FOURIER-STIELTJES TRANSFORMS AND WEAKLY ALMOST PERIODIC FUNCTIONALS FOR COMPACT GROUPS

CHARLES F. DUNKL AND DONALD E. RAMIREZ

Let G be a compact group and H a closed subgroup. A function in the Fourier algebra of H can be extended to a function in the Fourier algebra of G without increase in norm and with an arbitrarily small increase in sup-norm. For G a compact Lie group, the space of Fourier-Stieltjes transforms is not dense in the space of weakly almost periodic functionals on the Fourier algebra of G.

We let G denote an infinite compact group and \widehat{G} its dual. We use the notation of [1, Chapters 7 and 8], [2], and [3]. Recall A(G) denotes the Fourier algebra of G (an algebra of continuous functions on G), and $\mathscr{L}^{\infty}(\widehat{G})$ denotes its dual space under the pairing $\langle f, \phi \rangle$ $(f \in A(G), \phi \in \mathscr{L}^{\infty}(\widehat{G}))$. Further, note $\mathscr{L}^{\infty}(\widehat{G})$ is identified with the C^* -algebra of bounded operators on $L^2(G)$ commuting with right translation. The module action of A(G) on $\mathscr{L}^{\infty}(\widehat{G})$ is defined by the following: for $f \in A(G)$, $\phi \in \mathscr{L}^{\infty}(\widehat{G})$, $f \cdot \phi \in \mathscr{L}^{\infty}(\widehat{G})$ by $\langle g, f \cdot \phi \rangle = \langle fg, \phi \rangle$, $g \in A(G)$. Also $||f \cdot \phi||_{\infty} \leq ||f||_A ||\phi||_{\infty}$.

Let $\phi \in \mathscr{L}^{\infty}(\hat{G})$. We call ϕ a weakly almost periodic functional if and only if the map $f \mapsto f \cdot \phi$ from A(G) to $\mathscr{L}^{\infty}(\hat{G})$ is a weakly compact operator. The space of all such is denoted by $W(\hat{G})$.

Let M(G) denote the measure algebra of G. For $\mu \in M(G)$, the Fourier-Stieltjes transform of μ , $\mathscr{F}\mu$, is a matrix-valued function in $\mathscr{L}^{\infty}(\hat{G})$ defined for $\alpha \in \hat{G}$ by

$$lpha \mapsto (\mathscr{F}\mu)_lpha = \int_{\mathscr{G}} T_lpha(x^{-1}) \; d\mu(x) \; (T_lpha \in lpha)$$
 .

We denote the closure of $\mathscr{F}M(G)$ in $\mathscr{L}^{\infty}(\hat{G})$ by $\mathscr{M}(\hat{G})$. In [2], we showed that $W(\hat{G})$ is a closed subspace of $\mathscr{L}^{\infty}(\hat{G})$, and that $\mathscr{M}(\hat{G}) \subset W(\hat{G})$ with the inclusion proper when G is a direct product of an infinite collection of nontrivial compact groups. In this paper, we show the inclusion is proper for all compact Lie groups.

We first state a standard lemma.

LEMMA 1. Let A, B be compact subsets of a topological group G. Suppose $AB \subset U$, U an open subset of G. Then there is an open neighborhood V of the identity e of G such that $AVB \subset U$.

PROPOSITION 2. Let G be a compact group and H a closed subgroup. Let W be an open subset of G with $H \cap \overline{W} = \emptyset$. Then there is a continuous positive definite function p on G with p(x) = 1, $x \in H$, and p(x) = 0, $x \in W$. (Note $p \in A(G)$ and $||p||_A = 1$.)

Proof. Let U be an open subset of G with $H \subset U$, and $U \cap W = \emptyset$. Choose V_1 an open neighborhood of e with $HV_1H \subset U$. Now let V be an open neighborhood of e with $VV \subset V_1$ and $V = V^{-1}$. Thus $HVVH \subset HV_1H \subset U$.

Let $p=(m_G(HV))^{-1}\chi_{HV}^*\chi_{VH}$ $(m_G$ is normalized Haar measure on G and χ_A denotes the characteristic function of A). Then $p(x)=(m_G(HV))^{-1}m_G(xHV\cap HV)$, $x\in G$. Thus for $x\in H$, p(x)=1. If $p(x)\neq 0$, then $x\ HV\cap HV\neq \emptyset$, and so $x\in HVVH\subset U$.

THEOREM 3. Let G be a compact group and H a closed subgroup. Let $f \in A(H)$ and $\varepsilon > 0$. Then there exists $g \in A(G)$, $||g||_A = ||f||_A$, g|H = f, and $||g||_{\infty} \le ||f||_{\infty} + \varepsilon$.

Proof. Let h be an extension of f to G with $||h||_A = ||f||_A$ (see [1, Chapter 8]). Let $V = \{x \in G: |h(x)| > ||f||_{\infty} + \varepsilon\}$. Now let p be as in Proposition 2, and let g = ph.

We now state a characterization of $\mathcal{M}(\hat{G})$. The proof for abelian groups is in [1, Chapter 3]. The proof for nonabelian groups is analogous.

THEOREM 4. Let G be a compact group and $\phi \in \mathscr{L}^{\infty}(\widehat{G})$. For $\phi \in \mathscr{M}(\widehat{G})$ it is necessary and sufficient that whenever $\{f_n\}$ is a sequence from A(G) with $||f_n||_A \leq 1$ and $||f_n||_{\infty} \xrightarrow{n} 0$ we have $\langle f_n, \phi \rangle \xrightarrow{n} 0$.

THEOREM 5. Let G be a compact Lie group. Then $\mathscr{M}(\hat{G}) \neq W(\hat{G})$.

Proof. Let H be a total subgroup of G; that is, H is the circle group. Now $\mathcal{M}(\hat{H}) \neq W(\hat{H})$, (see [1, Chapter 4]).

Let π_1 denote the restriction map of A(G) onto A(H) and let $\widehat{\pi}$ denote the adjoint map of $\mathscr{L}^{\infty}(\widehat{H})$ into $\mathscr{L}^{\infty}(\widehat{G})$. In [3], we showed that

$$\widehat{\pi}\mathcal{M}(\widehat{H})\subset\mathcal{M}(\widehat{G})$$
 and $\widehat{\pi}W(\widehat{H})\subset W(\widehat{G})$.

Let $\phi \in W(\hat{H}) \backslash \mathscr{M}(\hat{H})$. Now $\hat{\pi}\phi \in W(\hat{G})$ so we need only show that $\hat{\pi}\phi \notin \mathscr{M}(\hat{G})$. Since $\phi \notin \mathscr{M}(\hat{H})$, there is a sequence $\{f_n\} \subset A(H), \|f_n\|_A \leq 1$, $\|f_n\|_{\infty} \xrightarrow{n} 0$ with $|\langle f_n, \phi \rangle| \geq \varepsilon$ (some $\varepsilon > 0$). Extend f_n to $g_n \in A(H)$

A(G) by Theorem 3 with $||g_n||_A \leq 1$ and $||g_n||_{\infty} \xrightarrow{n} 0$. But $\langle g_n, \hat{\pi}\phi \rangle =$ $\langle \pi_1 g_n, \phi \rangle = \langle f_n, \phi \rangle$, and so $\widehat{\pi} \phi \notin \mathscr{M}(\widehat{G})$.

REMARK. If a compact group G has a closed subgroup H with $\mathcal{M}(\hat{H}) \neq W(\hat{H})$, then $\mathcal{M}(\hat{G}) \neq W(\hat{G})$, (in particular, if G contains an infinite abelian subgroup). Indeed, it is an open question whether an infinite compact group always contains an infinite abelian subgroup.

COROLLARY 6. Let G be a compact group with H a closed subgroup. Then

$$\widehat{\pi}(W(\widehat{H}) \backslash \mathscr{M}(\widehat{H})) \subset W(\widehat{G}) \backslash \mathscr{M}(\widehat{G})$$
.

REFERENCES

- 1. C. Dunkl and D. Ramirez, Topics in Harmonic Analysis, Appleton-Century-Crofts, New York, 1971.
- 2. —, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc., (1972).
- 3. ———, Weakly almost periodic functionals carried by hypercosets, Trans. Amer. Math. Soc., 164 (1972).

Received November 18, 1970. This research was supported in part by NSF contract number GP-19852.

University of Virginia