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EXPONENTIAL SUMS OVER GF(2")

KENNETH S. WILLIAMS

Let F'= GF(q) denote the finite field with ¢ = 2" elements.
For f(X)e F[X] we let

S(f) = > e(flx)) .

zeF

A deep result of Carlitz and Uchiyama states that if f(X) +
g X2+ 9gX)+0b,9X)eF[X],beF, then

18| = (deg f — Dg*'2 .

This estimate is proved in an elementary way when deg f =
3,4, 5 or 6. In certain cases the estimate is improved.

If ae F then o = a and o has a unique square root in F namely
a”'. We let

(1.1) ta)=a+a*+a® + o + a7,
so that t(a) e GF(2), that is ¢(a) = 0 or 1. We define
(1.2) e(a) = (— )",

so that e(a) has the following easily verified properties: for a,, a,e¢ F

e(a, + a,) = e(a,)e(a,)
and
q, if a, = 0,

1.3 &) = .
(1.3) Z,Fe(ax) 0,ifa,=0.

Let X denote an indeterminate. For f(X)e F[X] we consider the
exponential sum

(1.4) S(f) = 2 e(f (@)

We note that S(f) is a real number. Since S(f) = e¢(f(0))S(f — f(0))
it suffices to consider only those f with f(0) = 0. This will be
assumed throughout.

If f(X)e FIX](f(0) = 0) is such that

(1.5) f(X) = 9(X)* + 9(X),

for some g(X)e F[X], then f(X) is called exceptional over F, other-
wise it is termed regular. Clearly f can be exceptional only if deg
fis even. If f(X) is regular over F', Carlitz and Uchiyama [2] have
proved (as a special case of a more general result) that
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(1.6) IS()| = (deg f — 1)g*” .

Their method appeals to a deep result of Weil [3] concerning the roots
of the zeta function of algebraic function fields over a finite field. It
is of interest therefore to prove (1.6) in a completely elementary way.
That this is possible when deg f = 1 follows from (1.3) and when
deg f = 2 from the recent work of Carlitz [1]. In this paper we show
that (1.6) can also be proved in an elementary way when deg f = 3,
4,5 or 6. Moreover in some cases more precise information than that
given by (1.6) is obtained. Unfortunately the method used does not
appear to apply directly when deg f = 7. The method depends on
knowing S(f) exactly, when deg f = 2 and when f is exceptional over
F. These sums are evaluated in §2, 3 respectively.

2. degf = 2. In this section we evaluate S(f), when deg f = 2.
This slightly generalizes a result of Carlitz [1]. We prove

THEOREM 1. If f(X) = a,X* 4+ a0, X € F[X], then

qy Iif a% = az ’
S =
) {0, if at # a, .
Proof. We note that the result includes the case a, = 0 in view of
(1.8). If @, 0 then S(f) = S, re((@2" 7 2)* + 072" (@2 7'2)) = Dpe pe(0?+

—on—1 —gn—1

a.Q; x), since x — a; 2 is a bijection on F. By Carlitz’s result [1]
Jifaa® " =1,
S(f)z{q e
0,if a0 = 1.

on—1

This proves the theorem as a,a; =1 is equivalent to a? =@, in F.
We remark that a,X* + a,X is exceptional over F' precisely when
az = Qe

3. f exceptional over F. In this section we evaluate S(f),
when f is exceptional over F. We prove

THEOREM 2. If f(X)e F[X] s exceptional over F then S(f) = q.

Proof. As f is exceptional over F' there exists g(X) e F[X] such
that
f(X) = 9(X)* + 9(X) .

Hence for e F' we have

Hf () = t(g(x)* + 9()) = 9(@)" + g(x) =0,
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so that e(f(x)) = 1, giving S(f) = q.
4, deg f = 3. We prove

THEOREM 3. If f(X) = a,X® + a,X* + a,X e F[X], where a, + 0,
then

[S(N)] = K(f)e'”*,
where K(f) > 0 1s such that
K(fy =1+ (=1" 2 e(a.t’ + a) .

3teF
t°=1/ag

(In particular if ¢ = 1/a, has 0, 1, 3 solutions ¢ in F' then K(f) =
1, K(f) = 0 or V"2, K(f) < 2 respectively. Thus we have the Carlitz-
Uchiyama estimate | S(f)| < 2¢'?, and by arranging K(f) = 2 in the
last of the three possibilities indicated we see that it is best possible).

Proof. We have
S(f) = 3 elas(@ + ¥) + (o + ¥°) + ai(z + ¥)

x,y €I

g0 on changing the summation over «,y into one over =z, {(= x + ¥)
we obtain

S(f) = t%e(a?,t?’ + a.t* + a,t)xéy e(a;te’ + agt’x) .

By Theorem 1 we have

q, if a;t = (a,t%)*,

e(asta’ + a,tix) = .
a:;‘ (@ ) 0, if a;t # (ast)’,

so that, as a, # 0, this gives

S(fyF=q ;}F e(ast® + at* + at)

agtt—t=0

=gl + (=D X elat’ + ad)},

te F
i3=1/a3

as e(1) = (— 1), which completes the proof of the theorem .
5. deg f = 4. We begin by giving necessary and sufficient con-

ditions for f(X) = a,X* + a,X® + a,X* + a,X e F[X], where a, = 0, to
be exceptional.

THEOREM 4. f(X) = a,X* + a,X* + a,.X* + a,X € F[X], where a, #
0, is exceptional over F if and only if a, = o + a! and a, = 0.
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Proof. f(X) is exceptional over F if and only if there exists

rX? 4+ sX e F[X] such that
X+ . X + a,X? + a0, X = (rX* 4+ sX) + (rX? + sX).
This is possible if and only if
a,=1r5a,=0,0a,=8+ra =s,
that is, if and only if,
e, =r=@+s8)=a+s=a+aand a;=0.
We now evaluate |S(f)|. We prove
THEOREM 5. If f(X) = a,X* + 0. X® + a,X* + a, X e F[X], where

a, # 0, then |S(f)| is given as follows:
(i a;=0

, of ay =a} + al,
S(f) = g, @;aﬁéa%::—-af.
(i) a;*0
[S(H] = K(NHg'”,
where K(f) > 0 is such that

K =1+ (=" 3 e@t + af + at) .

teF
t3=1/a3

(Thus in particular when f is regular we have K(f) <2 so the
Carlitz-Uchiyama estimate | S(f)| < 3¢'”* can be improved to |S(f)| =
2¢7),

Proof. (i) For le F we define

T() = 3 e((a3 + af + D' + a2* + a,2) .
TEF
By Theorem 4 (a2 + a)X* + a,X* + @, X is exceptional over F' so that
by Theorem 2, T(0) = q. Now
TQF = > el + at + D@+ ¢) + a:(2* + ¢) + a,(@ + )

Z,Y €

= 3 e((@ + at + D' + a.t* + ai) ,
z,teF

on setting y = 2 + t. Thus we have T()* = qT(l), so that T(}) =0
or q. But we have

lZ,F T = %e((aé + adat + a2 + a.x) lz‘jve(lx*) =q,
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that is,
>, T =0,
F

0#£l e
giving T(l) = 0, when [ % 0. This completes the proof of case (i).
(iiy We have as before

S(f)? = t% e(at + at® + a,t’ + a,t) %e(agﬁxz + a,t’x) .

Now by Theorem 1 we have

q, if at = (ast’)?,

e(ata? + a,t’x) = .
x% (@ £'%) 0, if ast = (a,t?)*,

so that, as a;, = 0, we obtain

S =q 3 elat + at® + at® + a,t)
teF

€
agté—i=0

=q{l + (= D" > elast' + a.t’ + a,t)},

tel
t3=1/ay

which completes the proof of the theorem.

6. deg f =5. We prove the Carlitz-Uchiyama estimate in an
elementary way.

THEOREM 6. If f(X) = a,X° + a,X* + a, X® + a,X* + a, X e F[X],
where a; # 0, then |S(f)] < 4¢9*~.

Proof. As before we have

S(f)? = Dlelat® + «+« + at) > elatat + ate’ + (at' + at’)z) .
teF TEF

By Theorem 5 we have

g, if a;t = (a;t)® + (ast* + a;t’)*,
e(atet + aita® + (att + ath)z) = .
erF ( e (@ )2) 0, if a;t = (a;t)® + (ait* + at?)*,

and as aXt’® + ait® + ait* + a;t = 0 has at most 16 solutions ¢ in F we
have

IS(H12<164q, |S(f)| < 4q.

7. deg f = 6. We begin by giving necessary and sufficient con-
ditions for f(X) = a;X°® + --- + a,X € F[X], where a, = 0, to be excep-
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tional over F.

THEOREM 7. f(X) = a,X°+ a;X° + a,X* + 0, X° + a,X* + a, Xe
F[X], where a; # 0, is exceptional over F if and only if a; = a}, a; =
0,a, =ai+ al.

Proof. f(X) is exceptional over F' if and only if there exists
rX® + sX*® + tXe F[X] such that

X+ v + 0, X=X+ s X+ rX)P 4+ rXP + sX* 4+ tX) .
This is possible if, and only if, we can solve the equations

a=7,0,=0,a, =8 a=7ra=0:+s0a-="=t,
that is if, and only if,
a=0,a0=0a=8=(@+)=a+t"=a+a}.
We now evaluate |S(f)|. We prove
THEOREM 8. If f(X) = a,X°® + a,X° + a,.X* + a,X°® + a,X* + a, X €

F[X], where a, = 0, then [S(f)| is given as follows:
(i) a;=0,0, =0}

- fy Yo
(ii) a; =0, a; = a2
1SN = VI+ () e”,
where n,(f) denotes the number of solutions te F of

1

tt = .
as + a3

(i) a;# 0
1SN = VT + n(f) ¢,
where n,(f) denotes the number of solutions te F of
(7.1) ait® + (at + adt”" + (a5 + adt + a;, = 0.
(Thus in particular when f is regular we have
IS(H) < V1415 ¢ = 4¢'",

which improves the Carlitz-Uchiyama estimate |S(f)| < 5 ¢'7?).
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Proof. (i) For le F' we define
W = z}; e(a® + (@2 + at + Dot + a.2® + a0 + a.%) .

By Theorem 7 aiX°® + (¢ + a) X* + a,X® + a,X* + a,X is exceptional
over F so that by Theorem 2, T(0) = q. Now

W = X Fe(ai(xs + 99 + (@ + af + D@ + ¥) + a,(@® + ¥°)

z,Y €

+ a,(@* + ¥) + a,(x + y)
=m’t”e(a,§(9c“t2 + @+ ) + (@ + af + Dt + ay(x*t + ot
+ ) + at* + at),
on setting ¥y = ¢ + ¢t. Thus we have
T()? = %e(a%ta + (a2 + at + Dt* + a,t® + at* + a,t)
E,Fe((a‘;’ﬁ)x* + (@it + at)2® + (ast?)2) .

Now as a; = a and a; = 0 we have a;, = 0. Hence for ¢ # 0 by Theorem
4 (@) X* + (o' + ast + at) X*® + (a,t) X is exceptional as ait* + 0 and
(@3t + at)? + (at?)* = ast® + ait* + ait® = ait’ .

Thus for ¢t # 0 by Theorem 2

S e((@it?)at + (aitt + at)a® + (atH)z) = q .

zeF

This is clearly true for ¢t = 0 as well so that T()* = qT(l), giving
T(@ =0 or q. But we have

l;? () = zEZF e(aix® + (@2 + a)z' + a,2° + a2 + a,x) leZF e(lz') = q ,

that is
T =0,

0#le F

giving T(l) = 0, when [ s 0. This completes the proof of case (i).
(ii) As before we have

S(f)! = 3 e(ast® + at* + at’ + ast® + at)
teF
X > e((agthx + (agt! + at)a® + (at)x) .
zeF
By Theorems 1 and 5 we have

Zpe((aetz)m‘ + (agt* + at)x® + (ast’)x)

_ g, if apt’ = (agt' + at)® + (ast))* ,
0, if gt = (agtt + at)® + (agt)* .
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Thus
S(f) = q > e(apt® + a it + a;t® + a.t®> + a,t) ,
teF

where the dash (*) denotes that the sum is over those t such that
(@5 + ad)’t* + {as + a))t* =
For ¢ ++ 0 this becomes

1

tt‘:_
= -,
A + a3

as a; + a2 # 0 in view of a; = ai. This completes case (ii).
(ili) As before we have

S(f) = te% e(agl® + <+« + alt)MX;’ e((agt® + azt)at + (agt* + ast)a’
+ (ast* + at)Ha) .
By Theorems 1 and 5 we have
fge((aetg + agt)xt + (att + aif)a® + (a;t* + a:t?)x)

{q, if agt® + a;t = (agt* + ast)® + (at* + at’)*,
"0, if agt? + agt = (@t + ast): + (astt + atd) .

Thus
SU) = g S ead + -+ + ),
where the dagger (1) denotes that the sum is over those ¢ such that
ait’® + (@i + a3)t® + (@ + ad)t* + a;t = 0.

For ¢+ 0 this becomes (7.1) which completes the proof of case (iii).

7. Conclusion. We conclude by remarking that the elementary
method of this paper does not work when deg f(X) = 7, since in this
case we have

S(f) = ;e<a7t7 + oo+ alt)“ZFe(gt(w')) )
where

9:(X) = (@:0).X° + (@) X° + (@’ + ael® + ;) X* + (a,t) X?
+ (a;t° + agt' + at) X + (a,t° + ait* + a,t) X

has a nonzero coefficient of X° for ¢t == 0.
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