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RAMSEY BOUNDS FOR GRAPH PRODUCTS

PAUL ERDOS, ROBERT J. MCELIECE AND HERBERT TAYLOR

Here we show that Ramsey numbers M(kί9- , kn) give
sharp upper bounds for the independence numbers of product
graphs, in terms of the independence numbers of the factors.

The Ramsey number M(kl9 , kn) is the smallest integer m with

the property that no matter how the \ln) edges of the complete

graph on m nodes are partitioned into n colors, there will be at least
one index i for which a complete subgraph on &* nodes has all of its
edges in the ith color. Ramsey's Theorem tells that these numbers
exist but only a few exact values are known.

The complement graph G has the same nodes as G and the
complementary set of edges.

The independence number a{G) of a graph G, is the largest
number of nodes in any complete subgraph of G.

The product Gt x x Gn of graphs Gu •••, Gn is the graph
whose nodes are all the ordered w-tuples (αL, , an) in which a{ is a
node of G{ for each i from 1 to n, and whose edges are as follows.
A set of two nodes {(au , αw), (bl9 , bn)} will be an edge of
G1 x x Gn if and only if the nodes are distinct and for each i from
1 to n, di = bi or {au b{} is an edge of G{.

THEOREM 1. For arbitrary graphs Gl9 , Gn

a(G, x x Gn)< MiaiG,) + 1, , a{Gn) + 1) .

Proof. We have a complete subgraph of G1x x Gn on
a(G1 x x Gn) nodes. Its edges can be n colored by the following
rule: give {(au •••, an), (xly •••, xn)} color i if i is the first index for
which {ai9 Xi) is an edge of G{.

With this coloration any case where all the edges on k nodes
have color i requires a complete k subgraph of Gi and so requires
k < a(Gi) + 1. With the definition of the Ramsey number this ensures
that

a(G, x x G . X M(a{G,) + 1, , a(Gn) + 1) .

THEOREM 2. If kl9 , kn are given, there exist graphs Gu , Gn

such that for each index i from 1 to n, oc(Gi) — kι and

a(Gλ x x Gn) = M(k, + 1, , K + 1) - 1 .
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Proof. From the definition of the Ramsey number there must

exist an n color partition of the edges of the complete graph on

M(kγ + 1, , &Λ + 1) — 1 = m modes such that for every i from 1 to

n the largest complete subgraph in the ίth color is on kι nodes. For

each i let G; be the graph on the same m nodes having all the edges

not of color ί. Thus for each i, α(G<) = k{. These G* make the

diagonal a complete m subgraph of G1 x x GΛ, and so

a(G1 x x Gw) ^ m .

Applying Theorem 1 we have

tf(G, x x Gn) = M(h + 1, , kn + 1) - 1

THEOREM 3. If n and k are given, there exists a graph G such
that a{G) = k and putting k{ = k for every i,

Proof. With m = M(k, + 1, , kn + 1) - 1 and every fc* = k,
refer to the graphs Gl5 •••, GΛ as specified for Theorem 2. Now con-
struct G as follows. Let the nodes of G be all the ordered pairs
(α, i) such that 1 ^ i ^ ^ and a is a node of Gi9 Let {(α, i), (6, j)} be
an edge of G if and only if i Φ j or {α, b} is an edge of G;.

Thus constructed α(G) = k because each a(Gι) = k. Gn will have

a subgraph isomorphic to G1 x x Gn and consequently

a(Gn) ^ αίGi x x Gn) - m .

So again with Theorem 1 we have

a(Gn) = m = M(h + 1, ., kn + 1) - 1 .

A question remains whether for every k, n with

k2 ^ n < M(k + 1, k + 1)

there exists G such that α:(G) = k and α:(G2) = n. It is known that
Af(4, 4) = 18, and for each w between 9 and 17 we have found a graph
G such that a(G) = 3 and α(G2) = w. However it is only known that
37 < Λf(5, 5) < 58 and for example we have no proof that there exists
a graph G such that a(G) = 4 and a{G2) = M(5y 5) - 2.
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