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CHARACTERIZATIONS OF UNIFORM CONVEXITY
W. L. Bynum

In this paper, three new characterizations of uniform
convexity of a Banach space X are established. The charac-
terization developed in Theorem 1 resembles the definition
of the modulus of smoothness given by J. Lindenstrauss,
The characterizations developed in Theorems 2 and 3 are
interrelated, both involving the duality map of X into X*,
The methods used are adapted to give an abbreviated proof
of a recent result of W, V., Petryshyn relating the strict
convexity of X to the duality map of X into X*,

The following definitions are included for reference. For a Banach
space X, the wunit sphere of X, denoted by S, is the set of all
elements of X having norm 1. A Banach space X is wuniformly
convex if for each ¢ in (0,2], 2 6(t) = inf {2 — ||z + ¥||: x, yeS,
[le — y|| = ¢} is positive ([1], [2]) (the function § is called the modulus
of convexity of X). A direct consequence of this definition is that
each of the following conditions is equivalent to X being uniformly
convex:

(i) Whenever {a,} and {b,} are sequences in S, such that
lla, + b,|| —2, then ||a, — b,|[— 0.

(ii) Whenever {a,} and {b,} are sequences in X such that
lla,l|—1, ||b,]| =1, and ||a, + b,|| — 2, then ||a, — b,||— 0.

(see [3, p. 113] or [9, p. 109]). The modulus of smoothmess of X is
the function o such that for ¢ = 0,

2 o(t) = sup{l|z + ty|| + llz — ty|| — 2: 2,y S}

([5]). A Banach space X is strictly convex if for each x and y in S,
such that # = y and each X in (0,1), [[M + (1 — Myl <1 ([1], [6))-
A function J: X — 2%* is a duality map of X into X* if for each x
in X, J(@) = {we X*: (w, 2)(= w)) = [|w]| [|z]| and [|w]| = [|z]]} (see
[6] for notation and a list of pertinent literature).

I would like to thank Professor Tosio Kato for suggesting the
following formulation of Theorem 1.

THEOREM 1. Let ¢ be a strictly convex and strictly increasing
function on [0,2] such that ¢(1) =1. Then X 1is uniformly convex
if and only +f for each t in (0,1], a@t) = inf {s(||z + ty]|) +
é(llx — tyl)) — 2: x, ye S} is positive.
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Proof. Suppose that X is uniformly convex and that there is a
¢t in (0,1] such that a(f) = 0. Then there exist sequences {x,} and
{y,} in S, such that if we let a, = 2, + ty, and b, = x, — ty,, then
é(la,l) + #(]|b,]]) — 2. Since ¢ is convex and nondecreasing and
(1) = 1, 2 = 26((Ila, || + 116, 1)/2) < #(lla. [)) + 6(Ib,])) — 2 and thus by
the strict convexity of ¢, we have that |||a,|| — ||b.]|| — 0. The
preceding inequality and the continuity of ¢ at 1 imply that
lla.|l + |/b, ]| — 2 and consequently that ||a,||— 1 and [/b,||— 1. For
each =, ||la, + b,|| = 2, so the uniform convexity of X implies that
2t = |la, — b,|| — 0, which is contradictory.

Now suppose that «(t) is positive for each ¢ in (0,1]. For fixed
x and y in S, the function A(t) = ¢(||z + tyl|]) + ¢(|z — ty]) — 2 is
convex, and since h(0) = 0 and A =0 on [0, 1], ~ is nondecreasing.
Therefore, since « is the infimum of a collection of nondecreasing
functions, « is nondecreasing on [0,1]. By the definition of «, if
Iyl < llw] # 0, then ([ + yl/llz]) + s(lle — (/e ]) — 2= a(lyl/l]).
Thus if @ and b are in S, and ||a — b|| < ||e + b]|, we have that

(1) 262/|la + b[)) = 2 = a(lle — bll/lle + b]) = a(lla — b]|/2) .

Now, let {a,} and {b,} be sequences in S, such that ||a, + b,]| —2.
We may assume that for sufficiently large =, ||a, — b.|| < ||@, + b,]l.
Thus inequality (1) and the continuity of ¢ at 1 imply that
a(la, — b,]|/2) — 0, so ||la, — b,||— 0 and X is uniformly convex.

Inequality (1) above gives a bound on the modulus of convexity,
0, in terms of ¢! and «a. By considering each of the cases
lla = bl = lla+bl,1=lla+bl|<[ae—>l, and [a+b]<1, it
follows that 2§(]|a — b]|) is not less than the smaller of

L fla = bl[{s7"1 + 1/22(1/2)) — 1},

and [la — b[[ {$7'(1 + 1/2 a(lle — b]|/2)) — 1}

In Theorem 1, the case when ¢(t) = t* merits special attention.
Note that for each Banach space X and each ¢ in [0, 1], a(t) < 2t
moreover, X is an inner product space if and only if a(f) = 2¢* for
each ¢ in [0,1]. In the same vein, note that X obeys a weak paral-
lelogram law (i.e., there is a A in (0, 1] such that for each z and ¥
in X, [l +ylf+ Mo —ylf=2]z[f +2]|ly|f — see [4]) if and only
if there is a ¢ in (0, 2] such that a(t) = pt* for each ¢ in [0, 1].

THEOREM 2. A Banach space X is uniformly convex if and only
if for each t in (0,2], gt) =inf {1 — (f,y):2,yel, llz -yl =t
fed@)} is positive, where J is the duality map from X into X*.

Proof. If X is uniformly convex and z, y€ S, and f eJ(x), then



CHARACTERIZATIONS OF UNIFORM CONVEXITY 79

1-(fiy=2-(F,z+y=2—|lz+yll=2iz— yl)-

Now suppose that 8> 0 on (0,2] and that X is not uniformly
convex. Then by the definition there exist sequences {z,} and {y,}
in S, such that 0 < ||z, + ,||— 2 and for each =, ||z, — ¥.|| = t.
For each n, let a, = |[v, + ¥.|[7 2, = @@, + ¥a), ku € J(2,), fo € J(2.,),
and g,€J(y,). Then,

But neither ||z, — z,|| nor ||y, — z,|| is less than ta, — |1 — 2a,|, so
that for sufficiently large n, we have ||z, — z,|| = t/4, ||y, — 2.|| = t/4,
and 2 — ||z, + .|| = 2 B(t/4), which is contradictory.

THEOREM 3. A Bamnach space X is uniformly convex if and only
if the duality map J of X into X* 4s uniformly monotone-in the sense
that for each t in (0, 2], ¥(t) = inf {(f — g, ¢ — y): 2, ye S, || — y|| =t,
fedx), ged(y)} is positive.

Proof. If X is uniformly convex and z,ye S, feJ(&), g€ J(v),
then (f —g, 2~y =2—-(@, 2+ +2—(f,x+v) =22 — ||z +yl),
so J is uniformly monotone.

Suppose J is uniformly monotone and X is not uniformly convex.
By Theorem 2, g(¢t) = 0 for some ¢ in (0, 2]; i.e., there exist sequences
{x,} and {y,} in S, and {f,} in X* such that for each =,

and 1 — (f,, ¥,) —0. Since 1— (f,,%,) =2 — ||@, + ¥,|| =0, then
l|®, + ¥.]] —2 and we may assume that ||z, + ¥,|| > 0 for each .
As in Theorem 2, let a, = ||z, + ¥./I™, 2. = @,(%, + ¥,), and h, € J(2,).
Thus, (h., @, + ¥.) = ||, + ¥.||— 2 and since ||, || = 1 = ||z, [ = [[v.]],
then (4,, 2,) — 1. So,

(h’n _f'm 2y — xn) = 1 — @y — an(f'na y'n) + 1 - (hnv x’lb)——)o’

However, as in Theorem 2, for sufficiently large =n, we have that
|z, — 2.1l = t/4 and (h, — f, 2, — 2,) = Y(t/4), which is contradictory.

Now we turn to the previously mentioned result of Petryshyn
[6, Theorem 1, p. 284-287]. We need the following theorem, proved
in slightly different form in [8, Theorem, part iii]. We include a
proof of it here for completeness. In the sequel, we shall use the
following characterization of strict convexity due to Ruston [7]: A
Banach space X is strictly convex if and only if for x and y in S,
such that & = y,2 — ||z + y|| > 0.
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Theorem (Torrance [8]). A Banach space X is strictly convex if
and only if for # and y in S, such that # #* y and for f in J(z),

1—-(f,9>0.

Proof. Suppose that X is strictly convex and let #, ¥, and f be
as above. Then, 1 — (f,y) =2 — ||z + y|| > 0.

Now suppose that the second condition of the theorem is satisfied
and that X is not strictly convex. Then, there exist x, ye Si(x # v)
such that ||[z+ y||=2. Let z=(+ %)/2 and heJ(z). Since
h||=1=|lz|| =|ly]| and (h, & + y) = 2, (h, x) = 1, a contradiction,
since z # x.

Theorem (Petryshyn [6]). A Banach space X is strictly convex
if and only if the duality map J of X into X* is strictly monotone-
in the sense that if x = v, f e J(x), and g € J(y), then (f — g, x — y) > 0.

Proof. Suppose that X is strictly convex. Let x, ye X, f e J(2),
and geJ(y). Then, |[fllllyll = (9 = [zl + llyll—llz+ yl)

and [|g]l |zl — (9, 2) = llgll (|=]l + llyll — |l& + ¥|)) and by the use
of equation (%) of [6], we have
(f —g,2—9 = (lz|l — llyl)®
+ (]l + Nyih(lell + llyll — = + ) -
If v+ y and ||z|| = ||y|l, then [|z| >0 and [[z| + |[y]| — |z + y|| =

llz|| 2 — ||=/l|z|| + v/l|2]||]), which is positive by the strict convexity
of X. Consequently, J is strictly monotone.

Now, suppose that J is strictly monotone and that X is not
strictly econvex. Then by the previous theorem, there exist z, ye S,
(*x+vy) and an feJd() such that 1 — (f,y) =0. As before,
1—(f,y=2—|lza+y|, so |[x+y||=2 If z=(r+y)/2 and
hed(z), then (h,z + y) = 2 and ||k]| =1 = ||z|| = ||y]|, so (h, x) = 1.
Consequently, (h — f,z—2) =1 — (h,2) + 1 — (f, 2) = 0, which con-
tradicts the fact that z # .
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