ELEMENTARY SURGERY ALONG A TORUS KNOT

Louise Moser

Abstract

In this paper a classification of the manifolds obtained by a (p, q) surgery along an (r, s) torus knot is given. If $|\sigma|$ $=|r s p+q| \neq 0$, then the manifold is a Seifert manifold, singularly fibered by simple closed curves over the 2 -sphere with singularities of types $\alpha_{1}=s, \alpha_{2}=r$, and $\alpha_{3}=|\sigma|$. If $|\sigma|=1$, then there are only two singular fibers of types $\alpha_{1}=s, \alpha_{2}=r$, and the manifold is a lens space $L\left(|q|, p s^{2}\right)$. If $|\sigma|=0$, then the manifold is not singularly fibered but is the connected sum of two lens spaces $L(r, s) \neq \#(s, r)$. It is also shown that the torus knots are the only knots whose complements can be singularly fibered.

1. Definitions. A knot K is a polygonal simple closed curve in S^{3} which does not bound a disk in S^{3}. A solid torus T is a 3manifold homeomorphic to $S^{1} \times D^{2}$. The boundary of T is a torus, a 2 -manifold homeomorphic to $S \times S^{1}$. A meridian of T is a simple closed curve on ∂T which bounds a disk in T but is not homologous to zero on ∂T. A meridianal disk of T is a disk D in T such that $D \cap \partial T=\partial D$ and ∂D is a meridian of T. A longitude of T is a simple closed curve on ∂T which is transverse to a meridian of T and is null-homologous in $\overline{S^{3}-T .}$ A meridianlongitude pair for T is an ordered pair (M, L) of curves such that M is a meridian of T and L is a longitude of T transverse to $M . \pi_{1}(\partial T) \cong Z \times Z$ with generators M and L. $q M+p L$ is the homotopy class of a simple closed curve on ∂T if and only if p and q are relatively prime.

A torus knot of type (r, s), denoted $K(r, s)$, is defined as follows. Let T be a standardly embedded solid torus in S^{3}, that is, T is isotopic to a regular neighborhood of a polygonal curve in the $x-y$ plane. Then $\overline{S^{3}-T}$ is a solid torus. Let J_{1} and J_{2} be oriented simple closed curves on ∂T such that J_{1} bounds a disk in T and J_{2} bounds a disk in $\overline{S^{3}-T}$, that is J_{1} is meridianal and J_{2} is longitudinal. Identifying J_{1} with (1,0) and J_{2} with (0,1), 1et r and s be relatively prime integers, $r>s>0$, and 1et $K(r, s)$ be a simple closed curve in (r, s). Then $K(r, s)$ is a torus knot of type (r, s). By Van Kampen's theorem $\pi_{1}\left(S^{3}-K(r, s)\right) \cong\left(a, b \mid a^{r}=b^{s}\right)$.

A space is a lens space if it contains a solid torus such that the closure of its complement is also a solid torus. Hence one way to view a lens space is as the space obtained by identifying two solid tori by a homeomorphism on the boundary.

Figure 1
be a regular neighborhood of K, M an oriented meridianal curve for N on ∂N, and L an oriented curve on ∂N which is transverse to M and bounds an orientable surface in $S^{3}-N$. Consider $M \cap L$ as a base point for $\pi_{1}\left(\overline{S^{3}-N}\right)$. Let T be a solid torus and $h: T \rightarrow N$ be a homeomorphism. Then $S^{3} \cong \overline{S^{3}-N} U_{h \mid \partial T} T$. Now let $h_{1}: \partial T \rightarrow \partial T$ be a homeomorphism with the property that $h^{-1} . h_{1}: \partial T \rightarrow \partial T$ does not extend to a homeomorphism of T onto T_{1}. Let $\mathscr{I}^{3}=\overline{S^{3}-N} U_{h_{1}} T$, then we say \mathscr{L}^{3} is obtained from S^{3} by performing an elementary surgery along K. The fundamental group of \mathscr{I}^{3} is obtained by adjoining a relation of the form $L^{p}=M^{q}$ where (1) $p L-q M$ is the image under h_{1} of the boundary of a meridianal disk of T, (2) p and q are relatively prime, (3) $p \neq 0$ since we have performed an elementary surgery and we may assume that $p>0$ since $\mathscr{l}^{3}(p, q) \cong$ $\mathscr{M}^{3}(-p,-q)$. If K is unknotted, then an elementary surgery along K will yield a lens space, since the complement of the interior of a regular neighborhood of K is a solid torus and the effect of the surgery is a manifold which can be obtained by identifying two solid tori along their boundaries.

A solid torus fibered by u, v, denoted by $s T^{3}(v / u)$, is gotten from $D^{2} \times I$ by rotating the top $2 \pi v / u$ where $(u, v)=1,0 \leq v \leq u / 2$, and then identifying top and bottom. A fiber is denoted by F. A crosscircle Q is a simple closed curve meeting each F in one point. A singularly fibered manifold \mathscr{I}^{3}, in the sense of Seifert, is a topological 3-manifold partitioned into subsets homeomorphic to S^{1}, the fibers, such that each fiber has a closed neighborhood preserving homeomorphic to some $s T^{3}(v / u)$.
$-\mathscr{C}^{3}$ is obtained as follows. Let B be a sphere with $g>0$ handles (k crosscaps), cut B along a set of loops based at x_{0} to get a $4 g$-gon ($2 k$-gon) P with sides $A_{1}^{-1} B_{1}^{-1} A_{1} B_{1} \cdots A_{g}^{-1} B_{g}^{-1} A_{g} B_{g}\left(C_{1} C_{1}^{\prime} \cdots C_{k} C_{k}^{\prime}\right)$ to be identified in pairs, and remove a disk D_{0} around x_{0} to get \bar{P}. $\bar{P} \times S^{1}$ is a 3 -manifold on which we make some identifications. Let $\chi: \pi_{1}\left(B, x_{0}\right) \rightarrow$ Aut $\pi_{1}\left(S^{1}\right) \cong Z_{2}$. Let x and x^{\prime} be points on the edges of \bar{P} which are identified in B, and 1et α be a path formed by the line segments $\overline{x_{0} x}, \overline{x^{\prime} x_{0}} . \quad \alpha$ is a loop in B based at x_{0}. Choose a base point preserving homeomorphism $x \times S^{1} \rightarrow x^{\prime} \times S^{1}$ w hich induces $x([\alpha]): \pi_{1}\left(S^{1}\right) \rightarrow$
$\pi_{1}\left(S^{1}\right)$. Identifying pairs of fibers over the edges of \bar{P} by this homeomorphism gives a manifold $\overline{\mathscr{L}_{0}^{3}}$ with boundary $\partial D_{0} \times S^{1}$. Now suppose $\partial D_{0} \times$ S^{1} is trivially fibered by circles ω such that $[\omega]=Q_{0}+b F \in \pi_{1}\left(\partial D_{0} \times S^{1}\right)$ where Q_{0} generates $\pi_{1}\left(\partial D_{0}\right)$ and F generates $\pi_{1}\left(S^{1}\right)$. We close $\overline{\mathscr{A}}_{0}^{3}$ with a solid torus $\mathscr{N}(F)$ by a homeomorphism $h: \partial \mathscr{N}(F) \rightarrow \partial \mathscr{\mathscr { M }}_{0}^{3}$ such that for M a meridian of $\mathscr{N}^{\prime}(F), M \sim Q_{0}+b F$, to obtain $\mathscr{M}_{0}^{3}=$ $\overline{\mathscr{A}}_{0}^{3} U_{h} \mathscr{N}(F) . \quad \chi$ is called the characteristic and b the obstruction term. By removing the fibers over open disks $D_{i}, i=1, \cdots, n$ in B we obtain $\overline{\mathscr{M}}^{3}$ with n boundary components $\partial D_{i} \times S^{1}$. Suppose $\partial D_{i} \times$ S^{1} is trivially fibered by circles ω_{i} such that $\left[\omega_{i}\right]=\alpha_{i} Q_{i}+\beta_{i} F_{i}$, where Q_{i} generates $\pi_{1}\left(\partial D_{i}\right), F_{i}$ generates $\pi_{1}\left(S^{1}\right),\left(\alpha_{i}, \beta_{i}\right)=1$, and $0<\alpha_{i}<\beta_{i}$. By replacing the solid tori removed by $\mathscr{N}\left(F_{i}\right)$ such that for M_{i} a meridian of $\mathscr{N}\left(F_{i}\right), M_{i} \sim \alpha_{i} Q_{i}+\beta_{i} F_{i}$, we obtain a closed manifold fibered by S^{1} over $B . \quad F_{i}$ is a singular fiber of type α_{i} and has a trivial product neighborhood if and only if $\alpha_{i}= \pm 1$.

The fundamental group of \mathscr{M}^{3} is given in terms of the $\left(\alpha_{i}, \beta_{i}\right)$, b, and χ by Van Kampen's theorem.

$$
\begin{gathered}
\pi_{1}\left(\mathscr{A}^{3}\right)=\left(A_{i}, B_{i},\left(C_{i}\right), Q_{0}, Q_{1}, \cdots, Q_{n}, F \mid \prod_{i=1}^{g}\left[A_{i}, B_{i}\right] Q_{1} \cdots Q_{n} Q_{0}=1\right. \\
\quad\left(\prod_{i=1}^{k} C_{i}^{2} Q_{1} \cdots Q_{n} Q_{0}=1\right) \\
A_{i}^{-1} F A_{i}=F^{\times\left(A_{i}\right)}, B_{i}^{-1} F B_{i}=F^{\chi(i)},\left(C_{i}^{-1} F C_{i}=F^{\chi\left(G_{i}\right)}\right), \\
\left.\left[F, Q_{i}\right]=1, Q_{0} F^{b}=1, Q_{i}^{\alpha i} F^{\beta_{i}}=1\right) .
\end{gathered}
$$

2. Fibering the complement of a knot.

Theorem 2. The complement of a knot K can be singularly fibered in the sense of Seifert if and only if K is a torus knot.

Proof. Let $K(r, s)$ be a torus knot lying on a standardly embedded torus in S^{3}. The diagram illustrates the case $r=3, s=2$.

We have a fibering of $S^{3}=\left\{\left.\left(z_{1}, z_{2}\right)| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$ given by $\left(z_{1}\right.$, $\left.z_{2}\right)=\left(z_{1} \lambda^{s}, z_{2} \lambda^{r}\right)$ for $\lambda \in S^{1}$ (that is, a partition of S^{3} into orbits S^{1}) over $B=S^{2}$ with the unit circle as a singular fiber of type $\alpha_{1}=s$ and the z-axis as a singular fiber of type $\alpha_{2}=r$. Each nonsingular fiber is an (r, s) torus knot. If we remove a regular neighborhood of the torus knot, we have $\overline{S^{3}-\mathscr{N}(K)}$ singularly fibered.

Suppose ${\overline{\mathscr{L}^{3}}}^{3}=\overline{S^{3}-\mathscr{N}}(K)$ is singularly fibered. Let $F \sim m L+$ $n M$ where F is a fiber on $\overline{\partial \mathscr{I}^{3}}$ and (M, L) is a meridian-longidude pair for $\mathscr{N}(K)$. If $m \neq 0$, then $M \nsim F$ on $\partial \overline{\mathscr{L}}^{3}$. Hence, there exists a singularly fibered solid torus $s T^{3}(v / u)$ and a fiber preserving homeomorphism $h: \partial s T^{3} \rightarrow \partial \overline{\mathscr{A}}^{3}$ which takes a meridian of $s T^{3}$ to M by Lemma 6 of Seifert [4]. Hence, $\overline{\mathscr{M}}^{3} U_{h} s T^{3}=S^{3}$ and S^{3} is singularly fibered with K as a fiber of multiplicity m.

Figure 2
If $m \neq \pm 1$, then K is a singular fiber and hence unknotted. If $m= \pm 1$, then K is an ordinary fiber and hence a torus knot. If $m=0, F \sim n M$ where M generates $\left.H_{1} \overline{\left(S^{3}-\mathscr{N}(K)\right.}\right) \simeq Z$. But if $\mathscr{\mathscr { M }}^{3}=S^{3}-\mathscr{N}(K)$ is singularly fibered, then

$$
\begin{gathered}
\pi_{1}\left(\overline{\mathscr{M}^{3}}\right)=\left(A_{i}, B_{i},\left(C_{i}\right), Q_{0}, Q_{1}, \cdots, Q_{n}, F \mid \prod_{i=1}^{g}\left[A_{i}, B_{i}\right] Q_{1} \cdots Q_{n} Q_{0}=1\right. \\
\left(\prod_{i=1}^{k} C_{i}^{2} Q_{1} \cdots Q_{n} Q_{0}=1\right) \\
A_{i}^{-1} F A_{i}=F^{\times\left(A_{i}\right)}, B_{i}^{-1} F B_{i}=F^{\times\left(B_{i}\right)},\left(C_{i}^{-1} F C^{i}=F^{\times\left(C_{i}\right)}\right) \\
\left.\left[F, Q_{i}\right]=1, Q_{0} F^{b}=1, Q_{i}^{\alpha_{i}} F^{\beta_{i}}=1,1 \leq i \leq n-1\right) \\
\simeq\left(A_{i}, B_{i},\left(C_{i}\right), Q_{1}, \cdots, Q_{n-1}, F \mid A_{i}^{-1} F A_{i}=F^{\times\left(A_{i}\right)}, B_{i}^{-1} F B_{i}=F^{\times\left(B_{i}\right)},\right. \\
\left(C_{i}^{-1} F C_{i}=F^{\times\left(C_{i}\right)}\right) \\
\left.\left[F, Q_{i}\right]=1, Q_{2}^{\alpha_{i}} F^{\beta_{i}}=1,1 \leq i \leq n-1\right) .
\end{gathered}
$$

Abelianizing, we see that $g=0(k=0)$. Setting $F=1$, we see that $i=1$ unless $n= \pm 1$ in which case $\alpha_{i}= \pm 1$, a contradiction. Hence $\pi_{1}\left(\overline{\mathscr{M}^{3}}\right)=\left(Q_{1}, F \mid Q_{1}^{\alpha} F^{\beta_{1}}=1\right)$ and K is a torus knot of type $\left(\alpha_{1}, \beta_{1}\right)$.

Note: Theorem 2 can also be proved with results from [1] and [5].
3. The fibered manifolds obtained by elementary surgery along a torus knot.

Proposition 3.1. If an elementary surgery of type (p, q) is per-
formed along $K(r, s)$ and $|\sigma|=|r s p+q| \neq 0$, then the manifold obtained is singularly fibered with fibers of multiplicities $\alpha_{1}=s, \alpha_{2}=r$, and $\alpha_{3}=|\sigma|=|r s p+q|$.

Proof. In performing the surgery, we remove a fiber neighbornood of a nonsingular fiber K to obtain $S^{3}-\mathscr{N}(K)$ and then close $\overline{S^{3}-\mathscr{N}(\bar{K})}$ with $s T^{3}$ such that $M^{\prime} \sim p L-q M$ where M^{\prime} is a meridian of $s T^{3}, L$ is a longitude of $\mathscr{N}(K)$, and M is a meridian of $\mathscr{N}(K)$. If F is a fiber on $\partial \mathscr{N}(K)$ in $\overline{S^{3}-\mathscr{N}(K), F \text { loops around }}$ the z-axis r times, but the z-axis $\sim s M$ in $\overline{S^{3}-\mathscr{N}(K)}$, so $F \sim r s M$ in $\overline{S^{3}-\mathscr{N}(K)}, F-r s M \sim 0 \sim L$ in $\overline{S^{3}-\mathscr{N}(K)}$, and $M^{\prime} \sim p L-$ $q M \sim p(F-r s M)-q M=p F-(r s p+q) M$. Since M is a crosscircle on $\partial \mathscr{N}(K), s T^{3}$ contains a singular fiber of multiplicity $|r s p+q|=$ $|\sigma|$. If $|\sigma| \neq 1$ or 0 , the 3 -manifold obtained is a Seifert fiber space with three singular fibers of multiplicities $\alpha_{1}=s, \alpha_{2}=r$, and $\alpha_{3}=$ $|\sigma|$. The space is topologically a product of a disk with 3 holes and S^{1} if we remove regular neighborhoods of the z-axis, unit circle, $K(r, s)$, and an additional nonsingular fiber. If $\alpha_{3}=|\sigma|=1, u=1$ and $v=0$. The $s T^{3}$ added is nonsingularly fibered, so the resultant manifold has only two nonsingular fibers of types $\alpha_{1}=s$ and $\alpha_{2}=r$.

Assuming a given fixed orientation on $\mathscr{M}(p, q)$, we can determine the β_{i} and the obstruction term b in terms of $p . H_{1}(\mathscr{M}(p, q))$ is cyclic of order $b \alpha_{1} \alpha_{2} \alpha_{3}+\beta_{1} \alpha_{2} \alpha_{3}+\alpha_{1} \beta_{2} \alpha_{3}+\alpha_{1} \alpha_{2} \beta_{3}>0\left(b \alpha_{1} \alpha_{2}+\beta_{1} \alpha_{2}+\right.$ $\alpha_{1} \beta_{2}$ for $|\sigma|=1$); on the other hand $H_{1}(\mathscr{M}(p, q))$ is cyclic of order $|q|=r s p \mp \sigma . \quad$ Equating $b \alpha_{1} \alpha_{2} \alpha_{3}+\beta_{1} \alpha_{2} \alpha_{3}+\alpha_{1} \beta_{2} \alpha_{3}+\alpha_{1} \alpha_{2} \beta_{3} \quad\left(b \alpha_{1} \alpha_{2}+\right.$ $\beta_{1} \alpha_{2}+\alpha_{1} \beta_{2}$ for $|\sigma|=1$) and $q=r s p \mp \sigma$, we can solve for the β_{i} and b. For example, if $(r, s)=(3,2)$ and $\sigma=5$, then the Seifert manifolds obtained are given by the following symbols:

$$
\begin{array}{ll}
(\mathcal{O}, \propto, 0 \mid p-6 / 5 ; 2,1 ; 3,1 ; 5,1) \text { if } & p \equiv 1(\bmod 5) \\
(\mathcal{O}, \propto, 0 \mid p-7 / 5 ; 2,1 ; 3,1 ; 5,2) & p \equiv 2(\bmod 5) \\
(\mathcal{O}, \circ, 0 \mid p-8 / 5 ; 2,1 ; 3,1 ; 5,3) & p \equiv 3(\bmod 5) \\
(\mathcal{O}, \infty, 0 \mid p-9 / 5 ; 2,1 ; 3,1 ; 5,4) & p \equiv 4(\bmod 5) .
\end{array}
$$

If $|\sigma|=1$, then the manifold is a lens space $L(|q|, x)$. The Seifert invariants do not determine x; we determine x in the next proposition.

Proposition 3.2. If an elementary surgery of type (p, q) is performed along $K(r, s)$ and $|\sigma|=|r s p+q|=1$, then the manifold is a lens space $L\left(|q|, p s^{2}\right)$.

Proof. Let T_{1} be a standardly embedded torus in S^{3} as shown below and 1et T_{2} be $\overline{S^{3}-T_{1}}$. Let $\left(M_{1}, L_{1}\right)$ be a standard meridian-
longitude pair for $T_{1},\left(M_{2}, L_{2}\right)=\left(L_{1}, M_{1}\right)$ for $T_{2} . \quad K \sim F \sim r M_{1}+s L_{1}$.

T_{2}

Figure 3.1
We remove $\mathscr{N}(K)$ so that T_{2} is still a solid torus and replace it with $s T^{3}$ such that $M^{\prime} \sim p L-q M \sim p F \mp M(\sigma= \pm 1)$ and so $L^{\prime} \sim F$. $s T^{3} U T_{1}$ is a solid torus $T_{3}\left(s T^{3} \cap T_{1} \simeq S^{1} \times I\right)$ since a longitude of $s T^{3}$, $L^{\prime} \sim F$. Let M_{3} be a meridian of T_{3}. We want to determine x such that $M_{3} \sim|q| L_{2}+x M_{2}$.

Figure 3.2

Figure 3.3
Now $M^{\prime} \sim p F \mp M \sim p\left(r M_{1}+s L_{1}\right) \mp M=p r M_{1}+p s L_{1} \mp M$ also $M_{2} \sim L_{1}-r M, L_{2} \sim M_{1}+s M$ and $M_{3} \sim M_{1} \mp s M^{\prime} \sim M_{1} \mp s\left(p r M_{1}+p s L_{1} \mp M\right)=(1 \mp r s p) M_{1}$
$\mp p s^{2} L_{1}+s M \sim(1 \mp r s p)\left(L_{2}-s M\right) \mp p s^{2}\left(M_{2}+r M\right)+s M$
$=(1 \mp r s p) L_{2}-s M \pm r s^{2} p M \mp p s^{2} M_{2} \mp r s^{2} p M+s M$
$=|q| L_{2} \mp p s^{2} M_{2}$
so we have $L\left(|\mathrm{q}|, p s^{2}\right)$. The diagrams illustrate the case $r=3, s=$ $2, \sigma=1, q=-(2)(3)+1=-5$, and $x=-2(2)$.

Remark. Distinct surgeries along a given torus knot yield distinct lens spaces; however, the same lens space may be obtained by surgering different torus knots. For example, a $(2,11)$ surgery on $K(3,2)$ gives $L(11,8)$, a $(1,11)$ surgery on $K(5,2)$ gives $L(11,4)$ which is homeomorphic to $L(11,8)$, but a $(1,11)$ surgery on $K(4,3)$ gives $L(11,9)$ which is not homeomorphic to $L(11,8)$.

4. The nonfibered, nonprime manifolds.

Proposition 4. If an elementary surgery of type (p, q) is performed along $K(r, s)$ and $|\sigma|=|r s p+q|=0$, then the manifold obtained is the connected sum of two lens spaces $L(r, s) \# L(s, r)$ and is not singularly fibered.

Proof. If $|\sigma|=|r s p+q|=0$, then $p=1$, since p and q are relatively prime, $p>0$, and $r>s>0$. By Kneser's conjecture the manifold obtained is a connected sum since the fundamental group is a free product $\pi_{1}(\mathscr{L}(p, q)) \simeq\left(a, b \mid a^{r}=b^{s}, a^{r}=1\right)$.

Let S^{3} be the union of two solid tori T_{1} and $T_{2},\left(M_{1}, L_{1}\right)$ a standard meridian-longitude pair for $T_{1},\left(M_{2}, L_{2}\right)=\left(L_{1}, M_{1}\right)$ for T_{2}, K an (r, s) curve on T_{1}. Let $\mathscr{N}(K)$ be a regular neighborhood of the knot with meridian-longitude pair (M, L). We remove $\mathscr{N}(K)$ from S^{3} forming a depression along K in each of T_{1} and T_{2} but leaving each a solid torus.

We sew back a solid torus $s T^{3}$ with meridian M^{\prime} so that $M^{\prime} \sim$ $L-q M \sim K$. A meridian goes to one edge of the depression; another meridian goes to the other edge since they are parallel. Thus we may assume that the $\partial s T^{3}$ between two meridians is sewn to each half of the picture. Each half would be a lens space except that a 3 -cell is
missing-the 3-cell which is the other half of $s T^{3}$.

Figure 4.2
We now consider how the two halves of the picture are identified. The boundaries of T_{1} and T_{2} outside of the depression are identified, as are the meridianal disks of $s T^{3}$. The boundaries are annuli and the disks are sewn to them so as to make 3 -spheres. Filling in these 3 -spheres would give $L(r, s)$ and $L(s, r)$ since $M^{\prime} \sim$ $F \sim r M_{1}+s L_{1} \sim s M_{2}+r L_{2}$. Hence the manifold obtained is $L(r, s)$ $\# L(s, r)$.
5. Conjectures. A natural question to ask is whether Seifert manifolds can be obtained by elementary surgery along a knot other than a torus knot. We conjecture that the answer to this question is "no" in light of the following information:

1. If the fundamental group of a Seifert manifold is infinite, then the subgroup generated by the fiber is an in finite cyclic normal subgroup, the center of the group in case the characteristic is trivial [4].
2. All the known finite fundamental groups of closed 3-manifolds are groups of Seifert manifolds. All the possible finite fundamental groups have a nontrivial center. In case the order of the group is even, the unique element of order 2 lies in the center. In case the order of the group is odd, the group is cyclic and the center is the whole group [3].
3. Waldhausen has a partial converse to 1 . If \mathscr{L}^{3} is an irreducible 3 -manifold such that $\pi_{1}\left(\mathscr{L}^{3}\right)$ has a nontrivial center and either $H_{1}\left(\mathscr{N}^{3}\right)$ is infinite or $\pi_{1}\left(\mathscr{I}^{3}\right)$ is a nontrivial free product with amalgamation, then \mathscr{I}^{3} is a Seifert manifold [5].
4. Burde and Zieschang have shown that if the fundamental group of the complement of a knot has a nontrivial center, then the knot is a torus knot and the center is infinite cyclic [1].

Conjecture 1. If \mathscr{C}^{3} is a Seifert manifold and \mathscr{C}^{3} is obtained
by elementary surgery along a knot K, then K is a torus knot.
Conjecture 2. If \mathscr{A}^{3} is a lens space obtained by elementary surgery along a knot K, then K is a torus knot.

Conjecture 3. If \mathscr{M}^{3} is obtained by elementary surgery along a knot K and $\pi_{1}\left(\mathscr{M}^{3}\right)$ is finite, then K is a torus knot.

References

1. G. Burde, and H. Zieschang, Eine Kennzeichnung der Torusknoten, Math. Annln., 167 (1966), 169-176.
2. John, Hempel, A simply connected 3-manifold is S^{3} if it is the sum of a solid torus and the complement of a torus knot, Bull. Amer. Math. Soc., 15 (1964), 154-158.
3. John Milnor, Groups which act on S^{n} without fixed points, Amer. J. Math., 79 (1957), 623-630.
4. H. Seifert, Topologie dreidimensionaler gefaster Raume, Acta Math., 60 (1933), 145-238.

Received October 19, 1970.
University of Wisconsin
AND
California State College at Hayward

