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ATOMIC AND DIFFUSE FUNCTIONALS
ON A C*-ALGEBRA

G. K. Pedersen

It is shown that the notion and basic properties of atomic
and diffuse measures have exact analogues in the theory of
functionals on operator algebras.

We regard a C* -algebra A as the non-commutative analogue of
an algebra C0(T) of continuous functions vanishing at infinity on some
locally compact space T. It has been shown in [3], [4], [5], [13] and
[14] that, at least when A is separable, there is also a reasonable
analogue of the Borel functions on T, namely the σ-closure &A of A.
In this paper we prove that &A has an abundance of minimal pro-
jections, corresponding to points in T, and thus the notion of atomic
and diffuse measures on T can be generalized to the non-commutative
situation, since the diffuse measures are characterized as those
measures that vanish at all points of T.

Let A be a separable C* -algebra and denote by P the set of
pure states of A. Choose in P a maximal set {ft: teT\ of pairwise
inequivalent pure states of A. If (πu Ht) denotes the irreducible
representation of A corresponding to ft, we define the reduced atomic
representation p of A as operators on the Hubert space Ha = ΣθHt

by

p(x)(Σ®ξt) = Σ®πt(x)ξt .

The reduced atomic representation is faithful and each pure state of
A is a vector functional from Ha. Since any other choice of a
maximal set in P will give an equivalent representation, the reduced
atomic representation is essentially unique. In particular the cardi-
nality of T is uniquely determined as the cardinality of the set A of
equivalence classes of irreducible representations of A. In what
follows we shall identify A with its image p{A).

Let &l denote the monotone ^-closure of the self-adjoint part
of A. Then .^A{= &R

A + i&R

A) is a C*-algebra in B(Ha) called the
Baire operators of A [14, Theorem 1]. Each representation (π, H) of
A extends to a <τ-normal representation of &A ([3, Theorem 3.2]) such
that π(&A) is the monotone σ-closure of π(A) in B(H) ([13, Proposition
4.2]). In particular, if (π, H) is irreducible we have π(.^A) = B(H).

THEOREM 1. There is a bijective correspondence between pure
states of A and minimal projections of . ^ .
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Proof. Since A is separable, each point / in P is a closed Gδ

set. Hence there is a peaking element x in A+, with | |g| | = 1, such
that f(x) = 1 and g(x) < 1 for each state g Φ f ([7, Theorem 9]). We
have xn \ p, where p is a projection in .^?A. If £ is a unit vector
in Ha representing /, then (pξ\ζ) — 1. For any unit vector η in Ha

which is not a multible of £ we have (yrj\rj) Φ (yζ\ξ) for some y in
A; hence {py)\τj) < 1. It follows that p is the one-dimensional projec-
tion on the subspace spanned by f, and consequently minimal.

If, conversely, p is a minimal projection in . ^ , then p.^?Ap is a
commutative algebra, isomorphic with the complex field. The func-
tional / on &A, defined by f(x) = pxp, is the unique state extension
of the identity map on p^Ap ([11, Theorem 1.2]), which is pure; and
therefore / is a σ-normal pure state of £%A. But then f e P. If ζ
is a unit vector in pHa, then f(x) = (xξ\ζ) and it follows from the
first part of the proof that p is one-dimensional. Thus the corre-
spondence is bijective, and the theorem follows.

COROLLARY 2. There is a bijective correspondence between elements
in A and minimal projections in the center cέ? of &A.

REMARK. Since έ%fA has a unit, we can identity c^ with a σ-
closed algebra of bounded functions on A. The projections in ̂  then
constitute the sets in a σ-field on A, called the Davies-Borel structure
on A. The above corollary tells us that points in A are Davies-Borel
sets (cf. [5, Theorem 2.9]).

Let S^ denote the smallest monotone closed C*-subalgebra of
«£iζi, which contains all minimal projections of . ^ . Then JF~ can be
indentified with the set of operators x in the direct sum Σfeτ B(Ht),
such that xt = 0 except for countably many t in T. In particular,

is an ideal of έ%fA.

DEFINITION. A positive functional / on A is called atomic if
there is a projection p in S^ such that /(I — p) = 0; / is called diffuse
if it vanishes at all minimal projections of .&A.

PROPOSITION 3. Each positive functional f on A has a unique
decomposition f = fa + fd such that fa is atomic and fd is diffuse.
Moreover, fa and fd are centrally orthogonal.

Proof. Let a be the norm of the functional /1 j^~ on ̂ 7 There
is then a sequence {pn} in the unit ball of ^ + such that f(pn) / a.
Replacing pn with its range projection, we may assume that all pn

are projections. Let p be the central support of \/pn. Then
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and f(p) = a. Put fa(x) = /(ps) and /d(α>) - /((I - p)s).
Then / β (l — p) = 0, hence / β is atomic; and for each a? in ̂ ~ + , with
11 #11 ̂  1> w e have /(x(l — p) + p) ̂  α, hence /rf(x) = 0, and thus fd

is diffuse. By construction fa and fd are centrally orthogonal.

REMARK. We see from the proof that a bounded functional will
be atomic (respectively diffuse) if and only if the restriction to c^
induces an atomic (respectively diffuse) measure on the Davies-Borel
structure of A.

PROPOSITION 4. A positive functional f on A is atomic exactly
if it has the form f = Σanfn, with fn in P. Moreover, the summands
can be chosen such that fn 1 fm for n Φ m.

Proof. If / is atomic and /(I — p) = 0 for a projection p in ^ 7
then, assuming that p e ^ 7 , we have p = Σ pky where each pk is a
minimal projection in ̂ . Thus / = Σ fk, where fk(x) = f{pkx), and
each fk is a σ-normal functional on B(Hk)(= pk.^?A). There is then
for each k an orthonormal basis {ξnk} for Hk and a sequence {α%fc} of
positive constants such that fk{x) = I ^ f e l ^ ^ for all x in . ^ .
If /wfc denotes the pure state of A determined by ζnk, then / = Σ ankfnk,
and since the fnks are supported by pairwise orthogonal (minimal)
projections in .^?A, they are themselves orthogonal.

Conversely, if / = Σ anfn, with all fn in P, then for each n let
pn be the minimal projection in &A such that fn(pn) — 1. Then
p = \/pn£j^~ and /(I — p) — 0. Hence / is atomic, completing the
proof.

DEFINITION. An atom for a positive functional / on A is a
projection p in . ^ , such that /(p) > 0, but f(q)f(p - q) = 0, for
any projection g in .^^ smaller than p.

PROPOSITION 5. A positive functional is diffuse exactly if it has
no atoms.

Proof. Assume that p is an atom for / . Then the state g of
A given by g(x) = f{p)~ιf{pxp) is multiplicative, hence pure, on
p &A p. Since g is the unique state extension from p &A p to &Λ

([11, Theorem 1.2]), we conclude that geP. There is then a minimal
projection q in &A such that g{q) ~ 1. Since pqpe J^ f is not diffuse.

Conversely, if f = fa + fd, with fa Φ 0, then from Proposition
4 there is a minimal projection p in £%A such that fa{p) > 0. Clearly
p is an atom for /, completing the proof.



798 G. K. PEDERSEN

The following proposition generalizes a well-known theorem from
measure theory.

PROPOSITION 6. If f is a diffuse functional on A then, corre-
sponding to each projection p in έ@A and each positive a < f(p), there
is a projection q in &A, with q ^ p and f(q) = a.

Proof. Since p is not an atom for / , there is a projection p0 < p
such that 0 < f(p0) < f(p). Then either f(pQ) ^ £/(p) or f(p - p0) ^
i/(p). Repeating this procedure we see that for any ε > 0 there is
a projection q0 ^ p such that 0 < f(q0) < ε.

Now let (πf, Hf) be the representation of A corresponding to / ,
and let ξf be a vector in Hf such that f(x) = (πf(x)ζf\ζf)y for all x in
£$A. Let {Pi} be a maximal family of nonzero, orthogonal projections
in 7zf(^A) such that Σ p{ ^ πf(p), and Σ(piξf\ςf) tί a for all finite
sums. Since πf(.^A) is a von Neumann algebra ([8, Theorem 2]),
p0 = Σ Pi e πf(&A)o It follows from spectral theory that there is a
projection q in . ^ , with q ^ p and πf(q) = p0.

If we had /(<?) < α, then from the above we could find a projec-
tion q0 ^ p — q, such that 0 < f(qQ) < a — f(q). But then πf(q0) could
be adjoined to the family {p,}; a contradiction. Therefore f(q) — a,
completing the proof.

For the sake of convenience we have stated all theorems in terms
of bounded functionals. However, it is quite easy to extend the
results to a large and important class of unbounded functionals.

Let / be an extended valued, positive, σ-normal functional on
^ i 4 " which is majorized by an invariant convex functional p on . ^ +

(see [13, §2] for definition). Assume furthermore that there is a
sequence {en} in .^?A

+ such that Σ en = 1, and p(en) < <>o for each n.
These conditions are satisfied if / is a cr-finite σ-trace on &A ([4],
[5]) — take p = / — or / is a C*-integral of A ([1, Proposition 4.4]
and [13, Theorem 2.5]).

For each x in .ζ%?A and each n, the element enx belongs to the
set of definition for /, and

\f(enx)\2 ^ f(en)f(x*enx) ^ p(en)p{x*enx) ^ \\x\\2p(eny .

If fn(x) = f(enx), then {fn} is a sequence of /9-normal bounded func-
tionals on &A such that f(x) = Σ fn(x) for all x in ^ + . For each
n there is a central projection pn in ^ ~ such that fn(pn ) is atomic
and /n((l — p j ) is diffuse. Using p = Vp% (e ^ Π ̂ " ) we see that
Proposition 3 is valid for / .

To show that most of Proposition 4 holds also for an unbounded
atomic functional / of the above type, we notice that, as in the
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proof of Proposition 4, we can write f = Σ fk, where each fk is a
^-normal (unbounded) functional on an algebra B(Hk). If p is a one-
dimensional projection in Hk, then enp Φ 0 for some n and therefore
p = \\penp\\~ιpenp. It follows that

/ λ i\
P\P) ~ 11 PenP II \o[e2 pe2 ) ^ \\ penp \ | 1p(en) < oo .

This proves that fk on B{Hk) is majorized by an invariant convex
functional, which is finite at each operator in B(Hk) of finite rank.
Thus fk is a C*-integral on the C*-algebra of compact operators on
Hk, and from [10, Theorem 3.8] there is a bk in B(Hk)

+ such that
/fc(ίc) = tr(6^), for all x in B(Hk)

+. Hence fk (and /) can be expressed
as a sum Σ ankfnk with /wfc in P for all n (and A:). If each bk can be
diagonalized in B(Hk) then / can be written as a weighted sum of
mutually orthogonal pure states. This is trivially the case if / is a
trace, since then each fh is a multible of tr. In general bk can not
be diagonalized, hence a decomposition in mutually orthogonal bounded
functionals is not possible.

Proposition 5 and β can be generalized with the same ease. We
leave the details to the reader.

Finally we notice that the condition of separability for the C*-
algebra A is used primarily to ensure that .ζ%A is "large enough"
under irreducible representations of A. When A is nonseparable there
may be irreducible representations of A on nonseparable Hilbertspaces.
The pure states of A will then correspond to minimal projections in
the Jordan algebra of Borel operators of A defined in [2, §2.4]. This
provides a method for studying atomic functionals on nonseparable
C*-algebras. Another way is to define an atomic functional on A as
one which is supported on a sequence of minimal projections from the
enveloping von Neumann algebra of A. But in this case the relation
to measure theory becomes less clear.
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