime} or H^{0} or H is irreducible, we have some real number λ so that $R_{1}=\lambda g$ at p. Because p is an arbitrary point of M and $m \geqq 3, \lambda$ is constant on M, and hence $S=$ $m \lambda$ is constant.
3. Proofs of Theorems 4 and 5. To prove theorems it suffices to show two propositions below.

```
Proposition 3.1. On \(M^{m}(m \geqq 3)\) assume that
(i) the scalar curvature \(S\) is constant,
(ii) \((R(X, Y) \cdot R)(X, V)=0\),
(iii) \(\quad\left(R(X, Y) \cdot \nabla_{V} R\right)(X, Y) V=0\),
(iv) \(\left(R(X, Y) \cdot \nabla_{V} R_{1}\right)(V, X)=0\),
(v) \(\quad\left(R(X, Y) \cdot\left(X, V ; \nabla^{2} R_{1}\right)(V, Y)=0\right.\),
(or (v)' \(\left(R(X, Y) \cdot \nabla_{X} \nabla_{V} R_{1}\right)(V, Y)=0\) for vector fields).
```

Then we have $\nabla R=0$.
Proof. Let $\left\{E_{i}\right\}$ be an orthonormal basis at p of M. Put $X=E_{x}$, $Y=E_{y}, V=E_{v}$ in (iii) and take a sum on x, y, v. Then we have

$$
R^{i r x y} \nabla_{v} R_{r}{ }_{x y}-R^{r v x y} \nabla_{v} R_{r x y}^{i}-R^{r x}{ }_{x y} \nabla_{v} R_{r}^{i v}{ }_{r}^{y}-R^{r y}{ }_{x y} \nabla_{v} R^{i v x}{ }_{r}=0 .
$$

The third and fourth terms vanish. We apply the second Bianchi identity to the first two terms;

$$
\begin{aligned}
R^{i r x y}\left(-\nabla_{x} R_{r}{ }_{y y v}-\nabla_{y} R_{r}{ }_{v x}\right) & =-2 R^{i r x y} \nabla_{y} R_{r x}, \\
-R^{r v x y}\left(-\nabla_{i} R_{r v x y}-\nabla_{r} R_{v i x y}\right) & =R^{r v x y} \nabla_{i} R_{r v x y}+R^{r v x y} \nabla_{r} R_{v i x y} \\
& =R^{r v x y} \nabla_{i} R_{r v x y}+R^{r v x y} \nabla_{v} R_{i r x y} .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
-4 R^{i r x y} \nabla_{y} R_{r x}+R^{r v x y} \nabla^{i} R_{r v x y}=0 . \tag{3.1}
\end{equation*}
$$

Likewise, (iv) implies that

$$
\begin{equation*}
R^{r v x}{ }_{y} \nabla_{v} R_{r x}+R_{x y}^{r x} \nabla_{v} R_{r}^{v}=0 . \tag{3.2}
\end{equation*}
$$

And (v) implies that

$$
\begin{equation*}
R^{r v x y} \nabla_{x} \nabla_{v} R_{r y}+R_{y}^{r}{ }_{y}^{x y} \nabla_{x} \nabla_{v} R_{r}^{v}=0 . \tag{3.3}
\end{equation*}
$$

For (v)' we assume that E_{i} are local vector fields such that $\left(\nabla E_{i}\right)_{p}=0$ and $\left\{E_{i}\right\}$ forms an orthonormal basis at p. Then we have the same (3.3).

Since $\nabla_{v} R_{r}^{v}=(1 / 2) \nabla_{r} S=0$, by (3.1), (3.2) and (3.3), we have

$$
\begin{aligned}
& R^{r v x y} \nabla_{x} \nabla_{v} R_{r y}=0, \\
& R^{r v x} \nabla_{i} R_{r v x y}=0 .
\end{aligned}
$$

On the other hand, in a Riemannian manifold generally we have

$$
\begin{align*}
\nabla^{h} \nabla_{h}\left(R_{i j k l} R^{i j k l}\right)= & 2\left(\nabla_{h} R_{i j k l} \nabla^{h} R^{i j k l}\right) \tag{3.4}\\
& +8 R^{i j k l} \nabla_{i} \nabla_{k} R_{j l}+4 R^{i j k l} B_{j k l, h i}^{h}
\end{align*}
$$

where $B_{j k l, a b}^{i} X^{a} Y^{b}$ are components of $R(X, Y) \cdot R$ (A. Lichnerowicz [2], p. 10). Since (ii) is equivalent to $B_{j k l, h i}^{h}=0$, we have $\nabla_{h} R_{i j k l}=0$.

Proposition 3.2. On $M^{m}(m \geqq 3)$ assume that
(i) $\nabla R_{1}=0$,
(ii) $(R(X, Y) \cdot R)(X, V)=0$,
(iii) $\left(R(X, Y) \cdot \nabla_{V} R\right)(X, Y)=0$.

Then we have $\nabla R=0$.
Proof. We have (3.1) by (iii). Then we have $\nabla_{h}\left(R_{i j k l} R^{i j k l}\right)=0$. Therefore, (ii) and (3.4) show $\nabla R=0$.

References

1. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, WileyInterscience, New York, 1963.
2. A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
3. A. Nijenhuis, On the holonomy groups of linear connections IA, IB, Proc. Kon. Ned. Akad. Amsterdam 15 (1953), 233-249.
4. K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968), 46-59.
5. J. Simons, On the transitivity of holonomy systems, Ann. of Math. 76 (1962), 213234.
6. K. Yano, The theory of Lie derivatives and its applications, Amsterdam, North Holland Pub. Co., 1957.

Received October 6, 1969.
Nifgata University
Niggata, Japan
Tôhoku University
Sendai, Japan

