ELEMENTARY SURGERY ALONG A TORUS KNOT

LOUISE MOSER

In this paper a classification of the manifolds obtained by a (p, q) surgery along an (r, s) torus knot is given. If $|\sigma|$ $= |rsp + q| \neq 0$, then the manifold is a Seifert manifold, singularly fibered by simple closed curves over the 2-sphere with singularities of types $\alpha_1 = s$, $\alpha_2 = r$, and $\alpha_3 = |\sigma|$. If $|\sigma| = 1$, then there are only two singular fibers of types $\alpha_1 = s$, $\alpha_2 = r$, and the manifold is a lens space $L(|q|, ps^2)$. If $|\sigma| = 0$, then the manifold is not singularly fibered but is the connected sum of two lens spaces L(r, s) # L(s, r). It is also shown that the torus knots are the only knots whose complements can be singularly fibered.

1. DEFINITIONS. A knot K is a polygonal simple closed curve in S^3 which does not bound a disk in S^3 . A solid torus T is a 3manifold homeomorphic to $S^1 \times D^2$. The boundary of T is a torus, a 2-manifold homeomorphic to $S \times S^1$. A meridian of T is a simple closed curve on ∂T which bounds a disk in T but is not homologous to zero on ∂T . A meridianal disk of T is a disk D in T such that $D \cap \partial T = \partial D$ and ∂D is a meridian of T. A longitude of T is a simple closed curve on ∂T which is transverse to a meridian of T and is null-homologous in $\overline{S^3}$ -T. A meridianlongitude pair for T is an ordered pair (M, L) of curves such that M is a meridian of T and L is a longitude of T transverse to M. $\pi_1(\partial T) \cong Z \times Z$ with generators M and L. qM + pL is the homotopy class of a simple closed curve on ∂T if and only if p and q are relatively prime.

A torus knot of type (r, s), denoted K(r, s), is defined as follows. Let T be a standardly embedded solid torus in S^3 , that is, T is isotopic to a regular neighborhood of a polygonal curve in the x-y plane. Then $\overline{S^3}$ - \overline{T} is a solid torus. Let J_1 and J_2 be oriented simple closed curves on ∂T such that J_1 bounds a disk in T and J_2 bounds a disk in $\overline{S^3}$ - \overline{T} , that is J_1 is meridianal and J_2 is longitudinal. Identifying J_1 with (1, 0) and J_2 with (0, 1), let r and s be relatively prime integers, r > s > 0, and let K(r, s) be a simple closed curve in (r, s). Then K(r, s) is a torus knot of type (r, s). By Van Kampen's theorem $\pi_1(S^3$ - $K(r,s)) \cong (a, b | a^r = b^s)$.

A space is a *lens space* if it contains a solid torus such that the closure of its complement is also a solid torus. Hence one way to view a lens space is as the space obtained by identifying two solid tori by a homeomorphism on the boundary.

Basic Construction: Elementary surgery along a knot. Let N

FIGURE 1

be a regular neighborhood of K, M an oriented meridianal curve for N on ∂N , and L an oriented curve on ∂N which is transverse to M and bounds an orientable surface in S^3 -N. Consider $M \cap L$ as a base point for $\pi_1(\overline{S^3-N})$. Let T be a solid torus and $h:T \to N$ be a homeomorphism. Then $S^{*} \cong \overline{S^{*}-N} \ U_{h \mid \partial T}T$. Now let $h_{1} : \partial T \twoheadrightarrow \partial T$ be a homeomorphism with the property that h^{-1} . $h_1: \partial T \to \partial T$ does not extend to a homeomorphism of T onto T_1 . Let $\mathcal{M}^3 = \overline{S^3 - N} U_{h_1} T$, then we say \mathcal{M}^3 is obtained from S^3 by performing an elementary surgery along K. The fundamental group of \mathcal{M}^3 is obtained by adjoining a relation of the form $L^p = M^q$ where (1) pL-qM is the image under h_1 of the boundary of a meridianal disk of T, (2) p and q are relatively prime, (3) $p \neq 0$ since we have performed an elementary surgery and we may assume that p > 0 since \mathcal{M}^3 $(p, q) \cong$ $\mathcal{M}^{3}(-p, -q)$. If K is unknotted, then an elementary surgery along K will yield a lens space, since the complement of the interior of a regular neighborhood of K is a solid torus and the effect of the surgery is a manifold which can be obtained by identifying two solid tori along their boundaries.

A solid torus fibered by u, v, denoted by $sT^{3}(v/u)$, is gotten from $D^{2} \times I$ by rotating the top $2\pi v/u$ where (u, v) = 1, $0 \le v \le u/2$, and then identifying top and bottom. A fiber is denoted by F. A crosscircle Q is a simple closed curve meeting each F in one point. A singularly fibered manifold \mathscr{M}^{3} , in the sense of Seifert, is a topological 3-manifold partitioned into subsets homeomorphic to S^{1} , the fibers, such that each fiber has a closed neighborhood preserving homeomorphic to some $sT^{3}(v/u)$.

 \mathscr{M}^{3} is obtained as follows. Let B be a sphere with g > 0 handles (k crosscaps), cut B along a set of loops based at x_{0} to get a 4g-gon (2k-gon) P with sides $A_{1}^{-1}B_{1}^{-1}A_{1}B_{1}\cdots A_{g}^{-1}B_{g}^{-1}A_{g}B_{g}(C_{1}C'_{1}\cdots C_{k}C'_{k})$ to be identified in pairs, and remove a disk D_{0} around x_{0} to get \overline{P} . $\overline{P} \times S^{1}$ is a 3-manifold on which we make some identifications. Let $\chi:\pi_{1}(B, x_{0}) \to \operatorname{Aut} \pi_{1}(S^{1}) \cong Z_{2}$. Let x and x' be points on the edges of \overline{P} which are identified in B, and let α be a path formed by the line segments $\overline{x_{0}x}, \overline{x'x_{0}}$. α is a loop in B based at x_{0} . Choose a base point preserving homeomorphism $x \times S^{1} \to x' \times S^{1}$ which induces $x([\alpha]): \pi_{1}(S^{1}) \to$

 $\pi_1(S^1)$. Identifying pairs of fibers over the edges of \overline{P} by this homeomorphism gives a manifold $\overline{\mathcal{M}_0^3}$ with boundary $\partial D_0 \times S^1$. Now suppose $\partial D_0 \times S^1$ is trivially fibered by circles ω such that $[\omega] = Q_0 + bF \in \pi_1(\partial D_0 \times S^1)$ where Q_0 generates $\pi_1(\partial D_0)$ and F generates $\pi_1(S^1)$. We close $\overline{\mathcal{M}_0^3}$ with a solid torus $\mathcal{N}(F)$ by a homeomorphism $h: \partial \mathcal{N}(F) \to \partial \overline{\mathcal{M}_0^3}$ such that for M a meridian of $\mathcal{N}(F)$, $M \sim Q_0 + bF$, to obtain $\mathcal{M}_0^3 = \overline{\mathcal{M}_0^3} U_h \mathcal{N}(F)$. χ is called the characteristic and b the obstruction term. By removing the fibers over open disks D_i , $i = 1, \dots, n$ in B we obtain $\overline{\mathcal{M}^3}$ with n boundary components $\partial D_i \times S^1$. Suppose $\partial D_i \times S^1$ is trivially fibered by circles ω_i such that $[\omega_i] = \alpha_i Q_i + \beta_i F_i$, where Q_i generates $\pi_1(\partial D_i)$, F_i generates $\pi_1(S^1)$, $(\alpha_i, \beta_i) = 1$, and $0 < \alpha_i < \beta_i$. By replacing the solid tori removed by $\mathcal{N}(F_i)$ such that for M_i a meridian of $\mathcal{N}(F_i)$, $M_i \sim \alpha_i Q_i + \beta_i F_i$, we obtain a closed manifold fibered by S^1 over B. F_i is a singular fiber of type α_i and has a trivial product neighborhood if and only if $\alpha_i = \pm 1$.

The fundamental group of \mathscr{M}^3 is given in terms of the (α_i, β_i) , b, and χ by Van Kampen's theorem.

$$egin{aligned} \pi_{\scriptscriptstyle 1}(\mathscr{M}^{\scriptscriptstyle 3}) &= (A_i,\,B_i,\,(C_i),\,Q_0,\,Q_1,\,\cdots,\,Q_n,\,F\,|\,\prod\limits_{i=1}^g [A_i,\,B_i]Q_1\,\cdots\,Q_nQ_0 = 1\ &(\prod\limits_{i=1}^k C_i^2Q_1\,\cdots\,Q_nQ_0 = 1)\ &A_i^{-1}FA_i = F^{\chi(A_i)},\;B_i^{-1}FB_i = F^{\chi(i)},\;(C_i^{-1}FC_i = F^{\chi(C_i)}),\ &[F,\,Q_i] = 1,\,Q_0F^b = 1,\,Q_i^{\alpha i}F^{eta_i} = 1). \end{aligned}$$

2. Fibering the complement of a knot.

THEOREM 2. The complement of a knot K can be singularly fibered in the sense of Seifert if and only if K is a torus knot.

Proof. Let K(r, s) be a torus knot lying on a standardly embedded torus in S^3 . The diagram illustrates the case r = 3, s = 2.

We have a fibering of $S^3 = \{(z_1, z_2) ||z_1|^2 + |z_2|^2 = 1\}$ given by $(z_1, z_2) = (z_1 \lambda^s, z_2 \lambda^r)$ for $\lambda \in S^1$ (that is, a partition of S^3 into orbits S^1) over $B = S^2$ with the unit circle as a singular fiber of type $\alpha_1 = s$ and the z-axis as a singular fiber of type $\alpha_2 = r$. Each nonsingular fiber is an (r, s) torus knot. If we remove a regular neighborhood of the torus knot, we have $\overline{S^3} \cdot \mathcal{N}(\overline{K})$ singularly fibered.

Suppose $\overline{\mathscr{M}^3} = \overline{S^3} \cdot \overline{\mathscr{N}}(K)$ is singularly fibered. Let $F \sim mL + nM$ where F is a fiber on $\partial \overline{\mathscr{M}^3}$ and (M, L) is a meridian-longidude pair for $\mathscr{N}(K)$. If $m \neq 0$, then $M \not\sim F$ on $\partial \overline{\mathscr{M}^3}$. Hence, there exists a singularly fibered solid torus $sT^3(v/u)$ and a fiber preserving homeomorphism $h: \partial sT^3 \to \partial \overline{\mathscr{M}^3}$ which takes a meridian of sT^3 to M by Lemma 6 of Seifert [4]. Hence, $\overline{\mathscr{M}^3} U_h sT^3 = S^3$ and S^3 is singularly fibered with K as a fiber of multiplicity m.

If $m \neq \pm 1$, then K is a singular fiber and hence unknotted. If $m = \pm 1$, then K is an ordinary fiber and hence a torus knot. If m = 0, $F \sim nM$ where M generates $H_1(\overline{S^3 - \mathcal{N}(K)}) \simeq Z$. But if $\overline{\mathcal{M}^3 = S^3 - \mathcal{N}(K)}$ is singularly fibered, then

$$egin{aligned} \pi_1(\overline{\mathscr{M}^3}) &= (A_i,\,B_i,\,(C_i),\,Q_0,\,Q_1,\,\cdots,\,Q_n,\,F\,| \prod\limits_{i=1}^y [A_i,\,B_i]Q_1\,\cdots\,Q_nQ_0 = 1\ &(\prod\limits_{i=1}^k C_i^2Q_1\,\cdots\,Q_nQ_0 = 1)\ &A_i^{-1}FA_i = F^{\chi(A_i)},\;B_i^{-1}FB_i = F^{\chi(B_i)},\;(C_i^{-1}FC^i = F^{\chi(C_i)})\ &[F,\,Q_i] = 1,\;Q_0F^b = 1,\;Q_i^{x_i}F^{eta_i} = 1,\;1\leq i\leq n-1)\ &\simeq (A_i,\,B_i,\,(C_i),\,Q_1,\,\cdots,\,Q_{n-1},\,F\,|A_i^{-1}FA_i = F^{\chi(A_i)},\;B_i^{-1}FB_i = F^{\chi(B_i)},\ &(C_i^{-1}FC_i = F^{\chi(C_i)})\ &[F,\,Q_i] = 1,\;Q_i^{x_i}F^{eta_i} = 1,\;1\leq i\leq n-1). \end{aligned}$$

Abelianizing, we see that g = 0 (k = 0). Setting F = 1, we see that i = 1 unless $n = \pm 1$ in which case $\alpha_i = \pm 1$, a contradiction. Hence $\pi_1(\mathcal{M}^3) = (Q_1, F | Q_1^{\alpha_1} F^{\beta_1} = 1)$ and K is a torus knot of type (α_1, β_1) .

NOTE: Theorem 2 can also be proved with results from [1] and [5].

3. The fibered manifolds obtained by elementary surgery along a torus knot.

PROPOSITION 3.1. If an elementary surgery of type (p, q) is per-

formed along K(r, s) and $|\sigma| = |rsp + q| \neq 0$, then the manifold obtained is singularly fibered with fibers of multiplicities $\alpha_1 = s, \alpha_2 = r$, and $\alpha_3 = |\sigma| = |rsp + q|$.

Proof. In performing the surgery, we remove a fiber neighbornood of a nonsingular fiber K to obtain $S^3 - \mathcal{N}(K)$ and then close $\overline{S^3 - \mathcal{N}(K)}$ with sT^3 such that $M' \sim pL - qM$ where M' is a meridian of sT^3 , L is a longitude of $\mathcal{N}(K)$, and M is a meridian of $\mathcal{N}(K)$. If F is a fiber on $\partial \mathcal{N}(K)$ in $\overline{S^3 - \mathcal{N}(K)}$, F loops around the z-axis r times, but the z-axis ~ sM in $\overline{S^3 - \mathcal{N}(K)}$, so $F \sim rsM$ in $\overline{S^3 - \mathcal{N}(K)}$, $F - rsM \sim 0 \sim L$ in $\overline{S^3 - \mathcal{N}(K)}$, and $M' \sim pL - pL = 0$ $qM \sim p(F - rsM) - qM = pF - (rsp + q)M$. Since M is a crosscircle on $\partial \mathcal{N}(K)$, sT^3 contains a singular fiber of multiplicity |rsp + q| = $|\sigma|$. If $|\sigma| \neq 1$ or 0, the 3-manifold obtained is a Seifert fiber space with three singular fibers of multiplicities $\alpha_1 = s$, $\alpha_2 = r$, and $\alpha_3 =$ $|\sigma|$. The space is topologically a product of a disk with 3 holes and S^1 if we remove regular neighborhoods of the z-axis, unit circle, K(r, s), and an additional nonsingular fiber. If $\alpha_{s} = |\sigma| = 1$, u = 1and v = 0. The sT³ added is nonsingularly fibered, so the resultant manifold has only two nonsingular fibers of types $\alpha_1 = s$ and $\alpha_2 = r$.

Assuming a given fixed orientation on $\mathscr{M}(p,q)$, we can determine the β_i and the obstruction term b in terms of p. $H_1(\mathscr{M}(p,q))$ is cyclic of order $b\alpha_1\alpha_2\alpha_3 + \beta_1\alpha_2\alpha_3 + \alpha_1\beta_2\alpha_3 + \alpha_1\alpha_2\beta_3 > 0$ $(b\alpha_1\alpha_2 + \beta_1\alpha_2 + \alpha_1\beta_2$ for $|\sigma| = 1$); on the other hand $H_1(\mathscr{M}(p,q))$ is cyclic of order $|q| = rsp \mp \sigma$. Equating $b\alpha_1\alpha_2\alpha_3 + \beta_1\alpha_2\alpha_3 + \alpha_1\beta_2\alpha_3 + \alpha_1\alpha_2\beta_3$ $(b\alpha_1\alpha_2 + \beta_1\alpha_2 + \alpha_1\beta_2)$ for $|\sigma| = 1$) and $q = rsp \mp \sigma$, we can solve for the β_i and b. For example, if (r, s) = (3, 2) and $\sigma = 5$, then the Seifert manifolds obtained are given by the following symbols:

If $|\sigma| = 1$, then the manifold is a lens space L(|q|, x). The Seifert invariants do not determine x; we determine x in the next proposition.

PROPOSITION 3.2. If an elementary surgery of type (p, q) is performed along K(r, s) and $|\sigma| = |rsp + q| = 1$, then the manifold is a lens space $L(|q|, ps^2)$.

Proof. Let T_1 be a standardly embedded torus in S^3 as shown below and let T_2 be $\overline{S^3 - T_1}$. Let (M_1, L_1) be a standard meridianlongitude pair for T_1 , $(M_2, L_2) = (L_1, M_1)$ for T_2 . $K \sim F \sim rM_1 + sL_1$.

T_z

We remove $\mathscr{N}(K)$ so that T_2 is still a solid torus and replace it with sT^3 such that $M' \sim pL - qM \sim pF \mp M$ ($\sigma = \pm 1$) and so $L' \sim F$. sT^3UT_1 is a solid torus T_3 ($sT^3 \cap T_1 \simeq S^1 \times I$) since a longitude of sT^3 , $L' \sim F$. Let M_3 be a meridian of T_3 . We want to determine x such that $M_3 \sim |q|L_2 + xM_2$.

 $\begin{array}{l} \text{Now } M' \sim pF \mp M \sim p(rM_1 + sL_1) \mp M = prM_1 + psL_1 \mp M \\ \text{also } M_2 \sim L_1 - rM, \ L_2 \sim M_1 + sM \\ \text{and } M_3 \sim M_1 \mp sM' \sim M_1 \mp s(prM_1 + psL_1 \mp M) = (1 \mp rsp)M_1 \\ \mp ps^2L_1 + sM \sim (1 \mp rsp) \ (L_2 - sM) \mp ps^2(M_2 + rM) + sM \\ = (1 \mp rsp)L_2 - sM \pm rs^2pM \mp ps^2M_2 \mp rs^2pM + sM \\ = |q|L_2 \mp ps^2M_2 \end{array}$

so we have $L(|q|, ps^2)$. The diagrams illustrate the case r = 3, s = 2, $\sigma = 1$, q = -(2) (3) + 1 = -5, and x = -2(2).

REMARK. Distinct surgeries along a given torus knot yield distinct lens spaces; however, the same lens space may be obtained by surgering different torus knots. For example, a (2, 11) surgery on K(3, 2) gives L(11, 8), a (1, 11) surgery on K(5, 2) gives L(11, 4) which is homeomorphic to L(11, 8), but a (1, 11) surgery on K(4, 3) gives L(11, 9) which is not homeomorphic to L(11, 8).

4. The nonfibered, nonprime manifolds.

PROPOSITION 4. If an elementary surgery of type (p, q) is performed along K(r, s) and $|\sigma| = |rsp + q| = 0$, then the manifold obtained is the connected sum of two lens spaces L(r, s) # L(s, r) and is not singularly fibered.

Proof. If $|\sigma| = |rsp + q| = 0$, then p = 1, since p and q are relatively prime, p > 0, and r > s > 0. By Kneser's conjecture the manifold obtained is a connected sum since the fundamental group is a free product $\pi_1(\mathscr{M}(p,q)) \simeq (a, b | a^r = b^s, a^r = 1)$.

Let S^3 be the union of two solid tori T_1 and T_2 , (M_1, L_1) a standard meridian-longitude pair for T_1 , $(M_2, L_2) = (L_1, M_1)$ for T_2 , K an (r, s) curve on T_1 . Let $\mathcal{N}(K)$ be a regular neighborhood of the knot with meridian-longitude pair (M, L). We remove $\mathcal{N}(K)$ from S^3 forming a depression along K in each of T_1 and T_2 but leaving each a solid torus.

We sew back a solid torus sT^3 with meridian M' so that $M' \sim L-qM \sim K$. A meridian goes to one edge of the depression; another meridian goes to the other edge since they are parallel. Thus we may assume that the ∂sT^3 between two meridians is sewn to each half of the picture. Each half would be a lens space except that a 3-cell is

missing—the 3-cell which is the other half of sT° .

We now consider how the two halves of the picture are identified. The boundaries of T_1 and T_2 outside of the depression are identified, as are the meridianal disks of sT^3 . The boundaries are annuli and the disks are sewn to them so as to make 3-spheres. Filling in these 3-spheres would give L(r, s) and L(s, r) since $M' \sim$ $F \sim rM_1 + sL_1 \sim sM_2 + rL_2$. Hence the manifold obtained is L(r, s)#L(s, r).

5. Conjectures. A natural question to ask is whether Seifert manifolds can be obtained by elementary surgery along a knot other than a torus knot. We conjecture that the answer to this question is "no" in light of the following information:

1. If the fundamental group of a Seifert manifold is infinite, then the subgroup generated by the fiber is an infinite cyclic normal subgroup, the center of the group in case the characteristic is trivial [4].

2. All the known finite fundamental groups of closed 3-manifolds are groups of Seifert manifolds. All the possible finite fundamental groups have a nontrivial center. In case the order of the group is even, the unique element of order 2 lies in the center. In case the order of the group is odd, the group is cyclic and the center is the whole group [3].

3. Waldhausen has a partial converse to 1. If \mathscr{M}^3 is an irreducible 3-manifold such that $\pi_1(\mathscr{M}^3)$ has a nontrivial center and either $H_1(\mathscr{M}^3)$ is infinite or $\pi_1(\mathscr{M}^3)$ is a nontrivial free product with amalgamation, then \mathscr{M}^3 is a Seifert manifold [5].

4. Burde and Zieschang have shown that if the fundamental group of the complement of a knot has a nontrivial center, then the knot is a torus knot and the center is infinite cyclic [1].

Conjecture 1. If \mathcal{M}^3 is a Seifert manifold and \mathcal{M}^3 is obtained

by elementary surgery along a knot K, then K is a torus knot.

Conjecture 2. If \mathcal{M}^3 is a lens space obtained by elementary surgery along a knot K, then K is a torus knot.

Conjecture 3. If \mathcal{M}^{3} is obtained by elementary surgery along a knot K and $\pi_{1}(\mathcal{M}^{3})$ is finite, then K is a torus knot.

References

1. G. Burde, and H. Zieschang, *Eine Kennzeichnung der Torusknoten*, Math. Annln., **167** (1966), 169-176.

2. John, Hempel, A simply connected 3-manifold is S^3 if it is the sum of a solid torus and the complement of a torus knot, Bull. Amer. Math. Soc., 15 (1964), 154-158.

3. John Milnor, Groups which act on S^n without fixed points, Amer. J. Math., 79 (1957), 623-630.

4. H. Seifert, Topologie dreidimensionaler gefaster Raume, Acta Math., 60 (1933), 145-238.

Received October 19, 1970.

UNIVERSITY OF WISCONSIN AND CALIFORNIA STATE COLLEGE AT HAYWARD