LACUNARY SERIES AND PROBABILITY

R. KAUFMAN

In this note we continue some investigations connecting a lacunary series Λ of real numbers

$$A: 1 \leq \lambda_1 < \dots < \lambda_k < \dots, q\lambda_k \leq \lambda_{k+1} \qquad (1 < q)$$

and a probability measure μ on $(-\infty, \infty)$ satisfying

(1)
$$\mu([a, a+h]) \ll h^{\beta}$$

for all intervals [a,a+h] of length h<1, and a fixed exponent $0<\beta<1$. (The notation $X\ll Y$ is a substitute for X=O(Y).) Measures μ occur in the theory of sets of fractional Hausdorff dimension.

In the following statements S is a subset of $(-\infty, \infty)$ of Lebesgue measure 0, depending only on μ and Λ .

THEOREM 1. For $r=2,4,6,\cdots$ and $t\not\in S$, there is a constant $B_r(t)$ so that

$$\int_{-\infty}^{\infty} |\sum a_k \cos \left(\lambda_k t x + b_k
ight)|^r \mu(dx) \leq B_r(t) (\sum |a_k|^2)^{r/2}$$
 .

Here $B_r(t)$ is independent of the sequences (a_j) and (b_k) .

THEOREM 2. For $t \notin S$ the normalized sums

$$(\frac{1}{2}N)^{-1/2}\sum_{k\leq N}\cos\left(\lambda_k tx+b_k\right)$$

tend in law (with respect to the probability μ) to the normal law. Here the convergence is uniform for all sequences (b_k) .

Theorem 1 is a random form of a fact apparently known from the advent of the study of lacunary series; Theorem 2 bears the same relation to the work of Salem and Zygmund [4]. Probability enters critically in the theorems because $\beta < 1$: for any increasing sequence Λ there is a measure μ fulfilling (1) for every $\beta < 1$ and such that the t-set defined in Theorem 1 is of first category.

1. In this section and later we use the notations

$$e(y) \equiv e^{iy}$$
, $\mu(y) \equiv \int_{-\infty}^{\infty} e(yx) \mu(dx)$,

 $-\infty < y < \infty$. In the following estimation |y| > 1.

$$egin{aligned} I &= \int_{_1}^{^2} |\widehat{\mu}(ty)|^2 dt = \int_{-\infty}^{\infty} \!\! \int_{-\infty}^{^\infty} \!\! \int_{_1}^{^2} \!\! e(tyx_{_1} - tyx_{_2}) dt \! \cdot \! \mu(dx_{_1}) \mu(dx_{_2}) \ & \leq \int_{-\infty}^{\infty} \!\! \int_{-\infty}^{\infty} \inf \left(1, \, 2 | \, yx_{_1} - \, yx_{_2}|^{-1}
ight) \! \mu(dx_{_1}) \mu(dx_{_2}) \; . \end{aligned}$$

Let r > 0 be the integer defined by $2^{-r} < |y|^{-1} \le 2^{1-r}$; we sum the integrand over the sets

$$(|x_1-x_2|>1), (1>|x_1-x_2|\geq \frac{1}{2}), \cdots, (2^{1-r}>|x_1-x_2|>2^{-r})$$

and finally over the set $(2^{-r} > |x_1 - x_2|)$. In each case the product measure can be estimated by (1) and Fubini's Theorem; summing up we obtain $I \ll |y|^{-\beta}$. A more convenient form is valid for all real y:

2. To prove Theorem 1 we require an elementary lemma.

LEMMA. Let $(v_k)_1^{\infty}$ be a sequence of real numbers and r a positive integer. Let T be the sum of the moduli of all Fourier-Stieltjes coefficients

$$\widehat{\mu}(d_{\scriptscriptstyle 1}v_{\scriptscriptstyle k_1}+d_{\scriptscriptstyle 2}v_{\scriptscriptstyle k_2}+\cdots)$$

where $1 \leq k_1 < k_2 < \cdots, d_1, d_2, \cdots$ are integers $\neq 0$, and

$$|d_1|+|d_2|+\cdots\leq 2r$$
;

the number of integers d_1, d_2, \cdots varies between 1 and 2r.

Then

$$\int |\sum a_k e(v_k x)|^{2r} \mu(dx) \le (1 + T)(r!)^2 (\sum |a_k|^2)^r$$
 .

Proof. We first expand $(\sum a_k e(v_k x))^r$ by the multinomial formula, obtaining a sum of terms

$$r!(e_1!e_2!\cdots e_r!)^{-1}a_{k_1}^{e_1}\cdots a_{k_r}^{e_r}e(e_1v_k,x+\cdots + e_rv_k,x)$$
.

Of course $1 \le k_1 < \cdots < k_r$, and the r-tuple (e_1, \cdots, e_r) is variable, subject to the equality $e_1 + \cdots + e_r = r$. Next to this expansion we place that of the conjugate, using exponents f_1, \cdots, f_r . Multiplying these expansions and integrating with respect to μ , we collect the integrals in two steps.

First we consider terms in the product in which $(e_1, \dots, e_r) = (f_1, \dots, f_r)$. Making a term-by-term comparison with $(\sum |a_k|^2)^r$, we find a sum $\leq r!$ $(\sum |a_k|^2)^r$.

For the remaining terms we note the factor $\hat{\mu}(e_1v_{k_1}-f_1v'_{k_1}+\cdots)$ attached to the number $|a_{k_1}|^{e_1+f_1}\cdots$, and note that the former number is counted in T. Thus the sum here is $\leq (r!)^2 \max |a_k|^{2r}$, and the proof is complete.

To prove Theorem 1 it will be enough to give a proof for sequences Λ with a gap $q \ge 2r$, for in any case Λ is a union of $1 + \lceil \log q \rceil$ $\log 2r$ sequences with gaps of this size. According to the lemma, it is sufficient to show that for almost all t, the sum T is finite, where T is calculated for the sequence $v_k \equiv t \lambda_k$. Thus T is a sum of numbers

$$|\widehat{\mu}(td_1\lambda_{k_1}+\cdots+td_s\lambda_{k_s})|$$
,

where $d_1 \neq 0, \dots, d_s \neq 0, |d_1| + \dots + |d_s| \leq 2r$. Because $q \geq r$ and $|d_1| + \cdots + |d_{s-1}| \leq 2r - 1,$

$$|d_{\scriptscriptstyle 1}\lambda_{k_1}+\cdots+d_{\scriptscriptstyle s}\lambda_{k_s}| \geqq rac{1}{r}\lambda_{k_s}$$
 ,

whence

$$\int_{1}^{2} |\hat{\mu}(td_1\lambda_{k_1} + \cdots + td_s\lambda_{k_s})| dt \ll \lambda_{k_s}^{-1/2\beta}$$
.

But the number of forms $d_1\lambda_{k_1}+\cdots+d_s\lambda_{k_s}$ having a certain $k=k_s$ Thus $\int_1^2 T dt < \infty$ because $\sum_1^{\infty} k^{2r} \lambda_k^{-1/2,\beta} < \infty$. Theorem 1 for the interval 1 < t < 2 and the same argument is plainly valid for $(-\infty, \infty)$.

3. In the proof of Theorem 2 it is again necessary to estimate sums like T, but it is no longer possible to make such sums converge. Instead, we must estimate their rate of increase.

LEMMA. Let $d_1 \neq 0, \dots, d_s \neq 0$ be integers and

$$p = |d_1| + \cdots + |d_s|.$$

The number of s-tuples $1 \le k_1 < \cdots < k_s \le N$ for which

$$|d_{1}\lambda_{k_{1}}+\cdots+d_{s}\lambda_{k_{s}}-\lambda|\leq 2^{j} \qquad (j=1,2,3,\cdots)$$

is bounded as follows for all real λ and $N \ge 1$:

- $\leq B(p, q)j^{p}$ if p = 1 or p = 2. $\leq B(p, q)j^{p}N^{1/2(p-1)}$ if p > 2.

Proof. The argument for s = 1 is very simple and is contained implicitly in that now given for $s=2, p \ge 2$. Here we distinguish two cases, according as $|d_1\lambda_{k_1}| \leq q^{-1}|d_2\lambda_{k_2}|$, or not. In the first case we can write

$$d_{\scriptscriptstyle 1}\lambda_{k_1}+d_{\scriptscriptstyle 2}\lambda_{k_2}=(1+ heta)d_{\scriptscriptstyle 2}\lambda_{k_2}$$
 , $| heta| \leqq q^{\scriptscriptstyle -1} < 1$.

Let $k < k^*$ be two values of k_2 occurring in this case.

$$|\lambda_{\iota}(1+\theta)-\lambda_{\iota}(1+\theta^*)|\leq 2^{j+1}$$

$$\lambda_{k^*} \leq (\lambda_k + 2^{j+1})(1 - q^{-1})^{-2}$$
.

From this it follows that $k^*-k \ll j$, so that k_2 is restricted to $\ll j$ values. Once k_2 is chosen, k_1 is similarly confined, and so the first case distinguished before gives a contribution $\ll j^2$. Moreover this case always obtains when $|d_1| \leq |d_2|$, and in particular when s=2, p=2; thus (a) is proved. Again, if $|d_1\lambda_{k_1}| > q^{-1}d_2\lambda_{k_2}$ then

$$k_{\scriptscriptstyle 1} < k_{\scriptscriptstyle 2} \leqq k_{\scriptscriptstyle 1} + \log |d_{\scriptscriptstyle 1}|/\!\log q$$

and (k_1, k_2) is restricted to $\ll N$ values. Because p > 2, this is consistent with (b).

When $s \ge 3$ we choose an integer $A = A_{q,s}$ so that $2A^{-q}p \le 1$ and first estimate the number of solutions of (3) wherein $k_{s-1} + A < k_s$. Then

$$d_1\lambda_{k_1}+\cdots+d_s\lambda_{k_s}=(1+\theta)d_s\lambda_{k_s}$$
, $|\theta|\leq \frac{1}{2}$.

We find as above that k_s can assume $\ll j$ different values, and once k_s is fixed we find by induction (on p or on s) that the remaining choices are $\ll j^{p-1}N^{1/2(p-2)}$ in number. Finally, if $k_{s-1} < k_s \le k_{s-1} + A$, then (k_1, k_2) has at most AN values, and for each one of these the number of choices is $\ll j^{p-2}N^{1/2(p-3)}$. This proves the lemma.

Much more precise estimates are given by Erdös and Gál, but these don't seem to be applicable [1].

4. In the proof of Theorem 2 we use the multinomial expansion of $(\sum_{k\leq N}\cos(t\lambda_k x+b_k))^r$ into a finite combination of sums (with coefficients to be considered later)

$$\sum_{1 \le k_1 < \dots < k_s \le N} \sum_{1 \le k_1 < \dots < k_s \le N} \cos^{e_1}(t \lambda_{k_1} x + b_{k_1}) \cdot \cdot \cdot \cos^{e_s}(t \lambda_{k_s} x + b_{k_s})$$
 .

Here $e_1 \geq 1, \dots, e_s \geq 1$, and $e_1 + \dots + e_s = r$. This sum is $\leq N^s$ in modulus, and so it can be neglected if $s < \frac{1}{2}r$. When r is even, say r = 2v, there occurs a *dominant* contribution determined by the choice s = v, $e = \dots = e_v = 2$. This requires closer argument and we exclude it for the moment; in every s-tuple (e_1, \dots, e_s) remaining at least one component must be odd.

To exploit the last remark we expand

$$\cos^{e_1}(t\lambda_k,x+b_k)\cdots\cos^{e_s}(t\lambda_k,x+b_k)$$

into a linear combination of exponentials $e((tx)(d_1\lambda_{k_1} + \cdots + d_r\lambda_{k_r}))$, wherein $1 \leq |d_1| + \cdots + |d_s| \leq r$.

We can handle the dominant term in almost the same way, using the identity $2 \cos^2 u = 1 + \cos 2u$. In the multinomial formula there

occurs the factor $r! \ 2^{-v}(v = \frac{1}{2}r)$. Hence the dominant term contains the constant 1 with a coefficient

$$2^{-v} \cdot r! 2^{-v} \cdot {N \choose v} = 2^{-r} r! (v!)^{-1} N^v + 0(N^{v-1})$$
.

Now the r^{th} moment

$$m_r = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \!\! u^r e^{-1/2u^2} du = 2^{-v} r! (v!)^{-1} \; .$$

Thus the constant term is $2^{-v}N^vm_r + 0(N^{v-1})$, and this is correct because the 'norming' constant is $(\frac{1}{2}N)^{-1/2}$.

In the dominant term there occur other exponentials, but each of them is of the type considered above. It remains now to be proved that the random error, say R_N , encountered in the moment of

$$\sum_{k \leq N} \cos(t\lambda_k x + b_k)$$

is almost surely $o(N^v)$ as $N \to +\infty$. But in fact these errors are Fourier-Stieltjes coefficients

$$|\hat{\mu}(td_1\lambda_{k_1} + \cdots + td_s\lambda_{k_s})|$$

where $1 \le k_1 < \cdots < k_s \le N$ and $1 \le |d_1| + \cdots + |d_s| \le r$. From the previous lemma and from the estimation (2), we find that

$$\int_{1}^{2} R_{N} dt \ll N^{v-1/2}$$

and therefore, by Chebyshev's inequality, $R_{N^3} = o(N^{3v})$ almost surely. Because $(N+1)^3 = N^3 + o(N^3)$ this completes the proof.

It is not difficult to formulate and prove a similar theorem for the *union* of sequences $tA \cup sA$, where (t, s) is a point in the plane. When μ is absolutely continuous, however, we can suppress one of the variables and obtain a central-limit theorem for sums

$$\sum_{k \leq N} \cos (\lambda_k x + b_k) + \sum_{k \leq N} \cos (\lambda_k t x + b_k')$$
.

The central-limit phenomenon here is false for certain sequences Λ and certain values of t: $\lambda_k = 2^k$ and t = 2. The existence of even one t > 1 rendering the central-limit theorem false is presumably a strong restriction on a lacunary sequence.

5. We conclude by stating a theorem and a conjecture related to it. As before S is a set of measure 0 in $(-\infty, \infty)$ depending only on Λ and μ .

THEOREM 3. For each $t \notin S$, each closed set E, and each $\varepsilon > 0$,

there is an integer $N = N(t, \varepsilon, E)$ such that

$$\left|\int_{E}\left|\sum_{k\geq N}a_{k}e(\lambda_{k}tx)\right|^{2}\mu(dx)-\mu(E)\sum_{k\geq N}|a_{k}|^{2}\right|\leq \varepsilon \sum_{k\geq N}|a_{k}|^{2}.$$

The proof is very similar to that of Theorem 1, and to some extent depends upon Theorem 1; however, it is necessary here to use the estimate (a) of the lemma in § 3.

COROLLARY. If $\sum |a_k|^2 = +\infty$, then $\sum_{i=1}^{\infty} a_k e(\lambda_k tx)$ diverges almost everywhere with respect to μ .

It is natural to conjecture that $\sum_{1}^{\infty} a_k e(\lambda_k tx)$ converges almost everywhere, provided $\sum |a_k|^2 < \infty$.

Added in proof. This follows from theorems on orthogonal series.

REFERENCES

- 1. P. Erdos and I. S. Gal, On the law of the iterated logarithm, Indag. Math. 17 (1955), 65-84.
- R. Kaufman, A problem on lacunary series, Acta Sci. Math. (Szeged) 29 (1968), 313-316.
- 3. ———, A random method for lacunary series, J. Analyse Math, 22 (1969), 171-175.
- 4. R. Salem and A. Zygmund, On lacunary trigonometric series, I, and II, Proc. Nat. Acad. Sci. 33 (1947), 333-338; Ibidem 34 (1948), 54-62.

Received February 21, 1969.

University of Illinois