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SQUARES IN SOME RECURRENT SEQUENCES

J. H. E. COHN

Elementary methods are used to locate the perfect squares
in certain sequences of integers defined by three term recur-
rence relations.

We consider for n ^ 0 the polynomials PJx), Qn(x), pn(x) and qn(x)
defined by

( 1 ) P0(x) = Po(x) = 0; Px(x) = Pl(x) = 1

( 2 ) Q0(x) = qo(x) = 2; Q,(x) = qi(x) = x

( 3 ) Pn+2(x) = xPn+1(x) + Pn(x)

( 4 ) Qn+2(x) = xQn+ί(x) + Qn(x)

( 5 ) Pn+2(X) = XPn + l(x) - Pn(x)

( 6 ) Qn + 2(X) = %Qn+l(x) ~ Qn(x)

These polynomials arose in a natural way in the course of previous
work [2, 3] and using the result of [1] the complete solutions of the
Diophantine equations y2 = Pn(x), 2y2 = Pn(x) and the six similar ones
obtained by substituting Qn(x), pn(x) and qn(x) for Pn(x) in positive
integers x, y and n, with x restricted to odd values, have been found.
The method, although fairly long, was elementary.

The same problems for even values of x seem to be far harder,
although in certain cases they may be trivial. For x = 2, the only
significant problem is y2 = PΛ(2). Ljunggren [5] has shown that n =
0, 1, 7 yield the only solutions in this case, but the method is non-
elementary and involves much computation. It is unlikely that method
could be applied to provide a complete solution in n and x. The main
object of the present note is to consider an infinite set of even values
of x for which an elementary method is available for the determina-
tion of n. Use is then made of these results to prove some theorems
on Diophantine equations of the form P = ΰ Γ ± l , Γ =

Using (l)-(6) we find easily that

(x + (x2 + 4)1/2V _ (x- (x2 + 4)1/

( 7 ) P%(x) = ± 2 ~ ^P%(x)
W (x2

Qn(x) = ( * + ( * + 4)1
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ίx + (x2 - 4)1/2\" _ ί

( 9 ) P . ( * ) = O ? ) V

x + («2 - 4) 1 / 2y _ (x - (x2 - 4)U2Y
2

- 4)1'2

x - (x2 - 4) 1 / 2V

2 ) '

For convenience we may use (3) and (5) to extend the definitions
of Pn(x) and pn(x) to negative values of n, yielding

(11)

(12)

We also obtain

(13)

(14)

whence

(15)

(16)

P-n(x) = —pn{x) .

Ql(x) - (x2 + A)Pi(x) = ( - 1

ql(x) - (x2 - 4)p2

n(x) = 4

(Qn(x), Pn(x)) - 1 or 2

(?•(*), PM) = 1 or 2 .

Also using (7)-(10) with (13) and (14) we obtain

(17) if m is odd, Pn{QJa)) = ^ & , Qw(Q.(α)) = Qm%(α)
Pm(α)

(18) if m is even, ί>w(Qw(α)) = 4 f ^ Γ ' ^(Θ-(α)) = ^ »

(19) ί>ntew(α)) = ^ * M , gw(
()

Now suppose that m = 3 (mod 6) and that α; = Qm(α) with a odd.
Then from (17) we see that Qn{x) = Qmw(α) and so using [2; Theorem
7] we find that y2 = Qn(x) is possible only for mn — 3, with a — 1 or
3. This the only solutions are provided by n = 1, with # = 4 or 36.
Similarly 2τ/2 = Qn(x) gives m^ = 0, or mn = 6 with a = 1 or 5 (in
view of [1]) or m = 3, n = 2, x = 4 or 140. Thus we have proved

THEOREM 1. // x = Qm(a) with a odd, m = 3 (mod 6), then y2 =
Q%(x) is possible only for n = 1 mίfc x = A or 36, am? 2τ/2 = Q%(.τ) is
possible only for n = 0, amZ /or w = 2 ^ΐ^Λ a; = 4 or 140.

We next consider Pn(x) under the same conditions. We have
= 1, and if n = 1 (mod 4), n Φ 1, we write w = 1 + 2hk, where
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k = 2r, r ^ 1 and h is odd. Then using [2; (22)] we obtain by (17)

Ξ ( - l ) ^ P m ( α ) (mod Qk{a))

Qk{a)) ,

since mh is odd. Now it is easily verified that Pm(a) and Qk(a) have
no factor in common and so we obtain

Pn(x) = - 1 (mod Qk(a))

from which it follows that Pn(x) Φ y\ since Qk(a) = 3 (mod 4) in vir-
ture of [2; (16)]. Since, by (11), for n odd PJx) = P-n{x) it follows
that Pn(x) = y2 is possible with n odd, n > 0 only for w = 1.

Now for n even we have using (7) and (8) that

and so in view of (15) y2 = Pn(x) implies

either QaJ2)n(x) = 2/J; Pωι)n(x) = y\\ the former implies l/2w = 1 with
x — 4 or 36, both of which satisfy the latter,
or Q{ιl2)n{x) = 2yl; PaJ2)n(x) = 2^; the former implies l/2w = 0 which
satisfies the latter, or l/2n = 2 with x = 4 or 140, but neither of these
satisfies the later.

Finally, considering 2y2 = Pn{x) we see easily that since x is even,
n must also be even, and we obtain as before Q{ll2)n{x) = y\ or 2y\,
yielding n = 0 or n = 4, a; = 4. Thus we have

THEOREM 2. If x = Qm(a) with a odd, m = 3 (mod 6), ί&eπ τ/2 =
P»(a?) possible only for n = 0 ami w = 1 a^d /or π = 2 wi£/& a; = 4 or
36; 2̂ /2 = Pn(x) is possible only for n — 0 aπd /or n — 4 m i A a; = 4.

An exactly parallel treatment for x = gm(α) with 31 m leads to
the following results, whose proofs are omitted.

THEOREM 3. If x — qm(a) with a odd, 3|m, then y2 = qjx) is im-
possible, and 2y2 = qn(x) is possible only for n = 0, and for n = 1 with
x = 18 or 19,602.

THEOREM 4. // x = qm(a) with a odd, 3|m, then y2 = pn(x) is
possible only for n = 0 and 1, cmd 2 / = pw(α?) is possible only for
n = 0, αwcϋ for n = 2 wiίΛ ίc = 18 or 19,602.

We now prove

THEOREM 5. The equation y2 = Pm{a)Pn(a) where a is odd and
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m ^ n > 0 has only the trivial solution m = n, except for a = A2,
m = 2, n = 1; α = 1, m = 12, n = 1; α — 1, m = 12, w — 2; α = 1, m =
6, w = 3; α = 3, m = 6, w = 3.

Proof. Let r = (m, n). Then as is well known

(Pm(a), PM) = Pr(α)

and so if m = Mr, n = Nr we must have

Pr(a) Pr(a)

We consider four cases:

(a). 2Jfr9SJfr; then using (17) we have y\ = PM(Qr(a)). Since Qr(a)
is odd, we have using [2; Theorem 5] that M = 1 or 2 or 12. Now
Λf = 1 always satisfies this; M = 2 implies j/J = Qr(α) and so r = 1,
α = 2/?; M = 12 implies 1 = Qr(a) or r = α = 1.

(b). 2 |r, 3 | r ; then using (18) /̂? = piV(Qr(α)). Since Qr(α) is odd,
we have using [3; Theorem 5] that i k f = l o r 2 o r 6 . M = 1 always
satisfies this; M = 2 implies ^ = Qr(α) which is impossible for r even;
M = 6 implies 3 = Qr(a) and so r = 2, a = 1.

(c). 2 | r , 3|r; then ^ = P i f(Qr(α)) and so Theorem 2 is applicable
yielding M = 1 and Λf = 2 with r = 3 and α = 1 or 3.

(d). 6|r; then ^ = ^(Q r (a)) = pM(x) where a; = Qr(a) = qm)r{Q2{a))
using (18). Now Q2(a) is odd, and so using Theorem 4 we obtain only
M = 1.

Combining the four cases we find that M = 1, except if

r = 1, α = y\, M = 2

r = 1, α = 1, Λf = 12

r = 3, α = l, Λf = 2

r = 3, α = l, Λf = 2

r = 2, α = 1, ilί = 6 .

Similar results hold for JV, and so we obtain ikf = JV = 1, or m = n,
except for

r = 1, α = y\, M = 2, ΛΓ = 1 i.e. m = 2, w = 1

r = 1, α = 1, M = 12, ΛΓ = 1 i.e. m = 12, w = 1

r = 3, α = l, Λ f = 2 , iSΓ=l i.e. m = 6, n = 3
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r = 3, a = 3, M = 2, N=l i.e. m = 6, n = 3

r = 2, α = 1, If = 6, JV = 1 i.e. m = 12, n = 2 ,

and this is the required result.

THEOREM 6. The equation 2y2 = Pm(a)Pn(a), where a is odd and
m > n > 0 has no solutions, the following cases only excepted,

a = 1, wiίλ m, w = 3, 2; 3, 1; 6, 1; 6, 2; 12, 3 or 12, 6

a = 5, ^ i ώ m, n = 12, 6

a ^ 1, mέ/fc α2 = 2A2 — 1 αtwZ my n — S, 1 .

Proof. As in the proof of the previous theorem let r — (m, ri),
m = Mr, n = Nr and we find that

Pr(α) Pr(α)

or vice-versa. The former yields (since M Φ 0) Λf = 1, except if α =
1 when also r = 2, Aί = 6 or r = 1 and ikΓ = 2 or 12, and if a = 3
when also r = 3, M = 2 and if α = A2 with r = 1, Λf = 2.

Consider now the latter with N Φ 0. As before we distinguish
four cases.

(a). 2 | r , 3 | r ; then 2 ^ = PN(Qr(a)). Since Qr(α) is odd, we may
use [2; Theorem 6] and we see that the only possibilities are N = 6
with Qr(α) = 1, i.e. r = a = 1, and perhaps JV = 3. But iV = 3 would
require 2 ^ = {Qr{o)f + 1, and we shall show that this is impossible
except for r = 1.

Since r is odd, it follows from [2; (11)] that we require Q2r{o) —
22/2 + I. If we allow the possibility of negative r, we can assume that
r ^ l (mod 4), since we can show just as in (11) that Q_n(x) = ( — l)nQn(x).
Then if r Φ 1, let r = 1 + hk, where h is odd and k = 2R, with ϋ? 2>
2. Thus

= -Q2(α) (modQ,(α)) using [2; (23)]

Ξ - ( α 2 + 2)

From [2; (16), (17)] we see that Qk{a) = 7 (mod 8) since R ^ 2, and
so we should have to have
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= - 1 in view of [2; (27), (28)] since Qk(a) = 7 (mod 8) ,

and this contradiction shows that we can have only r = 1.
For this to occur we must have r = 1, N — 3, α2 = 2y\ — 1.

(b). 2 |r , 3 | r ; then 2y\ = pN(Qr(a)) with Qr(a) odd. Thus using [3;
Theorem 6] we see that the only possibility is N = 3, whence 2y\ =
(Qr(a))2 — 1, or since r is even, we have with b = Q{U2)r{a), 2?/2 = (62±2)2 — 1 ,
or 2?/2 = (62 ± l)(ί>2 ± 3 ) . It is easily seen that the only possibility for
these last equations is b = 1 = Qd/2)».(#)> ί β # = 1, r = 2, iV = 3.
(c). 2 | r , 3|r; then 2τ/| = PN(Qr(a)), where now Qr{a) is even. Thus
Theorem 2 applies and we find that we can only have N = 4, Qr(a) —
4, i.e. a = 1, r = 3, iV = 4.

(d). 6[r; then 2 ^ = pN(Qr(a)) = ^(a?) where a; = Qr(α) = g(1/2)Λζ>2(α))
as before. Thus Theorem 4 may be used, and we find that we can
have only N = 2 with x = Qr(α) = 18 or 19,602, i.e. r = 6 with α =
1 or 5.

Thus in all we have the following solutions to our equation:—

If a = 1. Then r = 1 gives JV = 3, M = 2 o r i V = 3 , Jkf = 1 or iV =
6, ikf = 1; r = 2 gives iSΓ=3, Λ f = l ; r = 3 gives ΛΓ = 4, M = 1, and
r = 6 gives JV = 2, Λf = 1.r

If a = 5. Then Λf = 1, JV = 2, r = 6.

7/ α ^ 1, α2 = 2̂ /1 - 1, then r = 1, N = 3, M = 1. The other case
does not occur since it would require α2 — 2y\ — 1, a = τ/2. But this
is impossible for we should have to have (y\ — I)2 = y\ — y\, and this
cannot occur if a Φ 1.

This concludes the proof of the theorem.

THEOREM 7. Let D = dΛP w&ere d is such that X2 - dY2 = - 4
possesses solutions with both X and Y odd; then no one of the four
equations X2 — D Y4 ± 1, X2 = D Y4 ± 4 possesses more than one solu-
tion in positive integers, and between them they have at most two such
solutions, the following cases only excepted

(i) D = 5 when there are in all five solutions, viz. Y — 1 for
X2 = 5Γ 4 - 1, X2 = 5Γ 4 ± 4, Y = 2 for X2 = 5Γ 4 + 1, Y = 12 for
X2 = 5Γ 4 + 4

(ii) D = 20 wAew ίλere are m aiZ iA,ree solutions, viz. Y = 1 /or
X2 = 2 0 Γ 4 - 4 , Γ = 2 / o r Γ = 20Yi + 4and Γ = 6 /or X2 = 20Γ 4 + 1.

Proof. We are given that X2 — dY2 = —4, possesses solutions
with both X and F odd, and so if X = α, Y = b is the fundamental
solution it is easily seen that both a and b must be odd, for the
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general solution is given by X + Yd1'2 = 2{(α + bdU2)l2}2n~l. Then we
find without difficulty that, considering only positive values, the gen-
eral solution of X2 — dY2 = — 4 is Y — bP2n^(a), the general solution
of X2 - dY2 = 4 is Y = bP2n(a)> the general solution of X2 - dY2 =
- 1 is Y = (l/2)δP6w_3(α), the general solution of X2 - dY2 = 1 is Y =
(l/2)bP&n(a).

Consider first X2 — DY4 = —4; by the above remarks, we see that
for a solution we must have NY2 = bP2n^1{a), and so if there were
two solutions we should have, with m Φ n, P2m^ί(a)P2n_1(a) = y2, but
that is impossible by Theorem 5. The same applies to the equation
X2 = DY" - 1.

Similarly for X2 — dY4 = 4 we find that for a solution we must
have NY2 = bP2n(a), and so two different solutions require m Φ n and
P2m(a)P2n(a) — y2. Theorem 5 shows that this can occur only for a =
1, 2m = 12, 2n = 2, from which we find d = 5, JVΓ2 = 1 and 144 and
so we get only D = 5, F = 1 and 12. Similarly we find that X2 —
DY4 + 1 never has more than one solution.

This shows that no one of the equations has more than one solu-
tion (D Φ 5); to complete the proof we must consider how often two
different equations of the set can have solutions. Whenever this
occurs we find that Pr(a)Ps(a) = y2 or 2y2. These cases are all easily
identified using Theorems 5 and 6, and we obtain the required result;
for we see that unless a = 1, there are in all at most two solutions
and examination of a = 1 yields all the exceptional cases.

This concludes the proof. In just the same way as above, we
may prove the following three results, the proofs of which are omitted.

THEOREM 8. The equation y2 — pm(ά)pn(ά) where a is odd, a ^ 3
and m ^ n > 0 has only the trivial solution m — n except for a — 3,
m = β, n = 1 and for a = A2, m = 2, n = 1.

THEOREM 9. The equation 2y2 — vm{a)/pn(a) where a is odd, a ^ 3,
and m > n > 0 has no solutions except for the following cases

a = 3, m = β, n = 3; a = 27, m = β, n = 3 and a2 = 2A2jrl, rn = 3, n = l .

THEOREM 10. Let D = dN2 where d is such that X2 - dY2 = 4 pos-
sesses solutions with both X and Y odd, although the equation X2 —
dY2 — —4 does not; then the equations X2 = DY4 + 1 and X2 = DY4 + 4
possess between them at most two solutions in positive integers, the
former having at most one such solution.

It may be seen from the last theorem, that the equation X2 =
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189 YA + 1 possesses only the solution X — 55, Y = 2 in positive inte-
gers, although 189 is not a value to which the methods of [2] or [3]
apply; similarly for D = 325, using Theorem 7, we find that X2 =
325 Γ4 + 1 has only the solution Y = 6, and X2 = 325 Γ4 - 1 has only
the solution Y = 1, while X2 = 325 Y4 ± 4 have no positive solutions,
although again 325 is not a value of D to which the methods of [2]
or [3] apply.

We now prove similar results for Qn(a) and qn(a), where we suppose
throughout that a is odd, and in the case of the latter that a ^ 3.
We recall that in the reference [2] we designated Qn{a) by vn9 and
in [3] we designated qn(a) by vn. Where no confusion arises, we shall
write simply Qn and qn.

LEMMA 1. (Qm Qn) = 2% where

x — Qr if r = (w&, w) αraϊ m/r, n/r are both odd ,

= 1 , otherwise

and i = 0 unless x — 1, 31 r

Proo/. If X = (Qm, Qn) then since P 2 ί = P.Q,, we find that X
divides (P2m, P2n) = P (2Wf2n, = P 2 r = P r Q r . Now P r | P m and so no odd
factor of Pr divides Qm in view of (15). Also, if m/r is even we find
in view of [2; (19)] that 2Qm = ± 4 (mod Qr), and so no odd factor of
Qr divides Qm. Similarly if n/r is even. On the other hand if M =
m/r is odd, then QJa) = QM{Qr{o)) by (17) if r is odd, and QJa) =
qM(Qr(a)) if r is even by (18), and in either case, Qm(a) is divisible by
Qr(a). Thus if we define x as in the statement of the lemma, we
find that X = 2{x for some suitable i. If 3 \ r, then 2 \ X and i = 0.
If 6 | r then 2||QW, 2| |QΛ and 2 | |Q r and so i = 0 if a; - ζ>r and ΐ = 1
if x = 1. If r = 3 (mod 6), then if a? Φ 1, 22 |Q r, 22 | |Qm, 22 | |Qπ and i = 0,
whereas if x = 1, then one of m and w must be even, and again i = 1.

In exactly the same way we may prove

LEMMA 2. (qm, qn) = 2 ^ tί Λere

x = qr if r = (m, w) απd m/r, n/r are both odd ,

= 1 otherwise

and i = 0 unless x = 1, 31 r

- 1 i/ α; = 1, 31 r .

The proof is exactly similar, and is omitted.
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LEMMA 3. Qn = ay2 implies n = 1, except for a = 1, w = 3.

Proof. By [2] α = 1 occurs only for w = 1, 3. In what follows
we suppose that a > 1. Then α|Qw implies that n is odd.

( i) Suppose n = 1 (mod 4), w ̂  1. Then we may write n = 1 +
where A is odd, and A: = 2E, R }> 1. Thus using [2; (23)] we obtain
from the equation,

QiV2 = α?/2 = Qn = Q1+2Λ*

Ξ - Q , (rnodQ,) .

Thus in view of Lemma 1, we see that we should have y2= — 1 (mod Qh)
which is impossible, since by [2; (16)] Qk == 3 (mod 4).

(ii) Suppose n = 3 (mod 4). Then π = 3 would give y2 = a2 + 3, im-
possible if a Φ 1, while if % ̂  3 we write n = 3 + 2M as before, and
obtain

Ξ - Q3 (mod Qfc) ,

whence (a\Qk) = — (Q31QA:)> which is impossible in view of [2; (27), (28)].
This concludes the proof.

LEMMA 4. qn = ay2 implies n = ± 1 .

Proof. As before π must be odd. If n = 1 (mod 4) and w =£ 1
then n — 1 + 2fe/b gives as before

^ 2 = Qn = -Qi Ξ - α (mod qk)

which is impossible.
If n = 3 (mod 4), then q_n — qn in view of [3; (7)] and —n = l

(mod 4), and the result follows.

LEMMA 5. Qn •= 2ay2 is impossible, except for a = 1 with n = 0,
w = 6.

Proof. By [2], α = 1 gives only n = 0, w = 6 and so we suppose
that a > 1. As before α|Q n then implies that w is odd, and 2|Q n

implies that 31 n. Thus n = 3 (mod 6) from which we find that Qn Ξ=
4 (mod 8), which makes 2ατ/2 = Qw impossible.

LEMMA 6. qn — 2ay2 is impossible for a > 1.
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Proof. As before we find n = 3ΛΓ with N odd, and so

2tf = λqn = i-g3 (mod 8)
a a

= 6 (mod 8) ,

using [3; (17)], and this is impossible.

THEOREM 11. The equation y2 — Qm(a)Qn(a) where a is odd and
m ^ n ^ 0 has only the trivial solution m = n, except for a = 1, m =
6, n — 0; a = 1, m = 3, n = 1 αmZ α = 5, m = 6, n — 0.

Proof. In view of Lemma 1, we find three possibilities, where
r = (ra, %):—

(a) Qm(a) = 7/?; Q » = ^

(b) Qm(α) - 2yl; Qn{a) = 2yl;

(c) QJμ) = Q r(α)^; Qn(α) = Qr(a)yl

Cases (a) and (b) are easily dealt with, using [2], and we find just
the three exceptions stated in the statement of the theorem. Con-
sider case (c).

( i ) If r = ± 1 (mod 6), then write A = Qr(α) where A is odd,
and then in view of (17) we find, where M = m/r, Ay\ — QM(A). Using
Lemma 3, we find that we must have M = 1, or m = r = n (similarly)
except if A — 1, when we find also m = 3r, n = r with A = 1 = Qr(a).
But this is possible only for a = r = 1, a case we have dealt with
already.

(ii) If r = ± 2 (mod 6), then similarly A = Qr(a) is odd and using
(18) we find Ay\ — qM(A) which in view of Lemma 4 yields only m =
r — n.

(iii) If 3|r, then M = m/r is odd. Suppose first that M = 1
(mod 4). Then if MΦ 1, we find that m = r + 2hk where h is odd
and k = 2R. Thus as before we find

Qr{a)y\ = QJa) = -Qr(a) (mod Qk(a)) .

But by Lemma 1, (Qr, QΛ) = 1, and again we see that this is impossible.

If r is even, and M = 3 (mod 4), we find that m is even and then
in view of [2; (7)] Q-m{a) = Qm(a) where now —m/r = 1 (mod 4), and
the result follows from the last part.

Finally, if r is odd, 3 | r and M = 3 (mod 4), we find if X = Qr(a)
that 41 X. But then Xy\ = QM(X), and then using (8) we obtain
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= M (mod X2) .

Thus y\ = 3 (mod 4), clearly impossible.
This concludes the proof of the theorem.

THEOREM 12. The equation 2y2 = Qm{a)Qn{a) where a is odd and
m > n ^ 0, has no solutions, except for

a = 1 with m, n = 3, 0 or 6, 1 or 6, 3; or 1, 0

a = 3 mίfe m, w = 3, 0

a = A2 with m, n = 1, 0 .

Proof. In view of Lemma 1, 2y2 = Qm(α)Q%(α) implies

Qw(α) = ^ QΛ(α) = 2y2

2 , or vice-versa

or QJa) = Qr(a)yl; Qn{a) = 2Qr{a)y\ or vice-versa .

The former gives the exceptions of the theorem, using [2] with [1].
We consider therefore the latter.

As we have seen in the proof of the last theorem, Qm(a) — Qr{o)y\
is possible only for m — r, except for r = α = l, m = 3 and again this
gives only some of the exceptions found already.

Consider therefore Qn{a) = 2Qr(a)y\, where N= n/r is odd, Qr(a) Φ 1.

( i ) If r = ± 1 (mod 6), then A = Qr(a) yields as before QN(A) = 2Ay\,
impossible by Lemma 5, since A = Qr(a) Φ 1.

(ii) If r = ±2 (mod 6), then A = Qr(a) yields as before qN{A) = 2Ay\,
impossible in view of Lemma 6.

(iii) If 31 r, then we find since N = n/r is odd that Qr(a) and Qn{a)
are divisible by the same power of 2, and so Qn(a) = 2Qr(a)y\ is im-
possible in this case.

This concludes the proof.

THEOREM 13. Let d be such that X2 — dY2 = —4 has solutions
with both X and Y odd. Then for any positive integer N, the four
equations N2X* — dY2 = ± 1, ± 4 have between them at most one
solution in positive integers X, Y, with the two exceptions

( i ) d = 5, N — 1 when we obtain precisely three solutions, viz.
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X = 1 or 2 for X4 - 5Y2 = -A and X = S for X4 - 5Y2 = 1

(ii) d — 5, N = 2 wfeew we obtain precisely two solutions, viz.
X = 1 /or 4X4 - 5 Γ - - l α ^ I = 3 /or 4X4 - 5 Y2 = 4.

Proof. Since X 2 — cZF2 = —4 has solutions with both X and Y
odd, it follows that d ~ 5 (mod 8), and that every factor of d = 1
(mod 4). Thus d has at least one prime factor p, with p = 5 (mod 8).
If p\N, then clearly no one of the equations N2X4 — dY2 — ± 1 , ± 4
has a solution. If p )f N, then since both —1 and 4 are quartic-non-
residues modulo p we see that it is impossible that one equation of
the pair ΛPX4 - dY2 = 1, - 4 and one of the pair ΛPX4 - dY2 = - 1 , 4
should have solutions.

As in the proof of Theorem 7, we find that the general solution
of X2 — dY2 = 4 is given by X = Q2*(α), Y = bP2n(a) (with analogous
results for X2 — dY2 = —4, 1, —1), and so if any one of the four
equations had more than one solution we should obtain Qm(a)Qn(a) =
y2 with m > n > 0, if we restrict our attention to positive solutions
for both X and Y. In view of Theorem 11, this cannot occur, with
the sole exception of a = 1, m = 3, n = 1, when we find d = 5, JV = 1
with X = 1 or 2 satisfying X4 — 5 Y2 = —4. Similarly, if both equa-
tions of a pair have solutions, then we should have Qm(a)Qn(a) = 2y2

with m > n > 0, and in view of Theorem 12, this occurs only for
a = 1, with m = 6 and n = 1 or 3. These easily yield the remaining
exceptions, mentioned in the statement of the theorem. This concludes
the proof.

In exactly the same way we may prove

THEOREM 14. The equation y2 = qm(a)qn(a), where a ̂  3, and a is
odd, and m ̂  n ^ 0 has only the trivial solution m = n, except for
a — 3 or 27 when also m = 3, n = 0.

THEOREM 15. The equation 2y2 = qm(a)qn(a), where α ^ 3 , cmd a is
odd, and m > n ^ 0 /̂ αs wo solutions except in the case a — A2, /

i m = 1, n — 0.

THEOREM 16. Suppose that d is such that X2 — dY2 = 4 Λαs a
solution with both X and Y odd, but that X2 — dY2 — —4 does not;
then for any positive integer N, the equations N2X4 — dY2 = 1 and
N2Y4 — dY2 = 4 have between them at most one solution in positive
integers.

The details of the proofs are similar to the previous ones, and
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are omitted.
We now consider for a given odd a and given N the problem of

determining all positive integers n such that Pn{a) = Ny2. Without
loss of generality we may assume that N is square-free. The cases
N = 1, 2 have been completely dealt with in [2] and so we assume
that N ^ 3. In view of Theorem 5 we see that there is at most one
such value of n, with the sole exception N = 10, a = 3 when we can
have n — 3 or n = 6. In other cases the problem of determining the
single value of n, if it exists, remains. For convenience we treat
separately Pn(a) = Ny2 and Pn{a) = 2Ny2 where N is odd, square-free,
and Nφl.

We see that in view of (3) the residues modulo N of the sequence
Pn(a) form a periodic sequence (with period ^ N2) and since P0(ά) = 0
there exists a least positive integer p = <o(iV, α), say, such that JV|P,(α).
It is then easily seen that N\Pn(ά) if and only if p\n.

(a) Suppose p = ± 1 (mod 6).
We have using (13) that with d = (a2 + 4)ΛP, the equation X2 -

dy2 = - 4 is satisfied by X = A = Qp(a) and Y = B = N^P^ά). Since
3 \ p, both A and B are odd and since the general solution of X2 —
(α2 + 4)Γ 2 = - 4 is given by X - Q2»-i(α), Y = P2.-i(α), it is clear that
A + .B<21/2 is the fundamental solution of X2 - dY2 = - 4 . Thus the
methods of [2] apply for this value of d, and we find in the notation
employed there that, in view of (7) and (8)

2

_ I Qp(a) + (a2 + 4)1/2P,(α) V* JQ,(α) - (α2 + 4)1/2P,(α)^
" 1 2 i " I 2 -

= (α + (a2 + 4)1/2\r^ _ / a - (a2 + 4)1'
I 2 J I 2

= (α2 + 4)^2Pr,(α) .

Thus PrP(d) = iV^r. Accordingly we see that Prp(a) = Ny2 implies
ur = y2, and using [2; Theorem 3] this is possible for positive r only
with r = 1, 2 and for d = 5 with r = 12. But d = 5 is impossible
since N Φ 1. Also r = 2 would require A = Q ί̂α) to be a square,
and using [2; Theorem 7] this would require p ^ 3, that is <o = 1.
But p = 1 is impossible, since then N)f Pp(a).

Similarly P^(α) — 2Ny2 implies n = rp with ur = 2τ/2. Using [2;
Theorem 4] we see that since d Φ 5, we need consider only r = 3.
But this too is impossible, for we should obtain 2τ/2 = 5(A2 + 1). Since
A2 - dB2 = - 4 , A2 + 1 = - 3 (mod P) and so since 3 | (A2 + 1) we
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should have A2 + 1 = 2y\ B = y\. But then Pp(ά) = NB = Nyt, whence
Pp(d)P3p(ά) = 2yl, impossible in view of Theorem 6, since in this case
^ ^ 5.

Thus in case (a) Pn(a) = Ny2 can occur only for n = p

Pn(a) — 2Ny2 cannot occur at all for n > 0 .

(b) Suppose p = ± 2 (mod 6).
We now find in analogous fashion that if d = (a2 + 4)iV2, then

X2 — dY2 = —4 has no solution, but that the fundamental solution of
X 2 - dY2 = 4 is A = Qp(a), B = N~ιPp{a) with both A and £ odd.
Thus we use the notation and methods of [3], finding as before that
PrP{a) = Nur and so Prp{a) = Ny2 implies ur = y2. For positive r this
can occur [3; Theorem 3] only for r = 1, 2 or 3. But r = 2 is im-
possible for it would require y2 = N~ιP2p{a) = {N~ιPp{a))Qp{a) whence
Qp(a) = yl, impossible for even p by [2; Theorem 1] Also r = 3 would
require y2 — u3 = B(A2 — 1), whence B = 3^; A2 — 1 = 3 ^ . Now since
A is odd, A2 - 1 Ξ 0 (mod 8) and so we must have A2 = 1 (mod 16).
Thus A = ± 1 (mod 8) and this leads to p = 0 (mod 4). Thus if c =
Q(i/4)p(α) we find using [2; (11)] that

32/ϊ = {Q(1/2),(α))2 - 2}2 - 1

^ \Q(ilz)p *-)\Q(il2)p — 3)

= ((c2 ± 2)2 - l)((c2 ± 2)2 - 3)

= (c4 ± 4c2 + 3)(c4 ± 4c2 + 1) ,

where c is odd. Now both expressions in brackets are positive except
for c — 1; otherwise since c4 ± 4c2 + 1 = 6 (mod 8) we must have

c4 ± 4c2 + 1 = βyl

c4 ± 4c2 + 3 = 2yl .

Now we reject the lower sign since 31 (c4 — 4c2) for every c, con-
tradicting the former. The upper sign gives

^ p ( c 2 + 3) = yl .

This requires c2 + 3 = yl, and this is possible only for c — 1. But
c = 1 = QW)p{a) can occur only for a = 1, (0 = 4. But this would
require N = 3, since P4(l) = 3, but P12(l) = 144 ^ 3?/2.

Finally, PrP{a) — 2Ny2 implies ur — 2y2, possible in view of [3;
Theorem 4] only for r = 3, with B = yl. But then Pp(a) = NB = Ny\.
Thus Pp(a)P3p(a) = 2y\, possible in view of Theorem 6 only for a = 1,
p = 2. But again this cannot occur since P2(l) = 1.
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Thus in case (b) , Pn{a) — Ny2 can occur only for n — p

Pn(a) = 2Ny2 is impossible for n > 0 .

(c) Suppose p s 3 (mod 6).
Then PrP(a) = Ny2 compels r to be even. For if r is odd, then

2\Prp(a), 4 | P r i 9 ( α ) . Thus we write r = 2s, and then

y2 = N-ψi8P(d) = {N-ψsMHQspia)} .

Thus in view of (15) we have

either PsP(a) = Ny[; QsP{a) = y\

or Psp(a) = 2Nyl; Qsp(a) = 2y\ .

Now using [2; Theorem 7] we find that the former requires s =
3, with a — 1 or 3, but then Psp(a) = 2 or 10, neither of which gives
a value for N. Using [2; Theorem 8], with [1] gives sp — 6 with
a — 1 or 5, whence 2Ny\ = 8 or 3640. The former gives no value,
the latter p = 3, r = 4, a = 5, N = 455; but 455 \ P3(5) and so we find
that this cannot occur.

Thus in case (c) , Pn{a) = Ny2 cannot occur for n > 0 .

Unfortunately, there does not seem to be a similar method avail-
able for handling Pn(a) = 2Ny2 in this case.

(d) Suppose p = 0 (mod 6).
This case is slightly more complicated; suppose 2t\\p. Then it

may be shown that 2t+2\\Pp(a) and so if t is odd, we find that Ny2 =
Pn(a) implies n = rp with r even, and then just as in the above case
we find no value for n > 0, except in the case a = 5, p = β, N = 455,
n = 12. On the other hand, if t is even, we find that 2Ny2 = Pn(a)
implies n — rp with r even, and then there is no value for n > 0.

Thus in case (d), if 22t\\ρ, then Pn(a) = 2Ny2

has no solution, and if 22t+1\\p, then

PJa) = Ny2 has no solution, except in the single case

a = 5, N = 455, n = 12, all forn>0.

We see however, that in the cases in which &\p(N, α), we have
not succeeded in determining possible values of n. This problem
remains open. A similar situation exists for equations of the type
pn(a) = Ny2.

In conclusion, we observe that as far as Theorems 1-4 are con-
cerned, although the method applies to infinite sets of values of x in
each case, many values are not covered; thus considering values < 6,000
the only values covered are 4, 36, 76, 140, 364, 756, 1364, 2236, 3420
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and 4964 in the case of Theorems 1 and 2, and 18, 110, 322, 702,
1298, 2158, 3330, 4862 and 5778 in the case of Theorems 3 and 4.
For such values it is also clear that a method similar to that used
in [4] will be available for handling any sequence of integers satisfying
a recurrence relationship of the form (3) or (5) respectively.
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