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ON COVERING SPACES AND GALOIS EXTENSIONS
L. N. CHILDS

Let X be a connected compact Hausdorff space, and G a finite
abelian group. In this note we obtain a short exact sequence
(Theorem 1) which describes the group of isomorphism classes
of regular covering spaces of X with group G. The sequence
is derived as an immediate translation of a similar sequence
involving the group of commutative Galois extensions with
group G of C(X), the ring of complex-valued continuous func-
tions on X.

The translation is obtained in part by showing (Theorem 2) that
there is an equivalence between the category of finite covering spaces
of X and the dual of the category of separable C(X)-algebras which
are finitely generated projective C(X)-modules. This equivalence may
be known to students of [8], but I am unaware of any reference for
it, so we sketch a proof here.

1. The sequence. Let X, C(X) be as above, and let G be a
finite group. A not necessarily connected covering space Y over X is
called regular with group G if G acts as a fixed point free group of
homeomorphisms of Y which preserve the covering map. Denote by
Cov(X, G) the set of isomorphism classes of regular covering spaces
of X with group G (where Y, Z, two covering spaces with group G,
are isomorphic if there is a homeomorphism from Y to Z which com-
mutes with the covering maps and the action of G). Denote by Pic (X)
the group (under tensor product of fibers) of isomorphism classes of
line bundles on X. Denote by HXG, U(C(X))) the subgroup of
H¥G, U(C(X))) (group cohomology, with G acting trivally on U(C(X)))
which is the image of the symmetric 2-cocycles—those cocycles f from
G x @ into the units of C(X) which satisfy f(s, t) = f(¢, s) for all s, ¢
in G.

THEOREM 1. Let G be a finite abelian group. Then Cov(X, G) has
an abelian group structure so that the following sequence of abelian
groups 1s exact:

0 — HXG, U(C(X))) — Cov (X, G) — Hom (G, Pic (X)) — 0.

Proof. If G is a group of order » and R is a commutative ring
with unity, a commutative R-algebra S is a Galois extension of R
with group G if G acts as a group of R-algebra automorphisms of
S, R is the fixed ring under the action of G, and ([3, 1.3f]) for each
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maximal ideal m of S and ¢ %1 in G, there is an s in S so that
o(s) — se¢m. Two Galois extensions S’, S” with group G are isomor-
phic if there is an R-algebra isomorphism S’ — S” which preserves the
action of G. If G is an abelian group, Harrison [9] has shown that
the set of isomorphism classes of commutative Galois extensions with
group G forms an abelian group, Comm (R, G). Viewing a Galois
extension of R with group G as a rank one projective R[G]-module
defines a homomorphism from Comm (R, G) to Pic(R[G]) (the group
under tensor product of isomorphism classes of rank one projective
R[G]-modules), whose kernel consists of the set NB(R, G) of isomor-
phism classes of commutative Galois extensions with normal basis.
If R has no idempotents but 0 and 1 and contains 1/% and a primitive
nth root of unity, then the image is isomorphic to Hom (G, Pic(R))
[6, Theorem 9], so that we have the short exact sequence

(*) 0— NB(R, G) — Comm (R, G) — Hom (G, Pic(R))—0.

We set R = C(X) in (*) and translate. Pic(C(X)) = Pic(X) by
Swan [11]; NB(C(X), G) = HXG, U(X))) by Theorems 2.2 and 4.4 of
[5]. It suffices to show that Comm (C(X), G) = Cov (X, G). This will
be a corollary of Theorem 2.

2. The equivalence. X, C(X) are as above.

THEOREM 2. There are category equivalences between the category
of finite covering spaces of X, the dual of the category of separable
C(X)-algebras which are finitely gemerated projective C(X)-modules,
and the category of memramified affine coverings of Spec(C(X)) [8].
The first equivalence is induced by: if Y 1is a covering space,
Y —C(Y);if S is a separable R-algebra, S— Max(S). The functor
from the first to the third sends S to Spec(S).

Here Max(S) is the space of maximal ideals of S with the Stone
topology (= the topology induced on the geometric points from the
Zariski topology on Spec (S)).

CoroLLARY. Cov(X, G) is an abelian group tisomorphic to
Comm (C(X), G).

Proof of corollary. If R = C(X), S = C(Y), it follows easily from
the definition of Galois extension given above that S is a Galois ex-
tension of R with group G if and only if Y is a regular covering
space of X with group G. Hence there is a bijection between
Cov(X, G) and Comm (R, G). The group structure on Cov (X, G) is
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the one induced from Comm (R, G).

Concerning Theorem 2, we have included the category of non-
ramified affine coverings of Spec (C(X)) only to make more explicit the
relationship with [8]. We shall show only that the correspondences
Y — C(Y), S — Max (S) give inverse bijections between the objects of
the first two categories; the proof of the rest of the theorem is
straightforward and will be omitted.

In what follows, the phrase ‘“ S is a finitely generated projective
R-algebra’’ will mean that S is an R-algebra which is finitely generated
and projective as an R-module.

Proof of Theorem 2. We recall some facts about a compact
Hausdorff space X (see [7]): The topology of X has a basis consisting
of the complements of zero sets of continuous functions on X (‘‘ cozero
sets’’). [7,3.2,p. 388]. If f is a continuous function let Z(f) = the
zeros of f and V(f) =X — Z(f). For any closed set F, if C(X)|r
denotes the restriction to F' of the continuous functions on X, then
CX)|, =C(F) [7,3.11(c), p. 43]. For any open set V = V(f),
C(X)|, = C(X);, the localization of C(X) with respect to the multi-
plicative set consisting of the powers of f. Max(C(X)), the set of maxi-
mal ideals of C(X), is in one-to-one correspondence with the points of
X, since any maximal ideal of C(X) is of the form {f in C(X) | f(p) = 0}
for some point p of X. If Max(C(X)) is given the Stone topology:
basic closed sets are of the form {x|f is in a2} = Z(f) for f in C(X),
then Max (C(X)) is homeomorphic to X [7, 4.9, p. 58].

Assume now that X is a compact Hausdorff space and Y a finite
covering space, that is, there is a continuous map p: Y — X and for
each z in X a neighborhood U of x (a canonical neighborhood) such
that p~'(U) is the disjoint union of a finite number % of open sets of
Y each homeomorphic to U.

Fix an 2 in X, let U be a canonical neighborhood, and let F' be
a closed subneighborhood. Then p~'(F') is a disjoint union of closed
sets of Y each homeomorphic to F', so C(p~'(F')) = C(F)" (the product
as rings of » copies of C(F')). Let V = V(f) be a cozero set containing
x and contained in F. Then V,.(f) = Vy(fop) = p(V(f)) S p~'(F)
is a disjoint union of open sets of Y each homeomorphic to V,(f).
So C(Y); =C(Y) |y, = Cp™(F)) ;4 v is the ring of continuous
functions on a finite disjoint union of open sets each homeomorphic to
Vy(f), whence C(Y); = (C(X);)". Thus for each maximal ideal z of
C(X) there is a f not in x so that C(Y), is a finitely generated pro-
jective separable C(X);-algebra. By [4, § 5] and [1] C(Y) is therefore
a finitely generated projective separable C(X)-algebra.

For the other direction. we need a
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LEMMA. Let S be a finitely generated projective separable R-
algebra, R = C(X). Then for each x in X there is a neighborhood
V(h) of = so that S, = (R,)*, a product as rings of n copies of R,.

Proof of lemma. R,, the localization of R with respect to the
maximal ideal #, is a local ring, so by Theorems 3.1, 2.2 and 2.8 of
[10], S, = R,[0], where @ satisfies a polynomial f(t) =t" + a,t" "'+ +++ +a,
with coefficients in R, and with » distinct roots s, ..., s, in R/x = C.
Let 6 = a/b with ¢ in S,b in R — x, let k be the product of the
denominators of the coefficients of f(t), and let d be the discriminant
[10] of f(t). Then on V{(g) with ¢ = bdk, R,[0] is a separable R, -
algebra contained in S,, and is a finitely generated projective R,-
module of the same rank as S,. So S, is a projective R, [f]-module
of rank one. But since S, is a finitely generated projective R, [0]-
algebra, R,[0] is a R,[0]-direct summand of S,. Thus S, = R,[6].
Since f(t) has coefficients in R,, S, = E,[t]/(f(t)).

Claim: There exists a subneighborhood V = V{(h) of V{(g) con-
taining «, and continuous functions #,, ..., 7, in C(X) so that on V,
f@) = [I=.(t — ;). This follows from the implicit function theorem
applied to the function F(@,t) =¢" + at™' + +++ + @, at @ = d(x) =
(afx), ..., a,(x))eC", t = s;. For since F(a(x), t) has n distinct roots,
the partial derivative F,(a(x), s;) # 0, so there exists a neighborhood U
of @(x) in C™ and continuous functions t;: U—C such that F(a, ¢t,(a)) =0
for all @ in U. Since t{a(x)) = s; = s; = t,(d@{x)) for all ¢ == 7 we can
pick U so small that ¢(U)Nt(U) = @ for all 7 =j5. If we set y:
V(g) — C" by x(y) = d(y), then yx is a continuous function, so V(g)N
x~(U) is a neighborhood of # on which there exist continuous functions
7o =tioy, v =1, ..., n, with disjoint images, which are roots of f.
Hence there is a basic open subneighborhood V(&) (containing x) of a
closed subneighborhood of V(g)Ny~'(U) and % elements +,, ..., », of
C(X) so that on V(h), f(¢) = ], (¢t — 7;). The lemma follows easily.

Suppose now that S is a finitely generated projective separable
R-algebra, and set Y = Max(S). Put the Stone topology on Y. Let
p:Y—X by ply) = yN R, a maximal ideal since S is integral over
E ([2]).

Let 2 be a point of X. By the lemma there exists an & in C(X)
so that S, = (R,)", a product as rings of copies of R,. Then V{(h)
is easily seen to be a canonical neighborhood of z, and p is continuous,
so that Y is a covering space of X.

It is easy to verify that the topology defined on Y makes Y into
a compact Hausdorff space.

If Y is a covering space and a compact Hausdorff space, then
Y = Max (C(Y)) as topological spaces by [7, 3.6, p. 40]. On the other
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hand, given S, a finitely generated projective separable R-algebra, S
is clearly contained in C(Max(S)). Replacing Max(S) by each of its
connected components as necessary, we may assume that S and
C(Max (S)) have no nontrivial idempotents. Embed C(Max(S)) in a
finitely generated projective Galois extension T of R containing no
idempotents but 0 and 1 (possible by [10, 1.13]). By the fundamental
theorem of Galois theory ([3, Theorem 2.3]) S is the fixed ring of
some subgroup of Aut,(7). But any group which fixes S fixes
C(Max (S)), whence S = C(Max(S)). This completes the proof of
Theorem 2.
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