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GROUP REPRESENTATIONS AND THE ADAMS
SPECTRAL SEQUENCE

R. JAMES MILGRAM

Homotopy groups admit primary operations analogous to
the Steenrod operations in ordinary cohomology theory and
a good understanding of them seems vital to interpreting
patterns in the homotopy of spheres.

Also, it has been known for a long time that a type of
Steenrod algebra acts in ExtΛ(Zp, Zp) if A is a cocommutative
Hopf algebra. Recently, D. S. Kahn showed that in the E2

term of the Adams spectral sequence Extί/(2) (Z<z, Z2), certain
of these operations on infinite cycles converge to the graded
elements associated to the actual homotopy operations. Also,
on infinite cycles, he showed how this structure determined
some differentials.

In this paper, we further explore the relations between
the operations in ExtV(P)(Zp, Zp) and differentials in the Adams
spectral sequence. In particular, for elements which need
not be infinite cycles, we prove

THEOREM 4.1.1. (a) There are operations Sqi in ExW(2)(^2)

Z2) so that

Sqi+1(ά), i = s(2)
0 otherwise'

IOΓ Cb KZ jJuXXij^(2)\£J2f JLJ2).

(b) There are operations &\ β^61 in Extss(P)(Zp, Zp) for
p an odd prime so that

for a e Extτj/ip)(Zp, Zp). (Here, Sq* takes E x t s r homomorphical-
ly to Exts+ί>2r while &*% takes Exts>r to Extβ + ( 2 i- r ϊ ( p- 1 ) 'p r, and

xts>r) c

These operations are readily computable in the Ext groups.
(Methods for calculating them are given in §6 and [2], [19].) For
example, Sq°(hi) = hi+1, Sqι{hi) = h\ where ht is the nonzero element
in Ext1'2* dual to Sq2\ (Our notation for elements in Ext is that of
[13].) Applying 4.1.1, 92(fe») = Wί-i> which is nonzero for i greater
than 3. Consequently, we recover

COROLLARY (Adams). An element of Hopf invariant one (mod 2)
exists in πn+s(Sn) if and only if n > s and s = 1, 3, 7.

(The Hopf invariant of a homotopy class a is nonzero in Zp-
cohomology if and only if a is represented by an infinite cycle in
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Ext1.)
Similarly, the mod p operations can be calculated. We have ([12])

and aQβ^pi{v~ι){hi) Φ 0 for i ^ 0. Thus we recover the result of
Liulevicius and Shimada on the elements of mod p Hopf invariant one.

In §6, we calculate the complete action of the Sq* operations in
ΈxtsJ{2)(Z2, Z2) for t — s < 42. It turns out that routine relations
among the various classes, together with the differentials of 4.1.1 (a),
determine all 92 differentials in this range. (I am indebted to M.
Tangora for showing me how to obtain some of the more obscure 32

differentials in this way.)
One surprising result is that 32(c2) = hofl9 a differential in the 41

stem which was overlooked in [13]. This differential, in turn, implies
vθ4 Φ 0 (which contradicts a result in [13]) where <94 is the class
corresponding to the Kervaire invariant 1 manifold in dimension 30.
This in turn forces a 33 differential in the 34 stem. Once these two
differentials are accounted for, there seem to be no further corrections
necessary in [13], and we can thus assume the two primary com-
ponents of πs

t(S°) known for t < 44. For further details, see [5].
Perhaps equally surprising, the technique used to prove Theorem

4.1.1 is purely geometric in nature. We never need mention secondary
cohomology operations or even primary ones.

Next, we study some of the ways in which the operations imply
higher order differentials. Here the answers are not as satisfactory
as before. However, we do succeed in characterizing all primary
differentials through 920 on these elements. More exactly, Theorem
5.1.1 characterizes the first possible nonzero dfc(S<f (α)) for k < 20,
provided dά(a) = 0 for j ^ k + 1. However, there are no places in
the first 40 stems where such differentials occur (except, indirectly,
the differential 33(r) = h^l), so in the absence of examples, it seemed
fruitless to pursue the matter further.

Also, there are further applications of these geometric techniques.
For example, in §7 we give a very direct proof that θ4 is nonzero.
Moreover, by using similar techniques with the two-cell-complex
S15U2e

16, together with the fact that (<93)
2 = (σ)4 = 0, one obtains a proof

that θδ is nonzero. Similarly, using the result of Barratt-Mahowald
that (β4)

2 = 0, one obtains the existence of θ6 (see [22] for details).
Finally, I would like to take this opportunity to express my

thanks to D. S. Kahn for sharing his insights with me, and the
Centro de Investigation for their support while this research was
carried out.
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1* Group representations and their Thorn spaces*
1. We consider representations

r: G >L

where G is a finite group and L is the unitary group U(n) or the
orthogonal group O(w). Any such representation gives rise to a map
of classifying spaces

Bir): BG > BL

see e.g., [18]. By the Steenrod classification theorem B(r) is equi-
valent to specifying a principal L-bundle or its associated %-plane
bundle over BG. We denote this w-plane bundle by Bfr)(ζn) where ξn

is the universal bundle over BL.

DEFINITION 1.1. The representation r is said to have L-filtration
k if the associated map B(r) is homotopically trivial on the k-1 skeleton
of BG.

This is equivalent, of course, to saying Bfr)(ζn) is trivial over the
k — 1 skeleton of BG and may also be rephrased as

PROPOSITION 1.2. Let EG be the universal covering space of BG;
then the representation r has filtration k if and only if there is an
r-equivariant map

where (EG)k-ί is the k — 1 skeleton of EG and r-equivariant means
ψ(gx) = r(g)Ψ(x) for all x e (Eβ)h^.

Proof. Let EL be the universal principal L-bundle over BL.
Given a representation r this induces an r-equivariant map

φ: EG > EL

moreover, by standard arguments (since EL is contractible and EG is
G-free) any 2 such are equivariantly homotopic. Likewise, given any
r-equivariant map Ψ: {EG)k^ —> EL it can be extended to an r-equi-
variant map φ. The induced map of classifying spaces φ will send
the k — 1 skeleton of BG to * e BL. To obtain the converse note that
B{r) is covered by an equivariant map EG —•* EL and use the covering
homotopy property.

2. By use of the Whitney sum maps

μ{j: Li x Lj > Li+j
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we can define Whitney sums of representations (r 0 r' is the com-
position

G ^ G x G ~ ^ U x Lj - Li+j) .

In particular, the positive integral multiples of r are defined and we

have

THEOREM 1 O 2.1. Let Li — U{i) and suppose the order of G is s.
Suppose r: G —• U(i) has filtration k < 2i, then sr has filtration k + 2.

Proof. The obstruction to compression of the ^-skeleton is an
element σ in Hk(BG, πk(BLτ)). By naturality the obstruction to com-
pressing sr is sσ. However, \G\ H*(BG, Z) = 0 so sσ = 0 and the
theorem follows.

Similarly in the case L^ = 0^ we have

THEOREM 1.2.2. Let m = (2\G\)2s2δ^\G\δ2 with 0 ^ δ2 ^ ^ - 1,

0 ^ δL ^ 2 and let r: G —*On be any representation, then mr has filtra-

tion at least 8s + 2'1 + 4h — 1 in Bo.

3. We now consider the Thom complex of the associated %-plane
bundle B*r)(ξn). It admits a very simple description.

DEFINITION 1.3.1. Let B be a space with base point *, and A
be any space, then the half smash product

A X B

is A x B/A x *.
A representation r: G-+L induces an action of G on S2kn(k = 0

if L = 0(w), k = 1 if L = U{n)) induced from the action of L on S2kn =
i ? Λ u co. In terms of this action we have

THEOREM 1.3.2. The Thom complex of B\r){ζn) is homeomorphic to

EG X GS
2kn .

Proof. The associated bundle B\r)(ξn) can also be described as

Eσ x GR
2kn

where the action of G is that given above. Also, the associated
sphere bundle admits a similar description. Hence, the theorem
follows on equating the sphere bundle to the base point and using
the fact that L acts linearly in R2kn.
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As an immediate corollary we have

THEOREM 1.3.3. If r has filtration p there is a G-equivariant map

φ: (Eo),^ X S2kn >S2kn

which is of degree 1 on the bottom cell (i.e., φ(xg, y) = φ(x, gy)).

Proof. If r has filtration p then B\r)(ξn) is trivial on the p — 1
skeleton of BG1 so there is a bundle mapping

p: BUξn)\(BG)p^ >R*k«

and an induced map Thorn spaces T(ρ): (EG)P^ X GS
2kn —> S2kn. Now

φ is obtained by composing with the map

π:EG\XS2kn > EG\K S*kn .

4. In order to obtain alternate descriptions of these spaces we
need to observe that two bundles will have homeomorphic Thorn
spaces if the bundles are isomorphic. In particular for representations
ru r2 this is equivalent to requiring that B(ri) — Bi7.2).

PROPOSITION 1.4.1. B{r]) ~ B{rz) if there is an element a in the
identity component of L so rγ(g) = a~1r2(g)a for all g eG.

Proof. Let P be a path from the identity to α, then P(t)~ιr2(g)P(t)
provides an equivariant homotopy from rx to r2 and hence a homotopy of
B{ri)toBir2).

Since Un is connected we can apply 1.4.1 without difficulty and
we find that the Thorn complex of B\r)(ζn) is homeomorphic to the
Thorn complex of a sum of irreducible representations which can
usually be calculated.

Over On, however, we must be careful to check that the a used
to make r1 equivalent to r2 has determinant + 1 and not — 1 .

2* Some explicit representations and their Thorn complexes*

1. Let Zq be a finite cyclic group with generator T and let R1

be the representation sending T to p = e27τίlq. Then Ri is the ith

tensor product of Rι with itself and sends T to p\ These Rι form
a complete set of irreducible representations of Zq and any unitary
representation is uniquely equivalent to a sum of these.

L e t Zg a c t on S2^1 b y T(zr^zn) = (p^zu •••, p ^ z n ) .
The resulting quotient space is the Lens space

L q ( i l 9 •••, in) .
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We define a classifying space construction for Zq by letting Bz be
the limit of the Lff(l, •••, 1).

THEOREM 2.1.1. The Thom space of mo(I) + mxR
ι

over Bz is homeomorphic to

;Lq(l 1 2 2 (q - 1,
i

lim
LA ,

772-1

(Here / is the trivial 1-dimensional representation.)

Proof. Embed S2"'1 in S2^1 as the points (0 0, zγ . zk). Define
an action of Zq on S2™-1 as T ( v zn-k, z^- zk) = (piιzγ pin-kzn_k1 pz^

pzk). The embedding induces an inclusion Lq(l 1) c Lq(ily in-kf

1 . . . 1) w i t h normal bundle R^ φ φ jβ**-*. It is now evident that
the Thom complex of ifr φ φ i2^-& is Lq{i, iw_fc 1 l ) / ! ^
ΐn_Λ) since the normal bundle maps homeomorphically till it arrives
at Lq(ix ••• ίn-k), which is then the image of the sphere bundle.

For Z2 and real representations we have 2 irreducible ones, the
trivial one / and the identity R: Z2—>Z2 = 0(1), so we have

THEOREM 2.1.2. Let RP~ be BZ2, then the Thom space of mj +
m,R is homeomorphic to

(The proof does not differ essentially from that of 2.1.1.)

2. We recall the characteristic classes of these representations.

THEOREM 2.2.1. Let ceH2(BZq1 Z) be the first Chern class of R\
then the total Chern class of Rk is 1 + kc. (This allows us to cal-
culate, if necessary, the action of the Steenrod algebra Ssf{p) in the
Thom spaces above.)

3. Consider the representation rΛ: Z2—* O2n defined by rn(T)(x,y)
= (y, x). From 1.3.2 the Thom complex of rn is Ez% IX τS

n Λ Sn =
lim^oo Sm X τS

n A Sw, where T acts as the antipodal map on Sm and
as the interchange map on Sn Λ Sn.

PROPOSITION 2.3.1. rn is equivalent to nR@nI. Thus ΣnRP°°/
RPn~ι is homeomorphic to EZl X τS

n A Sn.

Proof. By changing coordinates we can assume rn(T) has the form
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IM 0 0 0 0\

M 0 I w ^ e r e M is the matrix u Q j .

,0 Ml

But (® J) ~ (J __J) and 2.3.1 follows.

Similarly we can consider the complex representation rn: Zq—>
Uqn where r{T)(xι xq) = (#g, â , &2 α ^ ) . Its Thorn complex is
-#zff K vS Λ Λ Λ Sn = lim^oo S2"1"1 K z9S

n Λ Sn where # g acts on
£2»-i ^y yfo ...Zm) = (ρz1} -—,pzm) and by the shift map in Sn A
•••ΛS .

PROPOSITION 2.3.2. rn is equivalent to n[Iφ RιQ)R2@ 0 i?9"1]
so Ez K z Sw Λ Λ Sn is homeomorphic to

Lp(l, 1, ? - 1, ? - 1) .

Proof. The characteristic polynomial of r(Γ) is (1 — λ9)w. More-
IM 0 0\

over, by changing coordinates Γ becomes ί # # 1 where M

\ . 0 Ml
/0 1 0 Λ

is the matrix j . . . ! • [ ) • Thus, since 1 — Xq has g distinct roots,

\l 0 0/

/I 0 0 \

JkΓ can be diagonalized to ί \ I and 2.3.1 follows.

\o . . ^ " 7
4. As a final example we consider the symmetric group <5f and

the representation rn: S^ζ —* O4n defined by
/V*ιSV\t/y . Π* \ — (Λ m m m /y» \

λ̂ Ct ^t/i X4; — \άaa) *'α(4)/

The Z2 cohomology of J5^4 is P(A, B, C)/AC = 0 where P ( ) is a
polynomial ring on three generators with A of dimension 3, 5 of
dimension 2 and C of dimension 1. Let K be the Klein group. The
inclusion i: K—> ̂ f induces the cohomology map i:*J9r*(^f) —> H*(K) =
P(eu e2) which sends A —> e?e2 + e^l, β —> ej + exβ2 + e|, C —> 0. Next
let M be the group Z2 0 Z2 and j : Z2 0 ^ 2 -> Si be given by i(Γ0 =
(12), J(Γ2) - (34). Then j*(A) = 0, i*(B) - βxβ2, i*(C) - e, + β2

THEOREM 2.4.1. TΛβ total Stiefel-Whitney class of rn is (1 + C +
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Proof. Clearly rn is equivalent to nr^ Hence we show the Stiefel-
Whitney class of n is (1 + C + B + A).

From the character tables we find

Wi^n) = (1 + O(l + e2)(l + ex + βa)

= 1 + ΐ*(JB) + i*(A) .

Also TFC/* !̂)) = (1 + βi)(l + e2) = 1 + i*(C) + i*(B). Now the result
follows since

i* (#) 0 iϊ*(Z2 0 Z2)

is a monomorphism.
Thus, for example, the first 7 Stiefel-Whitney classes of τy+7, * > 3

are C,B+C\A + C\ C4 + C2B, C5 + CB\ BO + B* + C6 + A\ AB2 +

σ.
By generalizing slightly the techniques of [6] we can use these

results to obtain a complete description of H*(Sζ, Z2) for all n (see
e.g, [20, §9]) as well as the structure of the corresponding Thorn
complexes

E^n X ^nS
m A --• Λ Sm .

Ti-times

We omit the details.

3* The geometry of the action of the Steenrod algebra on
Έxtj^(p)(Zp, Zp).

1. We start by recalling some well known facts from homological
algebra. Throughout this paragraph we assume given a fixed aug-
mented Hopf algebra A over a ground ring Γ (Z or Zp for some prime
p) and we require that the coproduct

Ψ: A >A®A

be coassociative and cocommutative. We have

THEOREM 3.1.1. Suppose & is an A-free resolution of the aug-
mentation, then for each subgroup G of the symmetric group £f there
is a chain map

tι-times

(where C£G is a Γ(G) free resolution of the augmentation Γ(G)—>Γ),
and

φG(ω (x) ac) = Ψ{n)(a)φG(ω (x) c)

c) = gφo(ω 0 c) .

Moreover, given any other map φ'G satisfying * there is an equivariant
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chain homotopy H between φG and φG so that H(co0ac) — Ψ{n){a)H(o)(^c).

Proof. (Compare [12]). Since Ψ{n): A -*An is a map of algebras it
induces a chain map

and φo(ac) = Ψ{n)(a)φ0(c). Now * tells how to extend φ0 over (g"ff)0(8)
<&. Note that since Ψ is cocommutative and coassociative, gψ* = Ψ{n)

for each g in G. Thus the various g φ0 are all homotopic, and φG{a x
<^p) is homotopic to 0 when regarded as a map φa:

 rά? —> cέ?{n) if a is
in the kernel of the augmentation. Thus we can extend over the 1
skeleton of gV The remaining arguments are equally direct.

Now, in the standard way (e.g. as in [25, Chapt. VII]) we can
construct "cohomology operations" from the map φG: £?G (x) <& —> ^{n)

when ^ is the reduced resolution of A. In particular this gives us
operations coming from the cohomology of the symmetric group which
have formal properties analogous to those of the ordinary Steenrod
operations. Explicitly

THEOREM 3.1.2. Let Γ = Zp for p an odd prime, then the φG

allow one to define operations ^ \ β^1 in E x t * * ^ ^ , Zp) with the
following properties.

( i ) ^ k : Ext*''' -+ Exti+l2k"jHp"1)fPi

β^k: E x t ί J —>Ext ί + ( 2 f e~ i ) ( p~ 1 ) + 1 'P i

(ii) έ^j, β^j are homomorphisms
(iii) Cartan formulae

(iv) Adem formulae

ίaiPi Up - 1Mb - t) - 1
Cyt>a ̂ h __ -y« / l ) α + ί [

<=o \ a — pt

ίalPl /(p _ i)(6 _ t)
= Σ ( - i)α+ί

*=o \ a — pt

a — pt — 1

(v) Normation ^k(a) = α^ if α e E x t ί j i , αmZ 2fc — i + i,
^ & ( α ) = 0 if 2k < i .

THEOREM 3.1.3. For p — 2 έ/̂ βre are homomorphisms Sqι: Ext**

V) Si':
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(ii) Sq\ab) = Σ Sqj(a)Sqί~j(b)

(iii) SqaSqb = ΣftΌ21 ( " * 7
\ a — 2t

(The properties listed in 3.1.2, 3.1.3 follow directly from the corres-
ponding properties in the homology of the symmetric groups S^p, S^pz
and the proofs are in no way different from the corresponding proofs
in [25] for the ordinary Steenrod operations. The mod p case 3.1.2
appears in [12], however our grading of the mod 2 case differs from
those to be found in [12], [2].)

Theorem 3.1.2 differs from the corresponding result for the
ordinary Steenrod algebra in two ways. First, since there is no
notion of a Bockstein homomorphism in ΈxtA(Zp, Zp) if A is a Zp-
module β^1 is not a Bockstein of ^ \ and, in fact is an entirely
independent operation. Similarly, it is definitely not true that &*
is the identity operation (It is zero in general). Mod 2, Sq2i+1 is
independent of Sq2ί. Also note that Sq° is neither zero nor the
identity and both the Zp and Z2 Adem relations preserve the number
of terms, thus two-fold iterations SqaSqh or &*&* can only be equal
to other two-fold iterations — a considerable simplication of the
topological case. Finally we point out the important special example
of the Adem relations,

Sq°Sqa = SqaSq° .

2. Now our object is to imitate the construction of 3.1.1 geome-
trically. Thus, let

sn z> γι

n -Ώ Yi z> => Y: 3

be an Adams resolution of Sn valid for a large range of dimensions
and filtrations, and suppose

Snp => Zι

np z> Z\v =) 3 Zk

nv c

is another such, then we have

THEOREM 3.2.1. Let Ga Sζ and suppose there is a G-equίvariant
map

u: (EG)S IX Sn A Λ Sn -> Snp

p-times

then u is equίvariantly homotopίc to a map ΰ so

ΰ(EG)t K ^ Λ Λ Γ K Z:p

+-+i^ ,

moreover any two such ΰ, ΰr are equίvariantly homotopic via a homo-
topy H with

H{I x (Eo\ K ^ Λ Λ Yϊ*} c £;ip+...+v-«-i .
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(The proof proceeds by induction on the dimension of the skeleta of
EG, extending, first over a G-basis for the ΐ-cells and then by G-
equivariance. Similarly for the homotopy. This uses essentially the
same analysis of the obstruction to compression as contained in 3.4,
3.5 of [1].)

Thus ΰ induces maps

3.2.2. ((Eσ)t, (Eσ)t_d Mo (Γis Yϊ+ί) A • Λ (Yϊ, Γ>+1)

which, since Y*/Yi+1, Zj/Zj+1 are just one point unions of K(ZP9 n)'s
through large ranges of dimensions, induces an Ssf(p) map

This, in turn, defines a G-equivariant Ssf{p) map

and thus is suitable for defining the action of the &* in Ext^{p)(Zp1

Zp). In particular, on the Eι level the map ΰ defines operations from
3.2.2 for each ί-cell of EG, which depend at the E2 level only on the
homology classes in H*(G) and the classes in Extjr(p)(Zp, Zp) involved.
Thus, these are precisely the &>i operations, and their iterates.

3. Hence the existence of geometric models for the ^\ β^\ Sq{

depends on the existence of appropriate maps

(EG)S M GS
n A Λ Sn > Snq.

But these are given by 1.2.1, 1.2.2 and 1.3.3 if we start with the
representations

defined by r9(α)(^ αff) = (xa{1), , xa{q)).
We have

THEOREM 3.3.1. For a given s there is an n and an 6

φs\ (E^q)s M Sn A ••- Λ Sn > Sn A Λ Sn .

g-times

Moreover, let G c S^ and suppose there is an equivariant map

φ: (EG)S K ^ Λ Λ S " > Sn A -•• A Sn

then given any G — map

ω:EG >E~



168 R. JAMES MILGRAM

there is an m so φ8((0 x id) is equivarίantly homotopic to φ on
(EG)8^ K S M Λ Λ S™.
(Here φ is defined as the composition

A ... AS
mn - ^ l Si- Λ Λ S™

and similarly for <p. The proof is entirely similar to the proof of 1.2 2
except applied to the obstruction to extending an equivariant homotopy.

3.3.1 shows that the operations obtained in this way are stably
well defined. (For further details see [22, p. 205].)

4* The &% operations and the d2 differential in the Adams
spectral sequence*

1. We pointed out in 3.1 that Sq2ί+ι is not the Z2 Bockstein in
any sense of Sq2i; nor is β^1 the Zp Bockstein of ^ \ because there
is no cohomological notion of Zp Bockstein in Ext^ip)(Zp1 Zp). However,
there is a homotopical notion of multication by p which, in some
sense, takes its place; namely, multiplication by a0 when p is odd,
and by h0 for p = 2. With this in mind, we state

THEOREM 4.1.1. Let a e Extr's^{p)(Zp, Zp) (the E2 term of the Adams
spectral sequence); then

(a) «W.) = P 7 .
(0 otherwise

for p = 2.

(b) d^'ia) = aoβ^ia)

for p odd.

[Warning: The proof that follows appears to follow the formal
algebra which would prove a similar result for a spectral sequence
associated to a filtration of ordinary chain complexes. However, we
are dealing with homotopy groups, so there is an error term, and
the main work in the proof is to show that this error is in fact zero
in the E2 term of the Adams sequence, though it may definitely
represent a nonzero element at level Ez or E4.]

Proof, (a) Consider the homotopy groups π*(Y\ Yi+2) for SN =>
Yπ Z) Z) Yά ZD , a Z2-Adams resolution of the sphere. There is
an exact sequence

4.1.2 — π5{Yi+\ Yi+2) -?-> πs(Y\ Yί+2) - ^ πά{Y\ Yi+ί) JL+

where πs(Yk, γk+1) is a Z2 vector space isomorphic to CkΛ+s {[!]) for
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the associated resolution of Z2 over J^(2) x . (Of course, the d map in
4.1.2 is just the dλ differential.)

Hence τci(Yi

i Yi+2) is a sum of Z4's and Z2's, and multiplication
by h0 corresponds to multiplication by 2 here. In particular if J(B)
represents b in E2 then the class I~1(2B) which is well defined in E2

represents hob.
Turning now to the case at hand suppose a is represented by a

specific map

A: {Ds~% S8-r'1) > (Yr, Yr+2)

and we are in the case i = s(2).
Thus if v = ΰ(id x A x A): EZ2\K Dr~s A Ds~r -» S, we find t h a t vie'-* X

Ds-r Λ Ds-η ^presents Sq\a). Then

dv{er~l tX Ds~r A Ds~r) = v[(T + ( - l ^ K " ' " 1 X Ds~r A Ds~r]

4.13 + v((- ly-'e7-' K dDs~r A Ds~r)

+ v((- ly-'e^1 K D s - r Λ 3Ds-r) .

(More precisely d(er~l K ^ s ~ r Λ Ds~r) is the topological union of discs
which we name in this way to stay as close as possible to the stand-
ard U ί formulae for cochain operations [11].) The disc(er~*K dDs~r A
Ds~r) = M satisfies v(M) c F ί + r + 2 , v(dM) c Y^+3, and similarly N =
{er~ι K Ds~r A dDs~r) satisfies v(N) c F ί + r + 2 , (SΛΓ) c Γ< + r + 8. Thus each
of these discs represents a term {M}, {N} in 7r*(F r + < + 1, Yr+ί+Ά), however
vie'-*-1 K Ds~r A Ds~r) c Yr+i+1 while part of its boundary, the two
discs er-{-2 K Ds~r A Ds~% Ter-{-2 tX Ds~r A Ds~% is contained in r r + ί + 2 ,
and similarly for 2V"*'-"1 K J5s~r Λ Ds~r. Hence the formal decomposi-
tion of 4.1.3 is not quite valid in π*iYi+r+1, Yi+r+z).

Now, from the Blakers-Massey theorem we can regard {vder~ι X

Ds-r Λ Ds-rj a s c o n ta ined in π*iYi+r+1/Yi+r+3). Here the first two
terms of 4.1.3 give a sphere P as does each of M, N and the boundary
is {P} + {M} + {N}.

Also, note that {dvier~ί+1 X dZ>s-r Λ Ds~r)} = - {^} + {N}> thus
{P} + {M} + {N} - {P} + 2{N} - {P} since {iV} e im(J). It remains to
prove {P} — 2τ where 7 satisfies J(γ) ^ Sqi+1ia).

Since i; is equivariant there is a homeomorphism

Λ: e7-'"1 X Ds~r A Ds~r -> Ter-{~γ X D s~ r Λ 2?s~r so

vfe = v. Since de'-*-1 X D s~ r Λ i) s~ r

= TV"*-2 IX ί ) s - r Λ Ds~r - er~1-2 X ,Ds-r Λ JD8"7

1 At this point, we indicate our stability conventions. We put

Indeed, the absence of subscripts on the filtering spaces will always imply that we are
considering stable groups.
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we have the homotopy factorization of v on the boundary

3( ) — Sk V S k ~ ^ Sk — S° where k = 2s - r - i - 2.

The iteration (+ 1 V — ϊ)°π is homotopically trivial. Let I: Q—> S
be such a homotopy. Now we can define a class 7eτr*(F ί + r + 1/F< + r + 8)
as v(ίd x I) (e1—'-1 K £>s~~r Λ D-'UaQ)- Note that J(y) ~ Sqi+1(a). A
homotopy class 37 in πk+1(Sk) is defined as /(J/>^: Q U w O ^ S * and
we have easily

LEMMA 4.1.4. {P} = 2τ + {̂tf S*}.

Finally, note that {vS*} is (I)(β) for some /3. Hence rjl(β) =
7(77/5) and part a of 4.1.1 follows from

LEMMA 4.1.5. Let S D y ^ o Γ fe an Adams resolution
(any prime p) and aeπ*(Y\ Yί+ι) then for any element τ in π^S)
i > 0, we have τa = 0 in π*(Y\ Yi+ί).

(Since in the Adams resolution τ has positive filtration the proof
of multiplicativity in [1] shows τa is represented by an element of
filtration at least i + 1.)

The remaining case i ^ s(2) is analogous. However, here the homeo-
morphism h is isotopic to the identity and the resulting error term is
0. Part b is similar to α. Again by standard arguments we arrive at
d2^\a) represented by pΎ + τ{Sk} and 4.1.5 now gives the conclusion.

2. By the methods of [8] or [17], together with the results of
6.1 it is easy to prove

THEOREM 4.2.1 (a). Exty^Z^, Zp) is generated by elements aQJ

h i ^ 0, ^{p-ι){h%) = hi+ί(h{ is dual to \^pi\) and aφ&**i{*-ι)(hi) ΦOin
ExtSp(Z,f Zp).

(b) Ext^*(Z 2 , Z2) is generated by elements hii^O {hi dual to Sq2')

Sq% = hi+1, and hoh\ Φ 0 in Ext 3 ; 2 (Z 2 , Z2) for i ^ 3.

(4.2.1 (a) was first proved in [12], and (b) is proved in [2].)
Thus djii = aQβ^pi{p-ι){hi) for i > 0 and p odd, and the only

elements which live to E^ in Ext1 are a0, h0. Similarly d2(hi) =
hoSq1^^ = Kh2^ and the elements hOj hu h2y h% are the only survivors
from Ext1 in £U for p = 2.

Of course these differentials are well known [16] and it is also
well known that their being nonzero is equivalent to the nonexistence
of elements of Hopf invariant one in these dimensions, but 4.1.1
certainly provides the first purely geometric proof of these results.

3. It sometimes happens that there is a relation such as hQht =
0 which holds in Ext , (Z2, Z2). The relation then "propagates".
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For example, let dλu = h0h
2

2, then dx{u (j ιU + h0h
2

2 U tu) = h\h\, d^u U 2 ^ +

h0h
2

2 U 3U) = hjι$ However, some of these cup-i operations on u ultima-
tely become parts of classes in Ext, as with (u2 + hjι\ U {&) = w since
dw = hM which equals 0 for another reason. When this occurs and we
look more closely at this dλ differential—say in π*(Y\ Yi+2) rather than
π*(Y% Yi+1) it turns out that the "filtration 2" role of the differential
is to make d^v) = some element in higher filtration. In the example
above, we have in fact

d(u U & + h0h
2

2 U 2^) - hlhl + 2(W + K)

in π*(Y\ Y6) where K = h^V, dxV = h\ say. This and relations similar
to it sometimes account for higher differentials.

Consider, for example, the situation in dimensions 14 and 15

14

d2(h,) = hoht hence d2(h0h4) = hlhl, but from the above remarks h\h\ =
Wo, hence d2h0h4 = 0 but d3^0^ should equal /̂ Λ This would even
be a proof if we had a better hold on hlhl represented as a boundary
above as compared with h\h\ represented as 4 times h\. Such a pro-
gram is possible and if carried out implies all known differential
through the 45 stem in a more or less direct manner.

5* The Sq{ operation and higher differentials*
1. In [10] some theorems were proved on the connection of the

Sqi operations with d3, d9 under very restrictive hypothesis. Our object
here is to remove most of these restrictions and increase the range
of differentials considered. We have

THEOREM 5.1.1. Let αeExt^ ( 2 )(Z2, Z2) and suppose ds(a) = 0 for
s < r. Let N — t — ί + k for a given k and define φ{N) = 8m + 2n
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if N + 1 = 24m+wc, c odd, 0 ̂  w < 4,

dφ{N)+1Sqk(a) = hiSqk-φiN)(a) φ(N) = 2\ i ^ 3

dφ(N)+2Sqk(a) = hjis Sqk^Ψ{N){a), <p(N) = 9

dφ{N)+3Sqk(a) = h\hz Sqk-.φ{N)(ά), φ{N) = 10

dw>+βS?*(α) = P\h2)Sqk-φ{N){a), Ψ{N) = 12

d(N)+,Sqk(a) = Λ0%4 Sqk-φ(N)(a), φ(N) = 16

provided <p(N) + q < r is satisfied in each case for the differential

occurring.

In particular we mean to imply by this that all lower differen-
tials on the specified elements are trivial. Also, note that Stf^α) =
Sqi~k(a). It is probable that the theorem can be strengthened so its
conclusions hold even if φ{N) ^ r — q. It is also likely that even
for greater φ(N) the differentials could still be obtained but now in
terms of dr(a) as well.

2. To start the proof we "relativize" the construction of the Sqι

operations. Thus, suppose aeπj(Y\ γi+2) satisfies dk(a) = 0 k < r
then a is the restriction of an element a in πά(Y\ Yi+r) and we can
assume a represented by a map A: (D\ Sj~ι) -+ (Y\ Yi+r). We have
the diagram

5.2.1

t K (D\ &-1) A (D>; sn

,). X Sj A Sj ——— ^ X r / Γ ί + } Λ FVF ί+^ -

where ΐ : (D ,̂ S "̂1) —+(Sj, *) is the evident collapsing map.
The filtered map

5.2.2 I I
S/γ2i+r-t ^ ^ . C γ*/γ*i+r-t -3

induces a map of spectral sequences which is clearly a monomorphism
in all Eι

s for ί < 2£ + r — ί. Thus, if we can prove the existence of
the stated differentials in the spectral sequence of the bottom row of
5.2.2 the theorem will follow

3. From the bottom row of 5.2.1 there is a map

u:ΣjP)+t >S/Y2i+r~t so that Σjej+k c r«-*/r2<+r-* .

We now define a "skeletal Adams filtration" of ΣjPjj+t so the map u
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becomes filtration preserving and thus induces a map of spectral
sequences.

LEMMA 5.3.1. Let X be a finite CW complex, then there is a
spectral sequence converging to 7Γ*(-3Γ, Q2) with

E2 ~ Ext^ ( 2 ) (Z 2 , Z2) <g> H*(X, Zt),

Φr = Σ Ext'+ ''(Z2, Z2) <g) HS(X, Z2)) .
s

It is multiplicative in the sense that the pairing

commutes with differentials and induces pairings

Er(S°)®Er(X)~>Er(X)

which also commute with differentials.

(Here Q2 is the ring of fractions a/b with b prime to 2.)2

Proof. Suppose X is iV-dimensional. We start a resolution of
ΣkX as the fiber in the evident map

5.3.2 φ,: ΣkX->K{HN (X), N + k) .

Let Fx be the fiber of φly then F1 looks like the N + k — 1
skeleton of ΣkX attached to F[, N+k where F[ is the fiber in the map
similar to 5.3.2 for a boquet of spheres. Continue the resolution by
killing all the cohomology which corresponds to F[)N+k and indepen-
dently killing the cohomology from HN"\X). The new fiber looks
now like ΣkXN_2 u F[, N^k^ U F'2, N+k. Kill all the cohomology of F2>N+k,
independently that due to .Fΐ,#+*-!, and that due to HN~2(X). The
cohomology splitting again occurs so the process continues. (Note
that this splitting is valid over j^(2) . ) The resulting filtration of
Σk(X) gives the spectral sequence of 5.3.1 on taking the homotopy
exact couple. We omit the remaining details as they are standard.

COROLLARY 5.3.3. Suppose X is a finite K-connected CW complex

and there is a map

f: X—SYF 2 ^- '

so that f: Xκ+1 c Γ2% /: XΣ+i c Y2i~\ . . . , / : Xκ+j c Γ 2 W + 1 then f in-
duces a map of the spectral sequence 5.3.1 into the Adams sequence

2 We must distinguish the spectral sequence introduced here from that developed
in [15, Chapter III]. The bottom edge of Mahowald's sequence lies on the s = 0 axis,
while the bottom edge of ours lies on a line at a — 45° angle to the s = 0 axis. It is
this change that allows us to compare our sequence with the Adams sequence.
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for Y which is natural with respect to the action of the Adams
sequence for a sphere on each.
(This follows directly from the proof of 5.3.1.)

4. In the situation of 5.3.3 we assume X is ΣjP]+5 and the map
/ : X—>S°/Y is ϋ. Clearly ύ$(Σjej+s) = Sg*'" (α) in the spectral sequence
of 5.3.1. Thus it will suffice to prove the differentials of 5.1.1 occur
in this spectral sequence. We now need

LEMMA 5.4.1. For L ̂  N - φ(N) we have

yL-pN ~ CN+L w yiM-i

A •ΓN-ψ(N) + l = O V -ώ ΓN-φ{N)+l

Moreover there is a map

h: DN+L uaS
N+L~^N) > ΣLPζr_nN)

so h* is a monomorphism in mod 2 homology and a is an odd multiple
of the generator of im(J).

(Essentially 5.4.1 says the first nontrivial attaching map of any
cell in a truncated projective space is in im(J).)

Proof. PN-Ψ(N)+I is the Thorn complex of (N — φ{N) + l)ξΨ{N)-ιy

hence the normal bundle to P^N)-1 is (2q - φ(N))ξ but

2* - φ(N) = N- φ(N) + 1 (mod 2q)
so

P.V YM/T}2Q—1 \

N—φ(N) + l — ^ K-L 2<l—ψ{N))

and, since the top class of the Thorn complex for the normal bundle
is spherical the first statement follows.

To obtain the remaining statement note that by Atiyah's duality
theorem (3.3 of [4]) the S-dual of P%-φ{N) is Pfq^

{N). But this the
Thorn complex of 2qξ over P^N). Now, 2qξ is trivial over p^N)~ι

and it follows from [3] that using this trivialization there is a map

where a is some odd multiple of the generator of (im J). Taking
S-duals the result follows.

The proof of 5.1.1 follows since the hi9 hjh, Pί(h2)ί KK are all
known to carry the generator of im(J). Indeed this shows that in
5.3.1 the boundary of the relevant cell is the term desired plus an
error term from lower cells. Checking the form of Ext in these
early dimensions it is clear that the only possible term besides those
in 5.1.1 is

e(hi Sqk-φ{N)-*(a)) for all φ(N) - 12 .

However, by checking secondary operations we can show this attach-
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ing map is 0 so ε = 0 and the result follows.
5. It is easy to see how to generalize this to the mod p-case.

In view of the results of §2.3 it would seem that the hardest step
in doing this is to calculate sufficiently far into Έxt^{p)(Zp, Zp) and
still identify im(J).

REMARK 5.5.1. Recent results of Mahowald [14] enable one to
completely identify im(J) in Έxt^(2)(Z2, Z2). It seems reasonable to
suppose the mod(p) problem can be handled in a similiar way.

6* Calculation of the action of the Steenrod Algebra in
Ext^p(Zp, Z9).

1. Some examples. We consider, mod p, the algebra A — DP(X)
where DP(X) is a divided polynomial algebra. It is given a Hopf
algebra structure by requiring that J(λ;) = ΣXj (x) λ ^ . Then for p
an odd prime

E x t Γ ( Z p , ZP) = E(\X\ \XP\, . . . , \\pi\, -

where θpi is dual to | Xpί \ X^1|.
We calculate the &* operations as

THEOREM 6.1.1. &*pH*-ι)\\pi\ = cx\xpi+ι\

pi\ = C2θpi

pi\ = 0

where c19 c2 are nonzero constants, and this completely determines the

action of J^(p) here.

Proof. Consider in A{p) | Xpi | λp*'"11 the term | λp* | (x) | Xpi | (x) Xpi 0
• (x) Xpi. Clearly as we go through the successive constructions of
the higher homotopies Mi which give the 0*1 operations, we arrive
at the term |λ^ | (x) (x) |λ pi | in Mp~2(θpi). This proves the second
statement, the first is virtually identical.

Similarly, for the same algebra mod 2 we have

.. | λ 2 < | . . . )

and for the Sq{ operations we find

THEOREM 6.1.2 Sqι |λ2*| = |λ2ΐ|
2

Sq° \X2i\ = \X2i+ι

and these determine the action of J^(2) in Ext^(Z2, Z2).
(The proof is unchanged from that of 6.1.1)
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FIGURE 1
/Vertical lines denote multiplication by hi
\ 45° lines denote multiplication by h.

2. We now turn to the calculation of the Sqi operations in

(2)(Z2, Z2). Let A2 be the sub-Hopf algebra of j ^ ( 2 ) dual

to the polynomial algebra P(ξ1) (using Milnor's notation see e.g.,

[21]). Then S^(2)//A2 = ZλPOO and consequently there is a map of

algebras

ω: ExtDP(λί)(Z2, Z2) 2, Z2) .
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FIGURE 1 (Continued)

Clearly ω(\X2%\) = ht in Ext]^\2)(Z2, Z2). Since ω is induced from a map
of Hopf algebras ω(Sg') = Sq\ω) and we can calculate the action of
J^(2) in the subalgebra of ExtJ^(2)(Z2, Z2) generated by the (^).

The first generator which is not a polynomial in the hi is c0

which has the Massey product representation < hly h0, h\ > .
(For further details and the "names" of various elements we refer to
Figure 1.)
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PROPOSITION 6.2.1. Sq\cQ) = c\ = h\dQ

Sq2(c0) = &oeo

(The first statement and the fourth are known. The first following
from [17], and the fourth from [19]. The second and third are shown
using the techniques of [19] rather than the main theorem and ex-
plicitly writing representatives for these elements.) Thus, in view
of 4 .1 .1 w e find d2(f0) — hleQ, d2(h0f0) — d2(h1e0) = hle0 = h\d0 so d2e0 =
hld0, and it is only the differential d3(h0h4) = hodQ which is not due to
4.1.1, at least through the 21 stem.

3. Now we consider the algebra A2 more closely. (A2)* —
P(&, &•••&•••) with φ{ξ%) = Σίsisi-i eΓ ® £<-;• In particular (f2, f3)
generate a sub-Hopf algebra B of (A2)* and, if Aw is the dual of B
in A2, we have

A211 A' = DP(λ2) (x) DP(λ3) .

Consequently there is a map

2, Z2) > Έxts'J2(Z2, Z2) .

PROPOSITION 6.3.1. ExtDPa2)(S)DPih)(Z2, Z2) = ExtDP{i2) ®ΈxtDPih) as
algebras over J^(2) . Moreover for t — s less than 50 u is onto and
has kernel generated by

X 2 , 2 ί ' ^ 2 , 2 ^ + 2 ? λ ' 2 , 2 ' ι + 3 # λ J 3 , 2 ί ~f" ^ 3 , 2 ^ ^ + 2 * ^ 2 , 2 ι > X 2 , 2 ΐ * ^ 2 , 2 3 + * "f" ^ 2 2 ΐ + 1 ' ^ 2 , 2 ^ + 2

^2,1 *^2,16 "i" ^2,4

Proof. The first part is evident. To prove the second we use
the techniques of [8] and read off the differentials in the weighted
augmentation filtration spectral sequence developed there.

This determines the action of j ^ ( 2 ) in Ext^2 and in this range.
Consider finally the map v: A2 —> J^(2), this induces v*\ Ext^ ( 2 ) —*
Ext,42 and we have, again making use of [8]

PROPOSITION 6.3.2. ^*(d0) = {(λ22λ22)
2}

v*(e0) = {λ21(λ22)
3}

v*(g) = {λy

v*P\e0) = {KK}

= {λ 2 2λ 2 4} 2} .
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v*(k) = {λLλy, v*(n) = {X2M2}
4. From 6.3.2 we obtain Sq°(d0) = dγ (this is clear anyway from

[19]) Sq°(e0) = eu Sq2(d0) = r since v*Sq2(d0) = K Φ 0 and the only ele-
ment in t — s = 30 and filtration 6 in Ext^ ( 2 ) is r. Similarly Sq3(e0) =
m since v*Sq3(eQ) = χ7

22 ^ 0 and m is the only candidate. Also Sq\e0) =
ί since Sq2v*(eQ) = λS2λ24 ^ 0 and ί is the only candidate. Putting
these together we have

THEOREM 6.4.1. Sq3(d0) = S ϊ W = 0

S<74(d0) - d\, Sq\d0) - r , Sq°(d0) = dx

Sq*(e0) = el, Sq3(e0) = m, Sq2(e0) = t, Sqι(e0) = x

Sq°(e0) = e, .

Proof. We first show Sq^βo) = x. From ([13, Proposition 5.1.3])
we have h2e

2

Q = AJa;. But from

Sq\hλe0) = h2el - Sq\hJ0) =

it follows that

6.4.2. S#3(/0) = e(hγt) + ΛJα? .

Also

Sq5fo = Sq'Sq'Co = Sq2Sq2c0 = Sq2(hQe0)

by the Adem relation Sq2Sq2 - Sq3Sq\ But

6.4.3. Sq2(hoeo) = hlSq\e0) + h,t.

Now the result follows by comparing 6.4.2 with 6 4.3.
To verify Sqι{dQ) — 0 note that the only candidate is n but v*(n) Φ

0 while Sq1 v*(dQ) ~ 0. Again, the only candidate for Sq3(d0) is k but
v*(k) Φ 0 while Sq*(v*(dQ)) = 0. This completes the proof of 6.4.1.

COROLLARY 6.4.4. d2m = feoeξ.

COROLLARY 6.4.5. hor = s, h3r = ^ ί + Λ^.

Proo/. From 6.4.2, 6.4.3, 6.4.1 Sq\h2d0) = A3r = h2

QSqι(e0) + A^
Now, since fe0^ ^ 0 it must follow that hor = s.
(This result is asserted and an outline proof given in [13, 7.4], but
the proof given here is much more direct.)

5. We now have

THEOREM 6.5.1. Sq'fa) = c2, Sq^c,) = fu Sq\ed = Keu Sq3c, = hξdlf

Sq°(fo) = fu Sqιf0 = 0, Sq2(fQ) = y, Sq3(f0) = U + Mx.
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Proof. Sq°(cJ = Ct, Sq°(fo) = A follow from [19], so Sq\cJ = A
since Sq^q1 = SqxSq°. Now note that hLe2

Q = hoeofQ = him. Thus ec/0 =
hom and &2m = h\y Φ 0 since ^2eo/o = /&ieof7. Hence Sq*(hofo) = h2

0Sq2(f0) +
hiSq*(fo) = h2m + ΛJί = Λ2m since Λ,?ί = 0. We have previously shown

= 0 by the Adem relation. Similarly

This essentially completes the description of the Sq{ operations in
the range t — s < 45. In particular we have

COROLLARY 6.5.2. c£2(c2) = hof1

d2(y) = h\x .

This first differential was overlooked in [13] and to obtain the
second differential they had to work considerably harder. The first
differential also imples h2h\ is nonzero as a homotopy element [vθ4 Φ
0] since c2 has Massey product representation < Λ,3, h2i h\ > which by
[24] would converge to the Toda bracket {<τ, v, θ4} if this bracket
were defined. This in turn can be shown to imply another differential
overlooked in [13], namely dz(h2hδ) = hQp. I should point out here
that Barratt, Mahowald and Tangora independently discovered this
error by investigating an apparent inconsistency in the 47 stem, and
tracing it back [5]. The error was also found at about the same
time by G.W. Whitehead using the semi-simplicial techniques of
Kan-Curtis.

7* The use of the symmetric groups in homotopy theory*
1. So far the constructions EZp X X Λ Λ X, respectively

EZ2 K X A X, have been used by Toda [13], respectively Adams, Barratt
and Mahowald, to obtain much information on homotopy groups. Basi-
cally they use the retractions supplied by § 3 or other maps implied by
the E.H.P. sequence. However it is clear from §§ 1 and 2 that we can
also use E^n K l Λ ••• Λ l t o obtain information and it seems re-

%-times

asonable to assume that much remains to be done in this direction.
2. By way of an example we show how to use £Ί to obtain a

particularly simple proof that θ± exists and is nonzero.
Consider σ: S7 —> S°. This induces a map

u(σ): E^4 K ,̂ 4 S
7 A Λ S7 — E^4 K S° Λ Λ S° - ί U S° .

Now by the results of §2.4 we have H*(E^ X ^ 4 S 7 Λ Λ S7) is
H*(&) U U and SqιU = CU, Sq2U = (B + C2)U. Consider now the
map Z2 -> S^ by T -> (13)(24). This induces a map / : E^2 K ^ 2 S

14 Λ Su

— E~ K ^ 4 S
7 A Λ S7 and it is easy to check f*{BU) = e2Ur. Also
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there is a map Z2 0 Z2 —> S^ (TΊ -> (12), T2 -> (34)) which induces a map

g Ez2®z2 IX Z2ΘZ2 S
7 Λ Λ S 7 - # / 4 X S 7 Λ Λ S7.

g*(C) = (e (x) 1 + 1 (g) e)U' g*(B) = e ®eUf.
This last shows C2 is dual to (h3 (J 2̂ 3)̂ 3 while B is dual to hi. h% (j 2^3

has filtration at least 2 so (h3 U 2̂ 2)̂ 3 has filtration 4 or more. Since
S<f C7 = (B + C2)£7 it follows that both these discs hi, (hz[j2hz)hl attach
to £7 by η. Hence their difference represents a sphere which must
be called hi in the Adams spectral sequence.
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