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THE CLASS OF (p, ¢)-BIHARMONIC FUNCTIONS

LEO SARIO AND CECILIA WANG

Our main interest in this paper is with the (p, ¢)-biharmonic
boundary value problem, which takes the following form:
Given continuous functions ¢ and ¥ on Wiener’s or Royden’s
p-and g¢-harmonic boundaries « and j respectively, find a
function u satisfying (4 + ¢)(4 + p)u = 0 and

Uula=¢, u|p=".

We shall solve this problem by what we call the (p,q)-
biharmonic projection.

In §1 we give some preliminary results. The (p, ¢)-biharmonic
projection is introduced in §2 for various classes of functions, and in
§ 4 for suitably restricted Riemannian manifolds. In §3 we characterize
classes of manifolds with respect to significant subclasses of (p, g)-
quasiharmonic functions by means of the p-harmonic Green’s function
and the g¢-elliptic measure on R. The (p, ¢)-quasiharmonic nonde-
generacies of the manifold are the various conditions we impose on
R in §4. Finally in §5 we give some explicit results concerning
certain classes of density functions.

1. On a smooth noncompact Riemannian manifold R of dimension
m = 2 with a smooth metric tensor (g;;), the Laplace-Beltrami operator
is given by

-~
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g‘]/gg ou?
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g:

where = (2, ---, #™) is a local coordinate system, g = det (g;;), and
(9% = (9:;)7'. Let p(x) be a density function, that is, a nonnegative
C® function on R. A p-harmonic function is a C* solution of the
equation 4,u = 0 with

dy=4+ p.
We call a C* function (p, q)-biharmonic if it satisfies the equation
4,44 =0,

and we denote by W,, = W, (R) the family of (p, g)-biharmonic func-
tions on K. An important subclass of W,, is the class @,, = Q,,(R)
of (p, 9)-quasiharmonic functions, i.e., the C* solutions of 4,u = e,
where e, is the g-elliptic measure on R (see No. 2).
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Note that for p=q¢q =0, W,, and @Q,, reduce to the classes W
and @ of biharmonic and quasiharmonic functions respectively. For
these classes our problem was solved in [ 5]-[ 7] and [11], which have
greatly influenced our reasoning.

1. Auxiliary results,

2. Let 2 be a regular subregion of R, and h?° the continuous
function on R which is p-harmonic on Q and 1 on R — 2. The limit
¢, of the decreasing sequence {47’} as 2 — R is called the p-elliptic
measure of R. Clearly e, is nonnegative and p-harmonic on R, with
0 < ¢, = 1. Explicitly, it is either identically zero or strictly positive.
In particular, it is identically 1 if p = 0. In the case p % 0, we call
a Riemannian manifold R p-parabolic if e, = 0, and p-hyperbolic if
e, > 0. As in the case p = 0, we shall follow the convention adopted
by Royden [9] that R is called 0-parabolic if and only if R is parabolic.

3. The harmonic Green’s function g(», y) on R exists only on a
hyperbolic manifold. In contrast, the p-harmonic Green’s function
9,(x, y) for p == 0 exists on every Riemannian manifold. Thus on an
arbitrary Riemannian manifold R, hyperbolic if p = 0, the operator
G, is well defined on the family of continuous functions by

Gt = | ., F @y,
with dy the volume element of B. We are interested in the class
Fm:{f|Gplfl<°°}'

LEMMA 1. Let R be an arbitrary Riemannian manifold (hyperbolic
of p=0). If feC”NF,, then 4,G,f = f.

Proof. For every ®e C;°, we have

|,6F @ 40@ds = | 6,400 Fu)dy

= XR@(y) - fly)dy .

Therefore 4,G,f = f in the sense of distributions, and the lemma
follows by the hypoellipticity of 4,.

4. Let M,,(R) be the class of continuous p-harmonizable functions
for which there is a continuous p-superharmonic function s, with
s; = |f| on R, and N, (R) the potential p-subalgebra of M, (R), i.e.,
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the family of functions in M,,(R) whose p-harmonic part A2 = lim,_h%?
vanishes identically on R.

LEMMA 2. Let R be an arbitrary Riemannian manifold (hyperbolic
if p=0). If feC”NF,, then G,f € N, (R).

Proof. Set f=f*— f~with f*=fuUoOand f~=—f U0. Clearly
G,f* and G,f~ are nonnegative and p-superharmonic on R. In view
of |G,f| = Gof* + Gof ™, Gof € M, ().

It remains to show that h‘;;pf = 0. Let 2 be a regular subregion
of R and g¢,.(, y) the p-harmonic Green’s function on 2 with value
zero on B — Q. For a parametric disk B, C R about x e 2 with radius
e, the Green’s formula yields

Lo UG P ) = 2] 00, 9) = 2,00, ) (G ) — 120N
= |, 0wle, 04,6 )y -
On letting ¢ — 0 and then 2 — R we obtain
Gof (8) = W24(@) + | g, 14,6, W)y

and by Lemma 1,
G,f = hi,r + Gof .
Therefore %% ; = 0 and consequently G,f € N,,(E).

5. Denote by H?(R) the class of p-harmonic functions on R, and
let E(u) be the energy integral

B(u) = S du A <du + | p@yu)da .
R +R
LEMMA 3. The energy integral is lower semicontinuous:
E(u,) = lim E(u,)

for every sequence {u,} in H"(R) converging uniformly to u, on com-
pacta of R.

Proof. For x,¢ R and a parametric ball B R about x,,

@ = —| w@tas,,  n=012..-,

Y

with x e B, g, the p-Green’s function on B, 0g,,/0n the normal deriva-
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tive of ¢,5, and dS the surface element of 6B. Then
Oun(®) _ _S 000,52, 9) 3g
ox’ aBu"(y) oxt  om, !

_3__ 09,5(%, Y) dS., — 0uy(%)
oxt o, Y oxt

-7 S aBMO(y)

as n — co. Therefore ou,(x)/0x* — ou,(x)/0x’ uniformly on every para-
metric ball as # — . The uniform convergence on compacta of R is
a consequence of the fact that every compact set can be covered by
a finite number of parametric balls. Clearly

Fo(u,) = lim Ey(u,) < lim E(u,)
for every relatively compact set 2. The lemma follows as 2 — R.

6. Consider the real-valued linear operator G,(-,-) on C x C
defined by

Gif,0) = | a.o, 0 @g(wdsdy
for f,geC.

LeEmMMA 4. If feC=, then
E(G,f) = Gu(f, f)

whenever the right-hand side is finite.
Proof. Let
Goof = | gl S Wy -
We have
BGuf) = | gpalo, 0/ @ )dzdy .

By the p-harmonicity of G,f — G,.f on 2 and the lower semicontinuity
of E,

E(G,f) = lim B(Gyof) = G(IF], [f]) < o

In view of Lebesgue’s convergence theorem,

E(G,f) = lim E(G,0f)
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=1im|  g,u(s, 9)f (0)f W)y

2-R/R

- SRngp(x’ y).f () f(y)dady
= Gy(f, 1) -

2. The (p, g)-biharmonic projection.

7. As a preparation for the (p, ¢)-biharmonic projection, we
introduce a number of families of functions on R. Let M, (R) be the
class of continuous functions with finite energy integrals; M,,(R) and
M, (R) the Wiener and the Royden p-algebras on R; and N,;(R) the
potential p-subalgebra of M,;(R) for ¢ =2,38,4, (cf. [3],[10], and
[11]). We shall often omit R and write M,; and N,; instead of M,,(R)
and N,(R). For the sake of simplicity, we set X, = {f|Tf e X} and
XY = XN Y for given classes of functions X, Y, and a given operator
T. Furthermore, we write M;; = M,i(M,5)s, and N;; = N,i(N,),, for
all 7,5. Let P’, B, and E be the classes of essentially positive func-
tions, bounded functions, and functions with finite energy integrals
respectively. Set H, = H*P’, H,, = H*B, H,, = H*’E, and H,, = H*K,
where K = BE. It is known that the direct sum decompositions
M,; = H,;@ N,; are valid for all . The p-harmonic part of a func-
tion fe M,; is called the p-harmonic projection of M,; and denoted by
m,:f. It is also known that the decompositions are orthogonal in the
sense that E(f) = E(x,:.f) + E(f — 7w,.f) for fe M,; and 7 = 3, 4, (cf.
e.g. [10]). Let

FM = {fer1|Sgp|pr| < OO} s

Fp ={f e FulG(f], [f]) < e},

Fm: panpsy
and

@ij - Mii(FPi)ﬁqjdp ) ’L., j - 1, 2, 3, 4 .

THEOREM 1. On an arbitrary Riemannian manifold R (hyperbolic
if p=0), the functions in @;; have a unique decomposition into (p, q)-
biharmonic functions and (p, g)-potentials:

d)ij = qu@ij@Nij@ij .

Proof. Let fe®,;. By the decomposition theorem of M,; and
M,;, f = wpf + h; with 7,;f € H,; and h; € Ny, 4,f = mwd,f + k; with
7d,f € Hy; and k;e N,;. Since w,;4,f € F,; and F,; © F,,, the function
Wwi; = Tpf + Gotyd,f is well defined. By Lemmas 1 and 2, we see



804 LEO SARIO AND CECILIA WANG

that w;; e W,, for all 4, j, and w;;€ @,;; for i = 1, 2, and all j. In view
of Lemma 4,

E(w:;) = E(myf) + B(GoTysdof) = E(Tpif) + Go(Tosdof, Tosdyf) < oo

for 7 =3, 4. Therefore w;; € W,,@;; for all 7, j. It remains to show
that f—w;; € N;;@;;. Clearly 4,(f —w;;) =k; € N,; and m ;4,(f — w;;) = 0.
By Lemma 2, f — w;; = h; — G,7w;4,f € N,;. Therefore w;; + (f — w;;)
is the desired decomposition.

To prove the uniqueness, let ve W,,0;; N N;;®;;. Since 4,ve H,; N
N,; = {0}, ve H,; N N,;, and consequently » = 0 on R.

We call the function w;; € W,,@;; in Theorem 1 the (p, q)-biharmonic
projection of fe @;;. It is the solution of the (p, g)-biharmonic Dirichlet
problem with

wi;| B = flB: and Lwi;|B; = 4,18,

where gB; and B; are the p-and ¢-harmonic boundaries corresponding
to M,; and M,; respectively. From the uniqueness of the decomposi-
tion, we see that the solution is unique except for the cases ¢ = 1 or
J = 1. In these cases there exist singular p-harmonic functions which
vanish on the p-harmonic boundary.

3. (p, @)-quasiharmonic classification of Riemannian manifolds.

8. The (p, @)-biharmonic projection was obtained in Theorem 1
for certain restricted families of functions on arbitrary Riemannian
manifold. In order to relax the conditions on the families, it is
necessary to impose conditions on the manifold. We shall see that
such conditions are intimately related to the (p, ¢)-quasiharmonic
classification of manifolds.

Denote by O, the class of Riemannian manifolds on which there
exist no X-functions, and by P the class of positive functions. The
various (p, g)-quasiharmonic null-manifolds are determined completely
by the p-harmonic Green’s function and the g-elliptic measure:

THEOREM 2. On a g-hyperbolic Riemannian manifold R (hyperbolic
if p=0),

(1) RgO,,pr if and only if Gue, < oo,

(ii) ReO,, 5 if and only if supyG,e, < <o,

(i) Rg O, r tf and only if Gle, ) < o,

(iv) RgOq, x tf and only if sup,G,e, < e and G,(e, e,) < o°.

Proof. For every ue @,, and every regular subregion 2 C R,

w@) = W) + | gl ey -
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Suppose K¢ Oy, p, i.€., there exists a ve @ P. Clearly v is p-super-
harmonic and bounded from below on R. Therefore A2 = lim,_,h??
exists. By the monotone convergence theorem,

Goeg = lim | g,u(-, vest)dy = u = 2 < oo .
2-R JR

Conversely, G,e,c Q.. P, and (i) follows. Relation (ii) is established
in a similar manner.

Suppose R ¢ Og, » and take a ve Q,,E. For every regular subregion
2CR,

v = h? + Gpee,
and
E(v) = E(h}*) + E(Gyqe,) -
As in the proof of Lemma 4,
E(G,oe,) = Grole,, e,) «
The monotone convergence theorem yields

lim Gpﬂ(eq, eq) = G:o(eq’ eq) .
2-R

Since G,(e,) — G,o(e,) is p-harmonic on 2, Lemma 2 implies

E(Gpeq) = .li.n_lE(Gpﬂeq) = E('U) < oo
2-R

By Lebesgue’s convergence theorem,
Gp(eqy eq) = E(Gpeq) < oo,

Conversely, if G,(e, e,) < o, then G,e, < ~ and 4,G,e, =e¢,. By
virtue of

E(Gpeq) = lolﬂ E(Gp!-?eq) = Gr(eqy eq) < oo,
Q-R

G, € Q,.F and (iii) follows. The last assertion of Theorem 2 is an
immediate consequence of (ii) and (iii).

9. An important bi-product of the proof of Theorem 1 is that
the (p, 9)-biharmonic functions restricted to the class @;; can be uniquely
decomposed into the p-harmonic part and the potential part:

THEOREM 3. On an arbitrary Riemannian manifold R (hyperbolic
of p =0), every function w;;€ W,,D;; can be uniquely written as

wi; = U; + G5,
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with w; € H,; and v;€ Hy; for 1,5 =1, 2, 3, 4.
4, Nondegenerate manifolds.

10. We shall show that, by imposing a suitable condition on the
manifold R, the restrictions we have set on the functions which have
(p, 9)-biharmonic projections can be relaxed.

We write X, = P, X, = B, X, = E, X, = K, and we let W,,,,XI(XJ-)AP
stand for W, M,(X,),,.

THEOREM 4. On a Riemannian manifold which carries Q,,X;-
Sfunctions,

M;; = quXi(Xf)ap @ N
with 1 =1,2,8,4, and j = 2, 4.
Proof. It is sufficient to show that fe W,B,, implies the p-

harmonizability of f on R¢ O, ».
For every regular subregion 2 of R, and every fe W,,B,,

=0+ g, 0,7 @)y

Since B¢ O, p, G,¢, < e by Theorem 2. In view of |g,o- 4,/ | = k- 9,6,
for some constant k, the Lebesgue convergence theorem implies the

existence of the limit of limQﬁRS Opo(s, W4, (y)dy. Thus h}® converges,
R

and f is p-harmonizable.

11. With suitable conditions imposed on the manifold, we have
the following direct sum decompositions of (p, g@)-biharmonic functions:

THEOREM 5. On a Riemannian manifold R which carries positive
Q- functions,

W Xi(Xi)s, C Hys @ GoH,;
with 1 =1,2,3,4, and j = 2, 4. Moreover,

W Xi(Xy)., = H,: @ G, H,;
if and only if R¢ Oq, Xi.

The proof makes use of Theorems 2, 3, and 4.

On a manifold B¢ O, x;, let ®, 4 be continuous functions on the
harmonic boundaries 3; and B; corresponding to M,; and M,; respec-
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tively. The second assertion of Theorem 5 implies that if 25 and &}
are solutions of the p-and g-harmonic boundary value problems with
boundary values ® and + respectively, then our (p, ¢)-biharmonic
Dirichlet problem has a solution which is in W, Xi(X;),, and takes
the form A% + G, hi.

5. Special density functions.

12. In the case that the density function is bounded from below
by a positive constant, we have more explicit results:

THEOREM 6. If infyp(x) >0 on a q-hyperbolic Riemannian
manifold, then
M;; = quXi(Xj)A,, @ Ni;
and
W, Xi( X))y, = Hyi @ G H,;s

with 1 =1,2, and j =2,4. Furthermore, if S p(x)dx < oo, then the
R

above assertion s true also for ¢ = 3, 4.

Proof. To prove the first assertion, it is sufficient to show that
Re0O,,5 for inf, p(x) > 0. On every regular subregion 2, we have
1=n"+ SRgpg(w y)p(y)dy, and consequently G,p <1 upon letting
2 — R. Therefore G,e, < G,1 < 1/m with m = inf, p. By Theorem 2,
Re¢ OQMB. Suppose furthermgre that Lp(x)da; < oo, Then the volume
of R is V(R) = de = 1/m | pl)ds < - and

Glen ) < L V(R) < oo .
m

The second assertion follows from Theorem 2.

13. By the fact that g,(, ) < g.(z, y) for p = », and Theorem
2, we have the following:

PROPOSITION. On a g-hyperbolic Riemannian manifold R (hyper-
bolic 1f p = 0),

(1) Oq,pC0q,5C Oq, x and O, p O, r Oy x,

(ii) Oq,,x ©O0q, x for p =,

(iii) OquX c OQZ,SX Jor ¢ = s,

(iv) Oq,xCOq x for p=7r and ¢ =s, with X = P, B, E or K.
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We note that if R is g-parabolic, Q,, = H? and @ = Oypp C Oypy C
Oy = Oprg, that is, (i) is still true. However, (ii)-(iv) are no longer
valid, for @ = Ousp = Oyrp, Opry T Opop, and Oyrg = Oyrx € Oppye =
Oypg iIf p = 7.

From (iv) of the above proposition, we see that if the (», s)-
biharmonic Dirichlet problem is solvable by the decomposition method
of Theorem 5, then the (p, ¢)-biharmonic boundary value problem has
a solution for » = r and ¢ = s. In particular, the (», ¢)-biharmonic
Dirichlet problem is solvable if the biharmonic problem is.
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