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CONE RELATIONSHIPS OF BIORTHOGONAL SYSTEMS
S. W. SmiTH

It is shown in this paper that total biorthogonal systems
have the same cone if and only if they differ at most by re-
arrangement and by positive scalar multiplication. A connec-
tion is demonstrated between this result and work done by
R. E. Fullerton in which he characterized the existence of an
unconditional basis in terms of the existence of certain type
cones, The paper is concluded by generalizing the first result
to the situation in which two biorthogonal systems have cones
which induce order isomorphic orderings.

1. Definitions and notations. In this paper we will assume that
all vector spaces considered are real and that all topological vector
spaces are Hausdorff. E’ will denote the topological dual of FE, and
the letter N will denote the set of natural numbers.

An ordered vector space is a vector space F equipped with a
transitive, reflexive relation < satisfying the following conditions:

(@) If »,y,2 are elements in F and x <y, then 2 + 2=y + 2.

(b) If =,y are elements in E such that x < y and if a is a non-
negative scalar, then ax < ay.

An ordered topological vector space is a topological vector space
which is also an ordered vector space. The positive cone K of an
ordered vector space E is defined by K = {x € E: ¢ = 0}. It has the
properties that K + K K and aK c K for each nonnegative scalar
a. A subset K of any vector space E with these two properties is
called a cone. If K is a cone in the vector space E, then (E, <) is
an ordered vector space where the relation < is defined on E by
2 < y whenever ¥y — x e K.

If © and y are elements of E, then the order interval between x
and y is the set I(x,y) = {#ze E:x <2 < y}. The positive cone K of
E is said to be generating if ¥ = K — K and proper if KN — K = {0}.
If £ is an ordered topological vector space, its positive cone is said
to be normal if there exists a local base of neighborhoods of zero for
the given topology with the property that V = U {I(z, y}: 2z, ye V}
for each basic neighborhood V.

In a topological vector space (E, T), a pair of indexed sets (x,, f.),
acA, with {z,}c E and {f,} c E’ is called a biorthogonal system in
E if f(x;) =0 for ¢ = B and f,(z,) = 1. The set K = {x € E: f,(x) =
0, v A} is a cone and is called the cone of the biorthogonal system
(s So)-

We will call a biorthogonal system (z,, f.) total provided it has the
following two properties:
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(1) The closed linear span of the z,’s is E.

(2) The f,’s are total, i.e., f.(x) =0 for each e A implies that
x=0.

We will pay special attention to biorthogonal systems (x,, f,), n€ N,
which are Schauder bases and will use the term basis to mean a
Schauder basis.

2. Biorthogonal systems having the same cone. We will ap-
proach the proof of Theorem 2.6 by characterizing the extreme subsets
of the positive cone. Propositions 2.4 and 2.5 although not used in
the proof of Theorem 2.6, are of interest in themselves. An extreme
subset of a cone K is a convex set A such that the following holds:
if u,veK,0<t<1, and tu + (1 — t)ve 4, then % and v are elements
of A.

If # is a nonzero element of K, we will denote by R(0, x) the ray
R0, ) = {tx:0 < t}. If R(0,z) is an extreme subset of K, we will
call it an extreme ray.

PropPOSITION 2.1. Let E be a vector space ordered by the cone K.
Let A be a convex subset of K. Then A is an extreme subset of K
of and only if the following two conditions are satisfied:

(@) I, x) c A for each x € A.

(b) R(0,x)c A for each xze A.

Proof. Let A be an extreme subset of K. Suppose that A = ¢
and that A == {0}. Let = be a nonzero element of A, and let « > 1.
Then (¢ — 1)/ + 0 + (1/a@) + (ax) = x € A. Therefore, 0, ax e A. Since
a > 1 was arbitrary and A is convex, R(0, ) c A. Now let y e I(0, z).
Then x = (1/2) - 2(x — y) + (1/2) - (2y) and thus 2(x — y), 2y € A. There-
fore, yc¢ A and hence I(0, x) C A.

Conversely, let w,ve K and 0 <t <1 such that tu + (1 — ¢)v =
xeA. Then x —tu = (1 — t)ve K. Therefore, tu € I(0, ) which im-
plies that tu e A by (a) and hence that we A by (b). Similarly v is
also an element of A. Therefore, A is an extreme subset of K.

COROLLARY 2.2. Let E be a vector space ordered by a cone K, and
let © be a monzzro elsment of K. Then the following statements are
equivalent.

(a) R0, x) is an extreme ray

(b) I0, z) < R(0, x)

() I0,x) = {tx: 0t < 1},

Proof. The implications a —b and ¢— a follow trivially frem
Proposition 2.1. To show that b— ¢, we need only show that I(0, )
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{tx: 0 <t < 1}. The reverse inclusion is clear. Thus suppose z € I(0, x).
By (b) there exists ¢ = 0 such that z = tx. But tx e I(0, ) implies
that ¢ —te = (1 — )€ {0, 2) c R0, x). Then 1 —¢=0 and ¢ < 1.
Thus ze{tx: 0 < ¢t < 1}.

We remark that (c) of Corollary 2.2 is well known and is sometimes
used as the definition of an extreme ray of a cone [5, p. 10].

PropPoOSITION 2.3. Let E be a topological wvector space ordered by
the cone K of a biorthogonal system (., f.), « € A, for which the f,’s
are total, and let x € E. Then R(0, x) is an extreme ray of K if and
only if there exists Be€ A and b > 0 such that x = bx,.

Proof. Suppose that R(0, x) is an extreme ray for K. Since x = 0
and since the f,’s are total, there exists 8¢ A such that fs(x) > 0.
Then fy(x)x; € I(0, ) which is contained in R(0, «) by Corollary 2.2.
Thus R(0, ;) = R(0, x) and there exists b > 0 such that x = bx,.

Conversely, suppose that we A. Consider the ray R(0,x,). If
ze I(0, x,), then f5(z) = 0 for 8 = a. Hence fi(z — fu(2)x.) = 0 for each
BeA. Since the f,’s are total, we conclude that z = f,(z)x,. Thus
I0, z,) ¢ R0, x,) and R(0, x,) is an extreme ray, Corollary 2.2.

ProposiTION 2.4. If E is a topological vector space ordered by the
cone K of biorthogonal system (2., f.), then K has extreme rays if and
only if the f,’s are total.

Proof. If the f,’s are total, then by Proposition 2.3, each ray
R0, z,) is an extreme ray of K.

Suppose, however, that the f,’s are not total. Then there exists
a nonzero x in E such that f,(x) =0 for each e A. Thus x and
—xeK. If y=# 0 is an element of K, then (1/2) -« + (1/2) - —z =
0e R(0, ). However, either # or —« is not an element of R(0, y),
and thus R(0,y) cannot be an extreme ray of K. Since y was an
arbitrary element of K, we conclude that K has no extreme rays.

ProprosITION 2.5. Let (E, T) be a topological vector space ordered
by the cone K of a btorthogonal system (x,, f,) which is a basts on K,
1.6, & = > f.(@)x, for each x e K. Then A is a closed extreme sub-
set of K if and only if there exists a subset 4 of N such that A =
{ye K: f,{y) = 0 for med}.

Proof. Let A4c N and let A={yeK:f,(y) =0 for ned}. It is
clear that {0, xz) c A and R(0,x) c A for each xe A. Therefore, by
Proposition 2.1, A is an extreme subset of K. Clearly A is closed.

Conversely, suppose that A is a closed extreme subset of K. Let
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4= {ne N: f,(y) =0 for each y ¢ A}. We need only to show that A= A4,
where A, = {ye K: f,(y) =0 for ned}. Clearly Ac A,. Thus sup-
pose zc Ay, then z =32 f.(?)x, and f,(z) =0 for ne 4. Hence z is
contained in the closure of the convex hull of the R(0, x,), ne N — 4.
However, for each ne N — 4 there exists ye A such that f,(y) > 0.
Since f.(y)x, is an element of I(0, ¥) and since A is an extreme sub-
set of K, we have that R(0, f.(¥)x,) A by Proposition 2.1. Hence
R(0,x,)c A for each ne N — 4. A is also closed and convex, since
it is a closed extreme subset of K. Therefore, ze A, and we have
that A= A,.

THEOREM 2.6. Let (x,, f.), @€ A, be a total biorthogonal system and
(Y, hp), B€ B, a biorthogonal system with cones K, and K, respectively
iwn a topological wvector space E. Then K, = K, if and only if there
exists a one-to-ome mapping F of A onto B and a collection of positive
scalars (N}, ae A, such that Yra = Mo 0D Apy = 1/ND)f -

Proof. If there exists a mapping F and positive scalars {\.}, ac 4
as in the theorem statement, it is clear from the definitions of K,
and K, that they must be equal.

Conversely, suppose that K, = K,. By Proposition 2.3, the collec-
tion of extreme rays of K, is the set {R(0, x,): «c A}. However,
K, N — K, = {0} since the f,’s are total. Thus, because K, is also the
cone of (¥s hs), we must have the h,’s are also total. Applying
Proposition 2.3 again, we have that the collection of extreme rays of
K, is the set {R(0, ¥,): 8 € B}. Thus, {R(0, x,): a ¢ A} = {R(0, y,): 8¢ B}.
Define F' mapping A into B in the following way: a maps to F(«)
provided R(0, z,) = R(0, ¥p). It is a simple matter to verify that
F is a well-defined, one-to-one mapping of A onto B. Therefore, for
each ae A there exists A\, > 0 such that ¥, = N.x,. Furthermore,
since the closed linear span of the x,’s is E, hpn = (1/N)f. [3, Pro-
position 1].

COROLLARY 2.7. Let (E, T) be a topological wector space ordered
by the cone K of basis (€., fu). If (Yu ha), € A, is any biorthogonal
system whose cone is also K, then A = N and there exists a permu-
tation T of N such that (Y.um, h.w) 18 also a basis.

Proof. By Theorem 2.6, there exists a one-to-one mapping of N
onto A and positive scalars {b,: ne N} such that y.., = bz, and
Bew = (1/b,)fa.  Since (v,, f,) is a basis, (0,2, (1/0)f.) = (Yeimr b)) 18
also a basis.

COROLLARY 2.8. If (E, T) is a topological vector space ordered by
the cone K of an unconditional basis (., f,) and if (Ya, k), €€ A, is
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any biorthogonal system having the same cone K, then A = N and
(Yus hn) 18 also an unconditional basis (K, T).

3. Remarks. We next point out a connection between the above
work and some work done by Fullerton [4]. To do this let us notice
that if (x,, f,) is a basis in a locally convex topological vector space
(E, T), then the rays {R(0, z,): n e N} satisfy the following conditions.
(@) U{R(,z,): ne N} generates a linear space dense in F.
(b) For each ne N, the closed linear subspace L, generated by
the set {R(0, x;): j = n} is a hyperplane.
(¢©) N{L.:neN}={0}.
Furthermore, if H, is the closed half-space bounded by L, and
containing R(0, z,), then K = M {H,: ne N} is a cone and in fact is
the cone of the basis (x,, f.)-
If (x,, f,) is an unconditional basis and (F, T) is sequentially com-
plete, it is true that the cone K generated by the rays {R(0, z,): n e N}
satisfies two additional conditions.
(d) Knaxz— K is compact for each x ¢ K.
(¢) K— K=E.
Statement (d) is equivalent to unconditional convergence of the series

< fu(@)x, for each x e K [9, p. 16]. Statement (e) is well known
and follows from the fact that in a sequentially complete space un-
conditional convergence is equivalent to sub-series convergence [8,
p. 17].

REMARK. In a complete locally convex topological vector space,
the existence of an unconditional basis is eguivalent to the existence
of a cone K defined by a collection of rays {R(0, z,): ne N} satisfy-
ing conditions (a) through (e). Furthermore, it can be shown that
K is the cone of that basis.

The above remark is essentially the work of Fullerton [4]; however,
it can also be obtained using a theorem of McArthur [9, p. 16].

We would like to point out here that even though Fullerton did
not include condition (e¢) when claiming the above remark to be true,
it is necessary. This can be seen by the following example. Let
(E, T) = C[0,1] with the sup-norm topology. Let (x,,f,) be the usual
Schauder basis given for C[0, 1], [2, p. 69]. It is well known that
the cone K of this basis is normal. Thus by theorems of -McArthur
[10, pp. 6 and 16], we have that K N« — K is compact for each
x e K. Consequently, the rays R(0, x,) of this basis satisfy conditions
(a) through (d) and the cone K would be called an absolute basis cone
by Fullerton [4]. Hence, by Fullerton’s statement of the above remark,
the existence of the cone K is equivalent to the existence of an un-
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conditional basis system (y., h.), ®e A, having K as its cone. It is
well known that the basis (x,,f,) above is a conditional basis [7].
Furthermore by Theorem 2.6, if (v., k.), @€ A, is any arbitrary bior-
thogonal system having K for a cone, then A = N and there exists
a permutation z of N and a collection {\,: ne N} of positive scalars
such that v, = \,@.,. Since (x,, f,) is a conditional basis, (N2,
(1/N)fr) must also be a conditional basis if indeed it is a basis at
all. Thus we have that K satisfied conditions (a) through (d), but
no unconditional basis system exists which has K for its cone. We
note that K is not generating since it is the cone of a conditional
basis and is normal [9, p. 20]. Hence, condition (e) is indeed neces-
sary in order that the above remark be true.

Note that Corollary 2.8 states that unconditional basis cones are
unique among biorthogonal system cones in any topological vector
space. Therefore, it seems likely that the above remark could be
generalized to general topological vector spaces. Corollary 2.7 indi-
cates that some type of a similar remark should be true for condi-
tional bases.

4. Biorthogonal systems giving order isomorphic orderings. In
this section we will prove a type of analogue to Theorem 2.6. For
this work one might think of two cones as being the same if they
give order isomorphic orderings.

If (B, T, K, and (E, T, K,) are ordered topological vector spaces
with positive cones K, and K, respectively, then E, and E, are said
to be order isomorphic to each other if there exist a linear isomor-
phism T mapping E, onto E, such that T(K) = K,. If T and T
are also continuous, E, and E, are topologically order isomorphic.

Let (2., f.) be a biorthogonal system in a topological vector space
E, and (y., h,) a biorthogonal system in a topological vector space E.,.
We say that (x,,f,) and (y., h.) are equivalent systems if for each
x e E, and ye E, there exists a corresponding ¥’ ¢ E, and 2’ ¢ E, such
that f.(%) = h.(¥') and f,(2') = h.(y) for each a. If (z,,f,) and (y,, h,)
are Schauder bases for E, and [, respectively, we say that (x,, f,) and
(Y 1) are equivalent bases provided {(a,): >, @2, converges in E} =
{(b,): >iw-, by, converges in E,}.

THEOREM 4.1. Let (E,, K,) and (E,, K,) be topological vector spaces
ordered respectively by the cones K, and K, of total biorthogonal sys-
tems (24, fo) and (Yo, ho), € A. The following statements can be proved.

(a) If (E, K) and (E,, K,) are topologically order isomorphic, there
exists a permutation T of A and positive scalars {\, a e A} such that
(o f2) aNd (NoYeiry A/NDR:r) are equivalent systems.

(b) If (@ f) and (Y h,) are equivalent, then (E,, K,) and (&,, K,)
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are order isomorphic wvector spaces.

Proof. Let T: E,— E, be a topological order isomorphism mapping
E, onto E,. Then (T(x,),f.T™") is a biorthogonal system in E,. Let
K, denote the cone of (T(zx,),f.T™'). Then K, = K,. Therefore by
Theorem 2.6, there exists a permutation of A and positive scalars
{\a: e A} such that T(x,) = N¥Ye and f,T7' = (1/N)he(w. Further-
more (%4, fo) and (Ne¥-w, (1/M)h-w) are equivalent systems.

Suppose now that (x., f.,) and (y., k,) are equivalent. If xec E,, let
T(x) denote that element y of E, for which f,(x) = h.(y) for each
aecA. Then T is a linear isomorphism of F, onto FE, and T(K,) = K,.

COROLLARY 4.2. Let (E, T) be a sequentially complete topological
vector space ordered by the cone K, of an unconditional basis (x,, f.).
Let {b,: nc N} be any sequence of monzero scalars, z, = b,2,, and h,=
1/6,)f.. Then if K, is the cone of (z,, h,), we have that (E, K,) and
(E, K,) are order isomorphic as vector spaces.

Proof. We begin by showing that (x,, f.) and (a.x., a.f,) are equi-
valent bases where a, = sgnb,. In a sequentially complete space,
S, ful®)x, converges unconditionally to x if and only if >\r., d, /. (@),
converges to « for every sequence {d,: d, = +1}, [8, p. 17]. Using this
fact again we have that >, d,.f.(x)x, converges unconditionally to «
for each such sequence and for each x ¢ E. Thus >\7_, b2, converges
if and only if >3, b,(a,x,) converges, i.e., (x,, f,) and (a,%., a,f,) are
equivalent bases. Thus by (b) of Theorem 4.1, we have that (E, K,)
and (K, K;,) are order isomorphic vector spaces where K, is the cone
of the basis (a,%., a,f.). However, K, = K;, thus (£, K,) and (E, K,)
are order isomorphic vector spaces.

ProPOSITION 4.3. Let E, and E, be complete metric linear spaces
ordered by the cones K, and K, respectively of the total biorthogonal
systems (o, fo) and (Yo, ho), xc A. Then (E, K,)) and (E, K,) are
topologically order isomorphic if and only if there exists positive
scalars (A, aec A} and a permutation T of A such that the systems
(Xay fo)y @€ A, and (MNlerwy AU/ AD)hew) are equivalent.

Proof. If (K, K)) and (E,, K,) are order isomorphic topological vec-
tor spaces, we get the desired result by applying (a) of Theorem 4.1.
Conversely, we can assume without loss of generality that (z., f.)
and (¥., h,) are equivalent. Then by the isomorphism theorem of
Arsove and Edwards [1], there exists an isomorphism 7 of E, onto
E, such that T(x,) = y,. Furthermore 7T is defined as in the proof
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of (b) of Theorem 2.6. Hence T(K) = K,, i.e., T is a topological
order isomorphism.

PRrROPOSITION 4.4. Let (E,, T) and (E, T, be barrelled spaces or-
dered by the cones ‘K, and K, of Schauder bases (%.,f.,) and (¥, h,)
respectively. Then (E, T, K,) and (E,, T,, K,) are topologically order
ssomorphic 1if and only if there exists a permutation T of N and
positive scalars {N,:ne N} such that (x,,f) and (NYems QN wm)
are equivalent bases.

Proof. Suppose that (E,, T\, K,) and (&, T,, K,) are topologically
order isomorphic. Let T: E,— E, be the defining order homeomor-
phism. As in the proof of Theorem 4.1, there exists a permutation
7z of N and positive scalars {»,: » € N} such that T(z,) = N,¥.(,. Thus
(€., f) and (\Yewrs A/ NDh.w) are equivalent bases [6, p. 678].

Conversely, we can assume without loss of generality that (., f,)
and (y,, h,) are equivalent bases. Then F: E,— E, defined by F(x) =
S fu®)y, is a linear homeomorphism [6, p. 678] and clearly
F(K) = K,.
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