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RESTRICTION OF THE PRINCIPAL SERIES
OF SL (»n, C) TO
SOME REDUCTIVE SUBGROUPS

NGuYEN-HUuU-ANH

Let n=mn(+ --- +n, where =2 and the nis are
positive integers, Then every element of G = SL(n, C) can
be written as a block matrix (9:;).<:, js-, Where each block
gi; is a m; X n; matrix. Let G,,,...,,, denote the subgroup
of all diagonal block matrices, i.e., g:; is the O-matrix for
N Let T* be any element of the non-degenerate
principal series of G. The main purpose of this paper is to
decompose the restriction of T* to G,,,...,», into irreducible
representations,

As we shall see by an induction argument, it is sufficient to
consider the restriction of T* to G,_,,. Now by the Frobenius
reciprocity theorem this restriction problem is equivalent to the de-
composition of the induced representations to G of some irreducible
representations of G,_,,. Note that

Gn—l,l - GO = {(gij)lsi,.ign S G ] Gin = 07 1 §. i é n — 1} y

and hence those induced representations may be obtained by inducing
some representations W of G,. The W’s are in turn equivalent to
the restrictions of the elements of the non-degenerate principal series
to G,. Therefore they are all irreducible according to Gelfand and
Naimark [3], and in fact are divided into n distinct classes of ir-
reducible representations of G, [4]. The problem is now completed by
applying again the Frobenius reciprocity theorem. It turns out that
this restriction problem is equivalent to the problem of decomposing
the tensor product of an element of the nondegenerate and an element
of the degenerate principal series of G. In fact Theorem 4.2 gives
the decompositions of such tensor products in terms of the non-
degenerate principal series only. The results contained in this paper
were parts of the author’s thesis at the University of California, Los
Angeles. The author would like to express his gratitude to Profes-
sor Donald G. Babbitt for guiding the preparation of the thesis. The
author would also like to thank the referee for many helpful sug-
gestions.

1. Some results on induced representations and the Frobenius
reciprocity theorem. In this section we shall recall some results on
induced representations due to Mackey ([5], [6]) and then prove some
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corollaries of the Frobenius reciprocity theorem ([6]) which are useful
for later application.

Every locally compact group considered will be separable and
every representation is understood to be unitary.

Let us recall quickly the definition of induced representations.*
Let H be a closed subgroup of G. Let L be a representation of H
in the Hilbert space $(L). Let g be any quasi invariant measure in
the homogeneous space I = H\G of right H cosets. By definition
of quasi invariance, the right translate of ¢ by an element y of G is
equivalent to p¢. Let MN(-,y) be the corresponding Radon-Nikodym
derivative. Consider the space “§* of all functions f from G to (L)
such that

(a) (f(x), »)* is a Borel function of z for all ve $(L).

(b) f(éx) = L.(f(x)) for all £e H and z e G.

(¢) By (b) (f(x), f(x))? is in fact a function on IM. We assume

(f(x), f(x) dp(k) < = where & is the right coset containing x. If

functions equal almost everywhere are identified then “$” becomes a
Hilbert space. For each ye G, let T, map fe “H* into g where g(x) =
Mz, ¥)2 f(vy). Then it can be proved that T is a representation of
G which is determined within unitary equivalence by the measure
class of p¢. This representation is called the representation of G in-
duced from L and is denoted by ind,;;L or ,U* or simply U* if
there is no ambiguity.

On the other hand let V be any representation of G. then the
restriction of V to the subgroup H is denoted by V|, or simply
Vi

The following theorems were proved by Mackey.

THEOREM 1.1. (Theorem 4.1 of [5]). Let HC K be closed sub-
groups of G. Let L be a representation of H and let M = ind,,x L.
Then indg,; L and indg,; M are equivalent representations.

THEOREM 1.2 (Theorem 5.2 of [5]). Let L and M be representa-
tions of the closed subgroups H, and H, of the groups G, and G,
respectively. Then the outer Kronecker product indy ¢, L X indy,;4, M
is equivalent to indy «u,16,xa, (L X M) where L X M 1is the outer
Kronecker product of L and M.

Let H, and H, be closed subgroups of G. We shall say that H,
and H, are discretely related if there exists a subset of G whose
complement has Haar measure zero and which is itself the union of

1 See, e.g. §2 of [5].
2 (-,-) denotes the inner product in § (L).
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countably many H,: H, double cosets.

THEOREM 1.8 (Theorem 7.1 of [5]). Let H, and H, be two dis-
cretely related closed subgroups of G. Let L be a representation of
H,. For each x€ G consider the subgroup H, N (x*Hx) of H, and let
.V denote the represemtation of H, induced by the representation
N—L,,,—1 of this subgroup. Then ,V is determined within unitary
equivalence by the double coset H, X H, = D(x) and we may write
oV =,V where D = D(x). Finally indy ;q L restricted to H, 1is the
direct sum of the ,V over those double cosets D which are not of
measure zero.

THEOREM 1.4 (Theorem 7.2 of [5]). Let H, and H, be as in
Theorem 1.3 and let L and M be representations of H, and H, re-
spectively. For each (x, y) € G X G consider the representations

st— L, and s+—— M,

of the subgroup (v~ Hx) N (¥~ Hy). Let us denote their tensor product
(or Kronecker product in the terminology of [5]) by N*?. Then the in-
duced representation of N*¥ to G is determined within unitary equiv-
alence by the double coset Huxy'H, and the direct sum of these in-
duced representations over those double cosets which are not of
measure zero is equivalent to the tensor product indy +L @ indy, ;s M.

THEOREM 1.5 (Theorem 10.1 of [5]). Let H be a closed subgroup
of G and let M be a representation of H which is a direct integral

over a Borel measure space (Y, pt) of representations *L; M = S”L ap(y).

Then SindHTG”L du(y) 1is equivalent to indg,, M.

Let M be a separable locally compact space and let ¢ be a finite
measure on M. Let » be an equivalence relation on M. Let » also
denote the natural mapping of I onto the quotient space Y. Assume
7 regular in the sense of §11 of [5]. Then g induces a natural
measure /2 on Y.

LEMMA 1.6 (Lemma 11.1 of [5]). Let g, it be as above. Then for
each yeY there exists a finite Borel measure p, in M such that

@) =0 and |£ |o@dn@di) = |Fe@0o@dua) when-
ever fe FA(Y, it) and g is bounded and measurable on M. p, is cal-
led the quotient measure obtained from p by way of the equivalence
relation r.
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LemMmA. 1.7 (Lemma 11.4 of [5]). Let g, r, Y, M be as above
and let k be a monnegative function on M which is p-summable. Let
v be the measure whose Radon-Nikodym derivative with respect to p
18 k. Then 0 1is absolutely continuous with respect to f, the Radon-
Nikodym derivative being N say. Moreover in the decomposition of
v, U, may be taken to be that measure absolutely continuous with
respect to p,, whose Radon-Nikodym derivativative iszero or x+— k(x)/\(y)
depending wpon whether or mot My) is zero.

THEOREM 1.8 (Theorem 5.1 of [6]). Let H be a closed subgroup
of G. Let the regular representations of H and G be of type I and
let their canonical decomposition into factor representations be

S Fed{(x) and S NYdn(y) respectively where F* (resp. NY) is @ multiple
X Y

of the irreducible representation L7 (res. M*) of H (resp. G) and { and
7 are finite measures such that {(X) = 9(Y). Then there exists a
Borel measure a on X X Y and an a-measurable function from X x Y
to the countable cardinals, (x,y)— n(x,y), such that for all Borel
subsets E and E’ of X and Y respectively we have

a(E X Y) =C{(E); aX x BE) =1n(E)

and such that for C almost all x in X
(i) indg,eL* = S n(x, Yy M? dB,(y) and for 7 almost all y in Y
Y

(ii) M”]HzS n(@, y) L* dv,(@) where the Bu(resp.vy) are the
X
quotient measures obtained from a by way of the equivalence relation
r(@, ¥) = = (resp. r(®, ¥) = ¥).

The Theorem 1.8 is often called the Frobenius reciprocity theorem.
Let us derive some corollaries of Theorem 1.8 which are easier for
application in some special cases. In fact it is hard to compute « in
general. However what we expect is the following: suppose by some
other way we know that one of the statements (i) or (ii) is valid,
then what can be said about the other?

The answer of this question is contained in the following corol-
laries.

COROLLARY 1.9. Let G and H be as in Theorem 1.8. Assume
also that they are of type I. Then the following are equivalent.

(i) for € almost all x, indy,; L* is quasi-equivalent to a sub-
representation of the regular representation of G.

(ii) for n almost all y, M? |, is quasi-equivalent to a subrepre-
sentation of the regular representation of H.
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Proof. By (i) of Theorem 1.8 and the uniqueness of direct
integral decompositions into irreducible reperesentations for type I
groups (see e.g., [2]), (i) is equivalent to:

(iii) for { almost all z, g, is absolutely continuous with respect
to ».
Suppose (iii) is true. Then the Fubini’s theorem and Lemma 1.6
show that:

(iii)’ « is absolutely continuous with respect to £ x 7. Conver-
sely suppose « is absolutely continuous with respect to { x 7. Let
us apply Lemma 1.7 for the equivalence relation r(x,¥%) =2, ¢ =
{ x 7, v=a Since it is clear that zt = »(Y){ and g, = n(Y)™'n for
every x€ X, (iii) follows immediately. The equivalence between (ii)
and (iii)’ is proved in a similar manner.

To have a more precise statement we must include the multipli-
city function.

COROLLARY 1.10. Let G and H be as in Corollary 1.9. Let
o (x, y) and n'(x, y) be { X p-measurable functions where n'(x, y) is a
countable cardinal for every x, y. Then the following are equivalent.

(i) for € almost all x, indy,, L* = Syn’(x, Y)Y M dB,(y),
where dB.(y) = (x, Y)dn(y).

(ii) for 7 almost all y, MY|, = an'(x, ) L* dv (@),
where dv,(x) = o, ¥)dl().

Proof. Let «, B,, v, be as in Theorem 1.8. As in the proof of
Corollary 1.9, (i) or (ii) imply that « is absolutely continuous with
respect to { x 1. Let f(x,y) be the corresponding Radon-Nikodym
derivative. Apply again Lemma 1.7 for the relation »(x, y) =z, 1 =
X 7n,v=a. As noted in the proof of Corollary 1.9 zz = »(Y){, and
Y. = N(X)'n for every # in X. On the other hand it is also obvious
that U = { (see e.g., the connection between a and { in Theorem 1.8).
Therefore the function A in Lemma 1.7 satisfies M\x) = do/dfi(x) =
7»(Y)™, and the Radon-Nikodym derivative of the corresponding
quotient measures is given by dg./du.(y) = f(x, y)/9(Y)™. Therefore

(1) dB.(y) = f (@, y)dn() .

Using again the uniqueness of direct-integral decomposition into ir-
reducible representations for type I groups and taking (1) into account
we see that (i) is equivalent to

o(x, y)d(@)dn(y) ~ a (= f(z, y)dl(x)dn(y))

(ii)
w'(x, y) = n@, y), X7 — a.e.
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Similarly (ii) is equivalent to (iii).

2. Description of some representations of G,,, ***, ,,. Although
the representations of G,, --+, %, can be described by using the
known results on reductive Lie groups, we prefer to use another
method which is interesting in its own right and is used to simplify
our computations later on.

Let H and K be two subgroups of a group G. Then G is said to be
the “generalized direct product” of Hand K if: (i) HK = G; (ii) hk =
kh for he H and ke K. In the case HN K = {id;}. G is simply the
direct product of H and K.

Let G, and G, be two groups. Let Z, (resp. Z;) be a subgroup of
the center of G, (resp. G,). Suppose that there exists an isomorphism
t from Z, onto Z,. It is clear that Z = {(z, t(2)) |2€ Z,} is a normal
subgroup of G, X G,. Let v be the canonical homomorphism of G, X G,
onto G = G, X Gy/Z. Put H, = v(G) (¢ =1,2). Then it is easy to see
that G is the generalized direct product of H, and H,. Moreover H,
and H, are isomorphic to G, and G, respectively. Under these iso-
morphisms, ¢ becomes the automorphism A+ k™' of H, N H, Suppose
now G, and G, are topological groups, Z, and Z, are closed subgroups
of G, and G, respectively, and ¢ is also a homeomorphism. Then G,
equipped with the quotient topology, is a topological group containing
H, and H, as closed subgroups. If this is the case we say that G is
the topological gemeralized direct product of G, and G, via t. Assume
that G is a separable locally comact group. If G is the (algebraic)
generalized direct product of two closed subgroups H and K, then
it can be shown that G is (topologically and algebraically equivalent
to) the topological generalized direct product of H and K via the
automorphism z— 2z of HN K.}

We turn now to the representation theory of generalized direct
products. Note that while this notion is a generalization of that of
direct products, it is also contained, in part, in the theory of group
extensions.

PROPOSITION 2.1. Let G be the generalized direct product of two
closed subgroups H and K. Let H' be closed subgroup of H containing
HNK. Then G' = H'K is a closed subgroup of G. Let V be a re-
presentation of G’ im the Hilbert space . Put W, = indg 15 (V |z)-
Then indg s V s equivalent to the representation of G defined by

(2) g=hk— W (h)Wyk) (heH, kcK),
where W, is a repesentation of K equivalent to some multiple of V |g.

3 See, e.g., [1], Chapter 7, §2, no. 9.
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Proof. We first remark that the map H'h+— G'h(he H) is a home-
omorphism of H'\H onto G’\G which intertwines the actions of H by
right translations. Moreover it transforms a quasi invariant measure
g of H\H into a quasi invariant measure ¢ of G'\G.* For every
function f from G into $, put = f|,. Then f— f is an isometry
of the Hilbert spaces *$” and #§"# in §1. In fact it sets up an
equivalence between indg ;o V' and the representation (2). The fact
that W, is equivalent to a multiple of V' |z can be checked directly
or by using Theorem 12.1 of [5].

The following corollary is useful for later application

COROLLARY 2.2. Let G, H, K, H', G be as wn Proposition 2.1.
Let V be a one-dimensional representation of G'. Then indg ..V is
equivalent to the representation defined by

(3) g=hk+— VEW®m), heH, keckK,

Let us consider the important particular case in which H is
abelian.

LEMMA 2.3. Let G be the generalized direct product of a closed
subgroup K and an abelian closed subgroup H. Let U be any ir-
reducible representation of G. Then U |y s a multiple of some
character y of H and V = Ul is an irreducible representation of
K such that

(4) V0kox = mult of ¥ |gng -

Conversely let ¥ be any character of H and V be any irreducible
representation of K satisfying (4). Then g =hk— 3RV (k) is a
well-defined irreducible representation of G.

Proof. Let U be an irreducible representation of G in the Hilbert
space . Since H is abelian it is contained in the center of G.
Therefore by Schur’s Lemma U (k) = y(h)I where y(h) is a complex
number and I is the unit operator of $. It is clear that y is a
character of H. Let §’ be a nonzero closed subspace of § which is
invariant under U(k), ke K. Let W be the component of K on &’
then W (k) = x(k)I', ke HN K where I' is the unit operator of £'.
Hence g = hk+— y(h) W (k) is a well-defined subrepresentation of U. Thus
9’ = . This shows that U | is irreducible. The converse is clear.

¢+ This can be seen by a direct computation. See however [5] for the cor-
respondence between quasi-invariant measures and i-functions.
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COROLLARY 2.4. G s of type I if and only if K is.

We shall apply these results to the subgroup G.,,.... First
we shall recall some facts on the representation theory of SL(n, C).
Let K,(resp. D,) be the subgroup of SL(n, C) consisting of all upper-
triangular (resp. diagonal) matrices. Let ) be a character of D,,
then y extends uniquely to a one-dimensional representation of K,
which induces to an irreducible representation of SL(n, C) (see [3] and
[4]). This representation is called the element of the nondegenerate
principal series of SL(n, C) corresponding to x and denoted by T°.
Since the dual D, of D, is parametrized by Z*— x R* ([3], see also
[4] for another parametrization of D,) we also use the notation
T'tme-mai e for the element of the nondegenerate principal series
corresponding to (m,, <+, M,; O <++, P,) €Z" X R**. A fundamental
domain of D, is a maximal subset D of D, with respect to the fol-
lowing property: let ¥, x. be two different elements of D°, then the
corresponding elements 7% and T* of the nondegenerate principal series
are not equivalent.

Let D° be any fundamental domain of ﬁn. Then the regular

representation of SL(n, C) can be decomposed into S”J oo T*dy, where
D

dy is the restriction of the Haar measure of ﬁn to nf)?,ﬁ

We now return to the group G,,.....,. Let K, ...... (resp.D,,,.....)
be the subgroup of G,,...., consisting of all diagonal block matrices
(9;;) such that each block g¢;; is an upper triangular (resp. scalar)
matrix. It is clear that H = SL(n, C) X -+- X SL(n,, C) can be
embedded in G,,...,,, and G,,.., becomes the generalized direct
product of H and D,,,..,,. Moreover HN D,,...,, =C, X «++ X C,,
where C; is the center of SL(n; C). Thus by Lemma 2.3 every
irreducible representation of G,,,...,, is of the form

U(g) = (X(d) Tl(gr) X oeee X T’r(gr) ’
for
g=dg1---g,,d€D%1 ,,,,, n,.rgiGSL(nin) (1§?'§7')'

Recall that a is a character of D, ..., and each T; is an irredu-
cible representation of SL(n;, C) whose restriction to C; is a multiple
of a|;. In the case T; is the element T* of the nondegenerate
principal series of SL(n;, C), U may be obtained by inducing a one-
dimensional representation o of K, .., according to Corollary 2.2
and Theorem 1.2; p is uniquely determined by the conditions

5 See [3] and [7] for a description of DY and the decomposition of the regular re-
presentation.
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o |D%1,.,.,%r =a,0 ]DM = Xi»
where D, is the diagonal subgroup of SL(n;, C).

DEFINITION 2.5. The irreducible representation of G, ..., defined
as above is called the element of the principal series of G,,.... , corre-
sponding to o and is denoted by U-’.

REMARK. Again the one-dimensional representations of K, ...,
are determined uniquely by their restrictions to D,. Therefore the
elements of the principal series of G,,...,,, are parametrized by
Z" ' x R'. For each 7, 1 <1 <7, choose a fundamental domain
ﬁii of ﬁni. Let D; be the subset of D, consisting of those characters
whose restrictions to D,, belong to DAM. Then it is easy to verify
that D} is a fundamental domain of D, corresponding to the group
G,,....n, in the sense that it is a maximal subset of D, with respect
to the property: let o, o, be two different elements of D}, then the
corresponding elements U and U?: of the principal series of G,,,... .,
are not equivalent. Suppose such a set is chosen, we have.

decomposed as follows: S co U dp, where do s the restriction of the

Al
Dy

Haar measure of D,.

Proof. Using the decomposition of the regular representation of
SL(n; C) recalled earlier and Theorem 1.2, we see that the regular
representation of H = SL(n,, C) X «++ X SL(n,, C) can be decomposed
as follows: ng S‘O oo T% X eee X T¥dy, «+++dy,. Therefore the

D D

ny n

regular representation of G, ... ., is equivalent to

)

Note that we have used the Theorems 1.1 and 1.5. Now by Theorems
1.1 and 1.2 we have

...SAO oo ind (Txlx...xTxr)Xm.--dxr,

0
" H1Gny e ,m,

ind (T* X eoe X T*) = ind Oy X voe XYy -
16n,eeeyn,

HTGnl,---,nr Kpy X oo X Kn,

Put H'=K, x -++ x K, . Then it is clear that K, ..., is the general-
ized direct porduct of H' and D,,,...,., such that

D,,..., NH =C, X «++ xC,.
Put y =%, X +++ X %,. Then we have by Theorem 1.1
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ind % = ind (ind %) -

H' 1Gny,ee i, Enyyeon, 16ny,en, H 1Knj,eoin,

By Corollary 2.2

ind % =Alw - ind Aoy xoxo,

01 Kayyyeeeyn, CyX-XCp  T1Dny,eee,

Since C, x «++ x C, is a compact (in fact finite) subgroup of the abelian
’ !
group D, ..,, we can write’ indy =Alw e S AN, Where S

H' 1 Kny,, - n,

is taken over the set of all character » of D, .., whose restriction
to C, x +++ X C,i8 l¢,x.xo,» Thus

ind y = S’X'H' A

H' 1 En.>e,m,.
= | pdp

where S is taken over the set of all one-dimensional representations

of K,,,....., extending %.

3. Restriction of the nondegenerate principal series to G, ,..... .
Before treating the general case, we consider a special case which is
itself the main step for solving the general porblem, namely the
restriction of the nondegenerate principal series to G,_,, ;.

THEOREM 3.1. Let Tz muiez-men) pe any element of the mon-
degenerate principal series of SL(n, C). Then its restriction to G,_,, ;

18 equivalent to >, ... S S U zreokini 02000 dgw oo da,,  where
U hweesknioenon) gs qn element of the principol series of G,_, , and

Z,S oo Sis the summation-integral over the set of all
(ka c ey k’n; Oyy o0, Gn) eZ" ! x R™!

such that (ks <<+, k,_; Goy +++, 0,_) € D, and Sk, = > mg (mod ).
P?”OOf. Let Go = {(gij)lgi,jgn fgin = 0, 1 § ) § n — 1}-

By Theorem 3 of [4], T'"=~%'|, 1is equivalent to some fixed
representation W, of G, if >y m; = ¢ (mod n). In fact, Wy, «+-, W,_,
are all irreducible as indicated in [3]. Recall that 7™z ¢ is ob-
tained by inducing the one-dimensional representation (m,, «--, p,) of
K,. Since the complement of G,K, in G has Haar measure zero ([3];

6 This can be one by using the Fourier analysis on abelian groups or by Corollary
1.10.
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[4]) and G,NK, = K,_,,,, we have by applying Theorems 1.3 and 1.1:

T (mgs+00) |G0 =~ ind (m’ v, ‘on) IKn—l,l
( 5 ) Kyp—1,1 16
= ind Umefa)
Gp—1 16
Therefore,
n
(6) ind U2 = W, iff 3, m; = ¢ (mod n) .
Gp—1,1 1Gp 2

Note that a direct integral whose components are all equivalent
to the same fixed representation is in fact equivalent to a multiple
of that representation. Hence (6), Theorem 1.1 and Proposition 2.6
imply that the regular representation of G, is decomposed as
oWy e+ @ coW,_,. Therefore we can apply Corollary 1.10 and
get:

Wi l Gp—1, 1 = f Z S b S U(kz’“"k”; 920775 0n) daz e dan

legse sk,

where > SS in the summation integral over the set of all
(ko +++, 0,) such that

(Fyy o+ vy ks Gy =+ v, 0,_) € D%_, and f]kj =1i= anj (mod ) .
2 2

COROLLARY 3.2.

(7) g Utz 3 e [T do, s do,

Gp—1,1 116G Myyttes

where >, S ce S 18 the summation integral over the set of all
(Myy =+ <, 0,) € D! such that S m; = Sk, (mod n).

Proof. Corollary 1.10 also gives the decomposition of indg ;; W;
(the notation as in Theorem 3.1). This together with (5) give the
desired decomposition.

REMARK 1. Since G, ,_, and G,_, , are conjugate in G we also
get the decomposition of indg, ;e U™ °». It turns out to be the
same as that of ind, , ;o U""», hence the two representations
are equivalent.

2. A fundamental domain as defined earlier is also a fundamental
domain of D, with respect to the action of the permutation group
(the Weyl group) on ﬁn. Since every permutation preserves > k;
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(mod n), dropping the restriction to the fundamental domain in the
right hand side of (7) amounts to repeat every representation occur-
ring there n! times. Therefore the left-hand side of (7) must be
replaced by n! times of itself. This technique will be used often and
we shall not mention it explicitly again.

LEMMA 3.3. Let n=mn,+ n, n, > 1. Let = (my +++, m,;
Oz *++, 0,) be any one-dimensional representation of K,....,. Then

(8) indXEZS e ‘ oo T tkere=s0y) do‘zo..do'”

Ky,we 1,016

Y

where the summation extends over the set of all (k, «+-, k,) such that
>k = 332 m; (mod n).

Sketch of the Proof. K. = D, .. ¢4 Kin,(Kin,CSL(n, + 1, C)
are embedded in G;,...,, . @s usual) and K, ,, D D,,...,1 4,41 N SL(n;+1, C),
hence Corollary 2.2 shows that
(9) ind X = X [Dl ----- Ling+1 ind X ] Ki,mgy *

Kiyeer,1,n91Glyeney gt K1,ny 1 SL(ng+1,0)

Theorem 1.1 shows that the left hand side of (9) is equivalent to
ind Uux,

Glyeenyymg TG, eee 1, mp 41

where U* is the element of the principal series of G,,...,,,, determined
by x. On the other hand Corollary 3.2 (and its remark) and Theorem
1.1 give the decomposition of the right hand side of (9) into a
direct integral of some elements of the principal series of G.....,; 51
Therefore the Lemma can be done by using an induction on #%,. The
detailed computation based on some change of variables similar to
that in Theorem 3.5 and will be omitted here.

Let us consider another special case where » = 2, i.e., n = 5, + n,.
Since G,, .., and G,,,, are conjugate in G ([3]), we can assume 7, = n,.
The case m, = 1 is contained in Theorem 3.1, hence we can suppose

n, = 2. Put
=4
\s, L)’

where I,, I,, are unit matrices and

81=£§3 92}”29

ng ny—n,
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0 .1
S = 1'. ’
+1 0

the + or — sign is chosen so that s,e SL(n,, C).
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LeMMA 3.4. The complement of the double coset K,sG, ., in G has

Hoaar measure zero.

Proof. It is known (see [3] and [4]) that every element of G
except those in a finite number of manifolds of lower dimension can
be written as kz, where ke K,, z€ Z, (the unipotent lower triangular

matrices). Put

(21 0>
2=\ ,
7z

where z;€ Z,, (i =1, 2). Consider

_ (c"lklz1 0 cG
7=\ o e "k,z, e

where k;€ K, and ¢ is a nonzero complex number. Then

(c‘”#c;‘ 0 ) ( 2 0
sg = .
0 cmifet 9 c™mtm g bz 2,

For fixed z, 2,, we want to find %, &, such that

(c‘”Zkfl 0 ( 2 0 )
Sqg =
0 cmk;t g r4 2,

ie., ¢cmt gz = 2, i.e.

(10) "t s ko= 2’270

W (8,
0 k!

Let us write

where k; and k! are upper triangular of orders », and (n, — m, re-

spectively. (10) is equivalent to
(1) e (ks kel kisk) = 2’27 .

It is easy to see that complement of

et (ks okl ki'sik')|ce C*; kY, kye K, k' is a n, X (n,—n,)-matrix}
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in the set of all n, x », matrices has Haar measure zero.” In other
words, for fixed z, and for almost all 2/, the equation (11) and hence
(10) has a solution. Thus for almost all z, there exists ge G, ., and
ke K, ., C K, such that ksg = z.

We can now apply Theorem 1.3 and get T"[%,n2 = indy 1 gy Ao

It is easy to see that H' = G,,., Ns™" K,s is the subgroup of all
matrices of the from

51. O

where 6, C*, and k is an upper triangular matrix of order n», — n,
such that 62..- 0% det ¥k = 1. Since shs™ = L for every he H', ¥ is
simply the restriction of ¥ to H'. Put

I —
K' = Ki .oty 0001 5
N’ N’

e 2

and let L’ be the subgroup of all matrices of the form

o, 1

O . .571

where 6, C*. Then K’ is the generalized direct product of H' and
L’ such that H’' N L’ is the finite subgroup of L’ consisting of all
matrices of the above form with §;, = +1 or —1. By Corollary 2.2
we have

ind ¥ =X|w - ind ¥ g

H'1 K’ HNL'tL’

’
| - S 2di 0

in
=

where E, is taken over the set of all e L’ such that #|,.00 = ¥ | zne-

Therefore

7 This can be seen by using a similar result for SL (%, C) proved in [3].
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ind ZES'Z[H, . & dé

H/'TtK’

={ an,
Ay

where A; is the set of all one-dimensional representations of K’ which
extends ¥ and dx is the transform of the Haar measure of 4,,, (viewed
as a locally compact abelian group) by the translation

ANy ME Ay N

is a fixed element of A;. In summary, we have by Theorems 1.1 and
1.5

T = ind ind ¥
IGnl,nz K'TGnl,nz (H’TK’X)

12)

n

S ind  dx .
4y

K, 1Gng,n,

Since K’ is also the generalized direct product of D, . and
K.,... 1 n-n X D,, we can write by using Corollary 2.2 and Theorem 1.2:

(18) ind » = N\ p, ind Mg,

e 172
16nq,my K1,-++,1,m;—ng  1SL(ny,C)

XA, ind

yeelymy—ng 18L(ng,C)

M oy, -

It remains to apply Lemma 3.3 or Corollary 3.2 and carry out the
computations. We have

THEOREM 3.5. Let 1 = N, + Ny, Ny, 0, = 2. Then the restriction
of the element T ‘™ of the mon-degenerate principal series of
SL (n, C) to G,,., is equivalent to

Z S cee S oo U(kZ""'k'n; G910t s0y) do‘2 cee dan

Ly ki =) m; (mod n)

where U™ 4s an element of the principal series of G, n,

Proof. Using the explicit parametrization of the set A; occurring
in (12) we see that the restriction of T~ to G, ., is equivalent
to

(14) 5 (o] ind 60 doyeendoa,

kgt rkny 41 K" 1Gmg,mg

where £,z +**, kn; Gpyro 0o+, 0, depend linearly on Fky -, kypos
Oy **+, Onyyy by some simple formula. Put X = (ky, ¢+, k,; 0y <+, 0,).
Then Lemma 8.3 (or Corollary 3.2) and (13) show that:
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~

ind A = 2, 2” .\ ces S oo R’D T(hé,-..,T;“)
K,TGnl,'nz )Ny
(15)
) TPy o> g oo dz-;1 dT’nﬁZ ceedr!

where X’ extends over all (A, -+, h,) such that >1h;= >k,
(mod n,), and X" over all (A} ., +--, hy) such that 37 . hi= >0 .k
(mod n,). By Corollary 2.2 kD”l'”Z T he'mnnd s Thare 72 is equivalent
to an element U®"»"" of the principal series of G, ,, Where
(hsy -+, T,) can be easily computed in terms of 4! and z;. Using this
parametrization, (15) becomes

(16)  ind A= zg g co Uthera) dr, « e v dr, dT, 4y -+ de, ,

K'1Gny,n,

where 3 extends over all (h, ---, h,) such that

17

n n

nzihz - " nlﬁﬂhz = nzikz —n >k

2 ny+1
and

Topt1 = ﬂﬁ(i T; — Zﬁm) + Enltfi - i’[i .
M, \2 2 il ny+2
Thus applying Theorem 1.5 to (14) and taking (16) into account we
get

T (maseess00) lanl v ~ 2 j’ g see S

kgseerskngt1

oo U mn) dg, « oo d0n2+1d72 e dz'nldz'nl:_z ceedz, .
Fix ko »+v, kuyesy Boy <=+, by 04y =+, 0,,. Then the mapping
(TZy 20y Tapy Ongrry Tupray 0% Tn) — (7-27 °c %y Z-n)

is a measure preserving homeomorphism of R™™ onto itself. Since
each component in the above decomposition is independent of
gy +++, 0,, and the multiplicity is already everywhere infinite, the
decomposition itself is equivalent to

3 jg i co Ut mad dr, « oo dT,,

koyeeskng iy J

Now it is easy to see (ky +-+, Kppiry hoy *+*, By) > (B2, =+ +, h,) maps the
set of all (ks «-+, Koy Bisy + =+, hy) satisfying (17) onto the set of all
(hgy +++, h,) such that 37 h; = 37 m; (mod n).
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We now come to the general case. Let D: be a fundamental
domain defined in § 2.

THEOREM 3.6 Let n=m,+ -+ + 0, r=2. In the case r =2
we also assume n,, Ny, = 2. Then the restriction of T '™ % to

G, 18 equivalent to X g cee S co Utrido, -+ - do,  where
and X S ce S 8
the summation integral over the set of all (k, +--, 0,) € D: such that
Sk, = 32 m; (mod n).

Uteoon belongs to the principal series of G,,,....

r

Proof. We shall use an inductionon ». Put m =n,+ +++ +n,_.
Then G,,..n, CGn.n,. Thanks to Theorem 3.5 it is sufficient to
decompose the restriction to G,,..., of any element U’ of the prin-
cipal series of G,,.. On the other hand Corollary 2.2. gives

Ue = p I Drym, (Tﬂx X Tﬂz)

where 0, = 0|, , 0. = Olx,, and T, T*: are the corresponding
elements of the non-degenerate principal series of SL(m, C) and SL
(n,, C) respectively. Therefore

UP l G"‘l’”’ Ny = 40 [ Dm,n,. (Tpl |Gn1'--- P X sz) d

By induction hypothesis, T | Gayeeim, is decomposed in terms of the
principal series of G,,...., hence we have decomposed Ul ...,
in terms of representations of the form o|,, , (U° x T'*), where U’
is some element of the principal series of G, .., _,. In fact those
representations occurring in the decomposition are elements of the
principal series of G,, ..., as seen easily by Corollary 2.2.

Again the detailed computation is based on some change of vari-
ables similar to that in the proof of Theorem 3.5 and will not be
repeated here.

Np—1?

COROLLARY 3.7. The restriction of every element of the non-
degenerate principal series of SL(n, C) to SL(n,, C) x --+ x SL(n,, C)
18 equivalent to the regular representation.

4. Application to the decomposition of some tensor products.
It is known that the character of D, .., is parametrized by
Z ' x R® Let ¥ = (ky, +++, 0,) be such a character, then Y extends
in an obvious manner to a one-dimensional representation of the sub-

8 See [3] for an explicit description and the proof of the irreducibility of the de-
generate principal series.
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group H, ..., consisting of all block matrices g = (g;;),<: ;< such that
g;; = 0 for ¢ > j. More explicitly

X(9) = det(g,,)*+"2[det g, o[ « -+ (det g, )"+ |det g, [T,
for g = (g;,5) € H,,......,- This representation induces to an irreducible
representation of G° belonging to the (n, ---, n,)-degenerate principal

series of G and denoted by T* Let T* be any element of the non-

degenerate principal series. The problem is to decompose T*® T
into irreducible repesentations of G. Since H,,..., D K,, the com-
plement of the double coset K,s,H,,.., in G has Haar measure
zero.” Recall that

8o = . |eSL(m, C) .
+1 0

It is clear that K,NsH, . ...5" =K, .. Put y'(k) =

x (k)X (s7ks,), for ke K, ...,. Theorems 1.4 and 1.1 give us

(18) T QR T% = ind y = ind U* .
s 16G

K syt Cnpyereny 16

LEMmA 4.1. Let n=mn,+ -+ + n, be as in Theorem 3.6. Then

(19) ind Umeoen) = ¥ 3 cee S oo Tk wouldg, « oo do,
Gnyyooeymy 16
where % ces g 18 the summation-integral over the set of all
(ley +++, 0,)e D", such that Sk, = > m; (mod ).

Proof. Corollary 1.10 together with Theorem 3.6 prove that (19)
is valid for every m,, ---, m, and for almost all o, -++, 0,. On the
other hand, let H', .., = sH, ..., 8" D%, Then the complement of
H, .., +K,in G has Haar measure zero. Thus by Theorems 1.3
and 1.1:

ind U(mz,'-npn) =~ T("nz ,,,, (%) lH’
i

if and only if >\ m,; = i m} (mod n). This equivalence can be proved

by using a slight modification of the proof of Theorem 3 of [4].
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Therefore

ind Umer ol =~ ind U(méw--,P;L)
Gngyeenymy 16 Gngyeeryny 16

if and only if >y m; = > m; (mod n).

THEOREM 4.2. The tensor product of an element T "> 2 of the
non-degenerate and an element T %20 of the (n, -, n,)-degenerate

principal series of SL(n, C) is equivalent to X S SeT"'z""'W dz,

eeo dr, where 3 S eeo | is the summation-integral over the set of all
(Boy **+y hoj Ty =+, T,) € DY such that S h; = 337 m; + S nk; (mod n).

The multiplicity ¢ = « if (@) » >2 or (b) » =2 and n,, n, = 2.
Otherwise ¢ = 1.

Proof. It is enough to apply Lemma 4.1 in the first case (6= )
or Corollary 3.2 in the second case (¢ =1) to obtain the decomposition
of the induced representation occurring in the right hand side of (18).

In the special case » = n, T%*>~> is another element of the non-
degenerate principal series and hence

COROLLARY 4.3. The tensor product T ™ fw) @ T %2 %) of two
elements of the nondegenerate principal series of SL(n, C) can be de-

composed as follows: X S geT"'Z"""n’ dt,«+-dr, where X S S

18 the summation-integral over the set of all (hy +«+, 7,) eﬁ‘,’, such
that > h;= > (m; + k) (modn), and e=1 4f r=2, €= o if
r> 2.
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