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INVARIANT SUBSPACES AND OPERATORS OF CLASS (S)

NORBERTO SALINAS

Let έ^ be an infinite dimensional separable complex
Hubert space, and let £?{&%f) denote the algebra of all (bounded
linear) operators on ^ \ This paper is concerned with a
specific class of two-by-two operator matrices acting in the
usual fashion on £ίf@£έf. An operator in ^ ( ^ φ ^ ) will
be said to be of class (S) if it can be represented as a two
by two operator matrix of the form

L-F* oj
where V is a unilateral shift of infinite multiplicity on £ίf and
A is an arbitrary operator in

In the present paper it is shown that the study of the
operators of class (S) arises naturally in connection with the
invariant subspace problem. In particular, the question of
whether an operator of class (S) has a nontrivial invariant
subspace is raised, and some significant results are obtained
toward the solution of this problem.

Following [4] we shall denote by (F) the set of all operators
which cannot be written in the form λ + K, where λ belongs to the
complex field C, and K is in the ideal <5ίΓ of all compact operators.
Brown and Pearcy in [4], Theorem 2 found, up to similarity, a
standard form for operators in (F). As a consequence of that theorem
they showed ([4], Corollary 3.4) that every operator Te (F) is similar
to an operator matrix of the form

( * )

R W

S 0

acting on £^ 0 £ίf, where W is an isometry of infinite deficiency
(i.e. null W* is infinite dimensional).

Our first objective in this paper is to obtain a simplification in
the representing matrix ( *) (up to similarity) of an operator in (F).
In this fashion, we prove (Theorem 1) that every operator Te(F) is
similar to an operator matrix of the form

A V

o j '
where A, Be J^(3ίf) and V is a unilateral shift of infinite multiplicity
([8]).
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We then show (Theorem 3) that, up to translation, every operator
in (F) is similar to an operator of the form

A v

-CF* o.
acting on 3ίf 0 3ί?', where V is a unilateral shift of infinite multi-
plicity, A is in the class (ED) of all operators whose spectrum is
essentially disconnected1, and A is invertible as well as the operators
C, V*AV and V*A~ίV. Since every compact operator has a proper
invariant subspace ([1]), the last result produces an equivalent formu-
lation of the general invariant subspace problem on Hubert space,
namely every operator on a Hubert space has a nontrivial invariant
subspace, if and only if the same property holds for every operator
matrix of the form (**), satisfying the conditions described above. It
is by virtue of this result that operators of class (S) make their
appearance on the scene of the invariant subspace problem. In order
to glimpse the relationship between the invariant subspace problem for
operators in class (S) and the general problem, let us observe the
following trivial factorization of an operator of the form (**):

A V

-CV* 0 J

1 0T A VI

0 C -V* 0

Thus, it would be of interest to obtain any information possible about
operators in (S), with a view to gaining more insight into the dif-
ficulties involved in the general invariant subspace problem for operators
on Hubert space.

In §3 we make some remarks concerning operators of class (S),
and in §4 we restrict our attention to a special kind of operators in
class (S), namely operators of the form

Γ P V

•F* 0.

where P is any projection in Jίf(J%?). These operators are not normal,
in general (neither hyponormal; Lemma 3.1) and hence it is not a
simple matter to find invariant subspaces for them. We use a deep
algebraic result of Kaplansky ([9]) to prove that

V P V

L-y* o
1 An operator T is said to belong to (ED) ([1O], Theorem 2) if the polynomial hull

E(T) of the essential spectrum E(T) of T is disconnected.
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has, in fact, nontrivial reducing subspaces, and even more with the
techniques provided in [ 3 ] and [ 5 ] we show (Theorem 5) that

P V

- F * 0

is in the class (ED).

Some properties of the class (ED) were discussed in [10]. There,
it is shown ([10], Theorem 7) that the class (ED) is open in the
uniform topology. It is also proved ([10], Theorem 8) that every
operator T e (ED) has two complementary, infinite dimensional hyper-
invariant subspaces2.

Thus, as a corollary of Theorem 5 (already mentioned) and the
last remark, we conclude that, if P is any projection in ^f(^ίf)^ then
there exists ε > 0 such that for every Re £f (<%?), with | | i ί | | < ε and
every compact K, the operator

P + R + K V

-V* 0.

has two complementary, infinite dimensional hyperinvariant subspaces.

2* Invariant subspaces via the standard form of Brown and
Pearcy* Our main tool in the present section is a theorem of Brown
and Pearcy that provides a particular representation for any operator
in (F), up to similarity, as a 3 x 3 operator matrix ([4], Theorem 2).
It can be stated as follows:

THEOREM (Brown and Pearcy). Let Te(F). Then there exists an
invertίble transformation Z: 3fc-7 —» <•%? 0 3ίf 0 £ίf such that

ZTZ1 =
τn τ12 σ
T2l T22 1

π

3ι Γ32 0_

where Ti5 e ^(Sίf), i = l,2, 3; j = 1, 2 and \\ Tn\\ ^ || T\\.

LEMMA 2.1. Let TijeS/^p(^f), i = 1, 2, S j = 1, 2, and let

be defined by
2 The basic properties of hyperinvariant subspaces are discussed in [6].
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T =

11 -* 12 "

Tu Γ22 1

T»i τ32 o.

Then there exists a unitary transformation J:
such that

JTJ-1 =
, V

A* 0

where V is a unilateral shift of infinite multiplicity. Moreover, if
TBί = 0, then A2 — Γ3 2F*. On the other hand, if Tn is invertible,
then T is similar to an operator of the form

A, V

A+V* 0.

Proof. Let Jo: .^^ φ 3ίf —>• 3$f be any unitary transformation
and let J : £ίf φ £ί? φ .^^ -> ̂ ^ φ ^ ^ be given by J = Jo φ 1; hence
J - 1 = J* = J* φ l . It follows easily that the 2 x 2 matrix JTJ*
has the form

?, W

\ 0

where

Ή.eτe,

T u TaΊ TO"
|e/0 , IT — ^o .

and [T31 T3!]: are the

bounded linear transformations defined in the usual matricial fashion.
Since

we see that

and

W* = [0 1]JO* ,

W ^ * = Jo , [0 l]Jo* =
"0 0

0 1
T*

= 1 .

Therefore W is an isometry, and ran (1 — TΓW*)( = null W*) is infinite
dimensional. If TZί = 0,
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B2 = [0 Γ32]Jo* - TWO 1]JO* = TmW* .

Next we prove that there exists a unitary Ue £?(<%?) such that UW
is a unilateral shift of infinite multiplicity. Let {en} be an orthonormal
basis of &?: Also let ^ = ran W. Then {/Λ}, where fn = Wen,
constitutes an orthonormal basis of ^£. Let {gn} be an orthonormal
basis of ^ 1 , and define Ue ^(£ΐ?) on the basis {/Λ, #J of < ^ by
C^n = e2n, CTigr* = β2%_!, w = 1, 2, . Let V = ί7TF; by construction
yen = e2w and hence null F* is infinite dimensional and f|ϊ=i Vn^f =
{0}. Then V is a unilateral shift of infinite multiplicity. Now, the
first part of the assertion follows by defining J: 2tf φ ^ T ©

J=U ij ( = ( t 7" / o ) Θ 1 )

Finally, if Tn is invertible, the matrix

S =

1 0 0"

0 1 0

is also invertible, and the operator T' — STS*1 has the form

-* * 0

0 * 0

The proof is completed after applying the first part of the present
lemma to the matrix T'.

THEOREM 1. Every operator T in (F) is similar to an operator
matrix of the form

A V

B 0

acting on 3ίf φ 3ίf, where V is a unilateral shift of infinite multi-
plicity.

Proof. It follows directly from Lemma 2.1 and the theorem of
Brown and Pearcy mentioned previously.

LEMMA 2.2. Let Te{F) and let M be the scalar operator entry
matrix



502 NORBERTO SALINAS

M =

1 0 0"

0 2 1

0 - 1 0

acting on T φ T φ £ίf. Then, for \X\ > \\ T\\ there exist invertible
transformations Zx: Sίf —* 3ίf 0 Sίf φ ^f and operator matrices
Rx e J5f(βgf 0 J T Φ Sf) of the form

*
0

* o
* 0

* 0

satisfying the conditions:
(a) Zλ(T + \)Zr = Rx + XM;
(b) \\Rχ\\^k<oo;

(c) the following limits exist (in the norm topology),

lim Zλ = Zo , lim

and ZγZ, = 0.
On the other hand, given Se J^(£ίf) and a scalar operator entry matrix
Ne ^ ( ^ φ j r 0 J T ) , Nφl, if there exist invertible transforma-
tions Zλ: £έ? -> 3tf φ £ί? φ 3^ and operators Rλ e £e(2i? φ ^ T 0 Sίf)
such that for every |λ | > | |S | | , conditions (a)(b) and (c) hold whenever
T and M are replaced by S and N respectively, then S e (F) and N
is similar to M.

Proof. From the theorem of Brown and Pearcy, there exist an
invertible transformation Z: ,%* —> ^f φ 3ίf 0 £ίf such that

ZTZ -1 =

Tn Γ 1 2 0"

Γ 2 1 T22 1

r3 1 τ 3 2 o
i = 1, 2, 3,i = l, 2, || Γ u | | ^ || Γ|[. Thus, for | λ | > | | Γ | | ,

JΓU + λ is invertible and for such values of λ the operator matrix

X). —

1

0

(T21 - ψ

is invertible in

Xrι =

0 0 '

1 0

Γn + λ)"1 - 1 1/λ

Sίf Θ '>^)\ its inverse is

1 0 0

0 1 0

L(r31 - xτn)(τn + λ)-1 x λ
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Now we define

Zλ = XχZ

First, we note that

503

lim Zλ = 0
o σ
1 0

-1 0

Z = Zn

and

"0

0

0

0

0

1

0"

0

1

l im(l)^ = Z-

Therefore Z& = 0 and (c) is satisfied. In order to prove (a) we
compute

Zλ(T = XλZ{T + X)Z~ιXrί =

where

T
-* 11

o —
X X

Now it is clear that (b) is also valid. Finally, to show the last as-
sertion we divide the equation in part (a) by λ, and then we take
limit when X tends to infinite to obtain

Z0SZ, = N - 1 .

From (c) (N — I)2 = 0. Since the same property holds for M, and
N Φ 1, it follows that M and ΛΓare similar. The proof of the theorem
is completed by observing that Ne(F), and hence Se(F).

The following theorem is central to our purposes.

THEOREM 2. Let Te ( F ) , then for \X\ > || Γ | | there exist invertible

transformations Yλ: <%? —• <%f 0 £^, and operators Bλ, Cλ e £^{

such that

( i )
+ λ(l + VV*) XV

-(& + X)V* 0 .

where V is a unilateral shift of infinite multiplicity on £ίf\
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(ϋ) \Bλ m < \Cλ\\ ^ m <

Proof. We use the unitary transformation /:
provided by Lemma 2.1. It is easy to check

1

0

0

0

2
- 1

0

1

0

J *
Γl

L

+ VV*

— V

V

0

Now setting Y;. = JZ;> we see that the present theorem follows from
Lemma 2.2.

The above theorem has an interesting connection with the invariant
subspace problem. The next result exhibits such a relationship more
explicitly.

THEOREM 3. Every operator Te(F) can be written, up to simi-
larity and translation by a complex number, as a 2 x 2 operator
matrix acting on έ%f 0 £$f, of the form

Γ A V

[-CV* 0.

where V is a unilateral shift of infinite multiplicity, A is an in-
vertible operator of class (ED) and the operators C, V*AV and V*A~ιV
are also invertible.

Proof. From Theorem 2, for |λ| > || T\\, we can apply the simi-
larity Yλ, and the translation by λ to the operator T to obtain

VV*) XV

0
Tλ= Yλ(T+X)Yr1 =

Let Sχ be the invertible operator

Then

From Theorem 2-(ii) it follows that for |λ[ > m, Cλ + λ is invertible.
On the other hand we observe that 1 + VV* is a positive invertible
operator whose essential spectrum is disconnected. Therefore, also from
Theorem 2-(ii), it follows that, for λ large enough, Bλ + λ(l + VV*) =
Aλ is an invertible operator of class (ED). Let λ0 be any complex

s Γ1

' Lo

ϊjχ -γ ΛJ\1.

Ί .

+ VV

h λ)F*

*) F

0
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number satisfying the above condition and |λo| > max (m, | |T| |) and
set AλQ = A, X0(CλQ + λ0) = C. Now it readily follows that 7*AF and

A V

- C F * 0

are invertible, and hence V*A~1V is also invertible.

REMARK, Some other comments are also pertinent with respect
to the connection between Theorem 2 and the invariant subspace
problem. If in the matrix

= VBλ + MI + vvη
λ L - ( C , + λ)F* OJ

of Theorem 2-(i) I?; and Cλ are compact, for some λ, then Tλ is
polynomially compact and hence ([2]) it has a proper invariant sub-
space. On the other hand, if Bλ vanishes for some λ, then Tλ has an
obvious invariant subspace, namely the range of the projection

1 - F F * 0

0 0.

However, if for some Xl9 Cλl = 0 we don't know, a priori, anything
about the invariant subspaces of Tλl. Nevertheless, some particular
cases are worth noting. Set

B = BhIX, ,

and

+ B V
Tl ~X l / " ' -v* 0

It is easy to see that if ran B is a proper subspace, then so is ran(7\ — 1),
and hence 2\ has a nontrivial invariant subspace. On the other hand,
if ran B = ^ % but B has a proper invariant subspace ^// containing
ran BVV*, then the operator Ύγ again has a proper invariant subspace.
In fact, if P is the projection onto ^ % the closure of

F F * P

- F * 0.

is proper and it is an invariant subspace of ΪΊ because of the relation

Ί+VV*B VJVV* PΊΓVV* PΎVV* PI

-V* OJL-F* OJ l-V* OJlBVV* BP+1\
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In any case, if B is arbitrary, the invariant subspace problem for
operators of the form

+ B V
- F * 0

seems to be hard, even though it is apparently simpler than the general
invariant subspace problem. This is one of the reasons that operators
of the form

A V
- F * 0

where, as above, F is a unilateral shift of infinite multiplicity, are
interesting objects of investigation.

3* Some properties of operators of class (S)+ In this section
we make some remarks concerning operators of the form

A V
- F * 0

acting on ^f 0 ^g^. Even though some of the following results about
these operators are also valid when F is replaced by any isometry in
cS^G^), we prefer to restrict our considerations to operator matrices
of class (S), that is, to the case in which Fis a fixed unilateral shift
of infinite multiplicity on £%f.

In the next two results we summarize some simple but useful
facts concerning operators of class (S). We omit their proofs since
they consist of straightforward verifications.

LEMMA 3.1. The operator

• A V

- F * 0

is normal (hyponormal) if and only if A is normal (hyponormal) and
(A + A*)V= 0.

LEMMA 3.2. All the diagonal invariant (reducing) projections of

A V~
_ - F * 0

are of the form

~P 0
0 V*PV
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where P is an invariant (reducing) projection of A commuting with
VV*.

The following lemma exhibits an alternative way of looking at

A V

-V* 0

as a 3 x 3 operator matrix acting on Sίf 0 <%f 0 3(f. There are
some properties of operators in class (S) that become more transparent
by using this representation.

LEMMA 3.3. There exists a unitary transformation

A V

— V* 0 -

such that L0(β^ 0 {0}) = null V*, L0({0} 0 JT7) = ran V, and for L =
we have

A n Aa 0"

- " • 2 1 - " - 2 2 -L

0 - 1 0

where

Proo/. Let We ^f(β^) be any isometry such that ran TF = null V*,
and define Lo by ί/0(̂ Θ{0} = PΓ, L0{{0}@^ = F. It is clear that Lo satisfies
the required conditions.

Sometimes we can exhibit invariant subspaces of

A V

- F * 0

without being able to say anything about the invariant subspaces of
the operator A.

THEOREM 4. Let Be ^(^f) such that B commutes with VV* and
its essential spectrum E{B) c D+ = {λe C: |λ | < 1, Im λ > 0}. Then

B V

-V* 0.

is in {ED), and hence there exists ε > 0 such that for every Re
\\R\\ < ε and every compact KeJZf (<%?), the operator
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B+R+K V
-V* 0

has two infinite dimensional, complementary hyperinvariant subspaces
(a similar statement holds if D+ is replaced by the set

Zλ_ = {λ G C; I λ I < 1, Im λ < 0}) .

Proof. This is an immediate consequence of Lemma 3.3 and [10],
Theorem 10.

In the last theorem the condition BVV* = VV*B is actually placed
there to facilitate the calculation of the spectrum of

rp
r B η
L - F * O J '

while E{B) c D+ is one of the simplest conditions to require in order
that E(T) be disconnected. In fact, in that case E(T) has at least
three components.

In the next section we impose upon ourselves the task of giving
an example of an operator

A V

-V* 0

in (ED), such that A does not commute with F F * and the spectrum
Σ(A) of A is contained in the real axis.

4* Examples of operators in (ED) Π (S). We base the results
of the present paragraph upon an important algebraic lemma of
Kaplansky ([9], Lemma 5). In order to state such a result we need
to recall some definitions.

A weakly closed *-subalgebra of <2?(£ίf) with identity will be called
a Von Neumann algebra acting on Sίf. We denote by ^/ί2(<S%f) the
ring of 2 x 2 matrices whose entries lie in the Von Neumann algebra

Any Von Neumann algebra which is unitarily equivalent to
for some abelian Von Neummann algebra j y , will be called

a 2-homogeneous Von Neumann algebra. A binormal ring is a Von
Neumann algebra unitarily equivalent to the direct sum ^ί/2(s^)®&;,
for some abelian Von Neumann algebras j y and & ([3], Theorem 1
and 2).

LEMMA (Kaplansky). The Von Neumann algebra generated by any
two projections in £^(^f) is a binormal ring.



INVARIANT SUBSPACES AND OPERATORS OF CLASS (S) 509

COROLLARY 4.1. If Pis any projection in S^{3ίf)^ then the operator

_ - F * 0

has a nontrivial reducing subspace.

Proof. Since the Von Neumann algebra & generated by P and
VV* is a binormal ring and έ%f is infinite dimensional, the commutant
of & is not trivial. Hence, there exists a nontrivial projection
Re ^{^f) commuting with P and VV*. Now, the corollary follows
from Lemma 3.2.

In what follows we summarize some known facts about binormal
rings ([3]) that will be needed in the proof of the next theorem.

Given a binormal ring & there exists a projection F in the center
%* of & which is maximal among all those projections Re % such
that R&R is an abelian Von Neumann algebra. Likewise, the pro-
jection G = 1 — F in %* is maximal among all those projections Re ^
such that R&R is a 2-homogeneous Von Neumann algebra. F and
G are called maximal abelian and maximal 2-homogeneous central
projections of ^? , respectively. It follows that & acts on ran F
and ^/^2{s?f) acts on ran G.

Let s^f be an abelian Von Neumann algebra. There exists an
extremely disconnected, compact, Hausdorff (Stonian) space X such
that Stf is *-isometrically isomorphic to the Banach algebra C(X) of
all continuous complex valued functions on X. Furthermore, it can
be proved ([3], Theorem 4) that the algebra ^/ί2{*$/) is *-isometrically
isomorphic to the Banach algebra ^2(X) of all continuous functions
from X to ,//S2(C) (the ring of 2 x 2 complex matrices) with the
supremum norm and algebraic pointwise operations. Under this iso-
morphism, every element S e ^//2{s^) can be represented as a function
S e ^'/f2(X) As an immediate consequence of the above *-isometric
isomorphism between ^2{s<f) and ^/?2(X) we conclude that the fol-
lowing equivalences are valid:

Se^/f2(<s>f) is invertible if and only if S G ^ I ) is invertible, if
and only if S(x) is invertible in ^/f2(C), for every xeX.

Therefore S is invertible in ^/f2(jϊf) if and only if the determinant
det S(x) Φ 0, for every xeX. On the other hand, it can also be proved
([5], Theorem 2) that given any μ, v e C(X) such that, for each xe X,
μ(x) and v(x) are the two possible eigenvalues of S(x), then there
exists a unitary Ue^/S2(sf) and ρeC(X) such that

μ(x) ρ(x)Ί
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for every xeX, and hence USU* is in the upper triangular form.

THEOREM 5. Let P be any projection in Jίf {££?). Then the
operator

P V

-V* 0

is in (ED). Furthermore, Σ(T) (Z p~ι([0, 1]), where p is the cubic
polynomial p(X) = — λ3 + λ2 — X + 1.

Proof. It can be easily checked that

1 - (P- VV*)2 0

0 V*PV_

Since (P — VV*)2 and V*PV are positive contractions, so is p(T) and
hence from the spectral mapping theorem Σ(T) c ^([O, 1]). It is easy
to verify that the set ^"'([O, 1]) consists of three arcs C3-, j = — 1, 0, 1,
where Co = [0, 1], d is an arc in the open upper half plane whose
extremes are the points i and (1 + ΐi/3/2), and CU is the conjugate
set of d To complete the proof of the theorem it suffices to show
that E(T) ΠC±ιΦ 0 .

From [7], Problem 56, we see that for λ Φ 0, T — X is not in-
vertible if and only if the formal determinant A(X) of T — λ, that is

A(X) = λ2 - XP + VV*

is not invertible. Set Q = VV*. Then XeΣ(T) Π [d U CLJ if and
only if

( * ) λ2 - XP + Q

is not invertible.
Let & — ̂ ^ 2(jy) 0 & (where j>f and & are abelian) be the

binormal ring generated by P and Q, and assume that g?7 is the
Hubert space on which & acts. Since Q is infinite dimensional, ^
is also infinite dimensional. Now let F and G be the maximal abelian
and maximal 2-homogeneous central projections of & respectively, and
let PF(QF) be the restriction of P (of Q) to FS? and let

AF(x) = X2 - XPF + QF .

If G is finite dimensional, then F and Q^ are infinite dimensional. In
this case it is easy to prove either AF(±:i), or AF(1/2(1 ± l/ Si)) have
an infinite dimensional null space. Therefore A(X) has the same pro-
perty, for such values of X and hence ([10], Lemma 4.1) E(T) Π C5Φ 0 ,
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j = ± 1 . Therefore we can restrict our discussion to the case G
infinite dimensional. Furthermore, with a small abuse of notation,
we can suppose G = 1 and that P and Q generate the 2-homogeneous
Von Neumann algebra ^/^{s^f). In this situation the set

{xeX: P(x)Q(x) Φ Q{X)P{X)}

is dense in X, and hence the trace of P(x) and Q(x) are identically
one on X. Since for each x e X the eigenvalues of the matrix Q(x)
are 0 and 1, we can apply a unitary equivalence in ^£2{.S^) so that
the projection Q takes the form

1 0"

0 0_

We assume that this has already been done and we keep the same
notation for P and Q. Setting

—
Ύ(X) β{χ)

we see that a{x) + β{x) = 1, a{x)β{x) - \y(x) |2 = 0 and 0 ^ a(x) ^ 1 for
every x e X. We use the last condition, equation (*) and the fact that
A(X) is invertible if and only if [A(X)\~(x) is invertible, for every
xe X, to conclude that λe Σ(T) Π [Cι U C_L] if and only if, for some
xeX

(**) - λ 3 + λ2 - λ + 1 - a{x) = p(X) - a{x) = 0 .

If a takes infinitely many values on X, then from (**) C±1 contains
infinitely many points, and hence (using again [10], Lemma 4.1)
E(T) Π C±ί Φ 0 . Therefore we can suppose that there are open com-
pact subsets X09 , Xn of Xsuch that a is a constant a(x) = ajy for
x e Xj, 0 ^ j ^ n. Let Gj be the central projection corresponding to
the sets Xjt that is

where χXj is the characteristic function of X,. Since & is infinite

dimensional, one of Gj, say GQ is an infinite dimensional range pro-

jection. Let Po = PG0 and QQ = QG0 (note that in the algebra

[G^//2^)]lG^ we have Qo = ΓJ QIY The final step in this proof

consists of showing that the null space of λ2, — XjP0 + Qo is infinite
dimensional, where λ, e C3 , j = ± 1 are roots of p(λ) = α0. From
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this it will follow that λx and λ_x are eigenvalues of infinite multi-
plicity of T, and hence that E{T) Π C±1 Φ 0 .

Let /So = 1 - a, = β(x), δ0 = T/αo/9o = |τ(x) |, for every x e Xo. If
o0 φ 0 we define the unitary We ^f 2 (J/) by

W(x) =

W(x) =

' Ί{X)

\Ί{X)\
0

p o
1 0"

0 1

, X 6 Xo ,

x e X — Xo ,

then

W(x)P0(x)W*(x) = aQ a e X •

In any case we can assume that P0(x) is a constant matrix, for every
xe Xo. Since G05f is infinite dimensional, it follows that, for j = ± 1

is a singular two by two scalar operator matrix acting in the direct
sum of two copies of an infinite dimensional Hubert space. Therefore

λj - XjPo + Qo

has an infinite dimensional null space, j = ± 1 .

REMARK. The above theorem can be extended without difficulties
to operators of the form

ΘP

-V"

V

0

where \θ\ = 1 and P is any projection in £^{^f). In this case the
polynomial p(X) has to be replaced by ^(λ) = (1/0) (-λ3 + ΘX2 - λ + θ).
For θ = i a much simpler proof can be given ([10], Theorem 9). In
another direction, Theorem 5 can be extended, using similar argu-
ments, to positive contractions A satisfying: A and VV* generate
a binormal ring. However this is not a significant generalization
since few positive contractions, other than projections, generate together
with VV* a binormal ring. Nevertheless, we believe that such a
condition should not be essential in proving that

A V
- F * 0
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is in (ED), for a positive contraction A. Observe that the spectrum
of

1 + FF* V

- V * 0.

is the singleton {1}. Therefore we cannot expect that

A V

be in {ED), for any positive operator A.

REFERENCES

1. N. Aronszajn, and K. T. Smith, Invariant subspaces of completely continuous
operators, Ann. Math., 60 (1954), 345-350.
2. A. R. Bernstein and A. Robinson, Solution of the invariant subspace problem of
K. T. Smith and P. R. Halmos, Pacific J. Math., 16 (1966), 421-431.
3. A. Brown, The unitary equivalence of binormal operators, Amer. J. Math., 76,
No. 2 (1954), 414-434.
4. A. Brown and C. Pearcy, Structure of Commutators of operators, Ann. Math., 82
(1965), 112-127.
5. D. Deckard and C. Pearcy, On matrices over the ring of continuous complex valued
functions on a Stonian space, Proc. Amer. Math. Soc, 14, No. 2, (1963), 322-328.
6. R. G. Douglas and C. Pearcy, On a topology for invariant subspaces, J. Functional
Analysis, 2, No. 3 (1968), 323-341.
7. P. Halmos, A Hilbert Space Problem Book, Van Nostrand (1967), Princeton.
8. , Shifts on Hilbert spaces, J. reine angew, Math., 208, pp. 102-112.
9. I. Kaplansky, Symmetry on Banach algebras, Proc. Amer. Math. Soc, 3 (1952),
396-399.
10. N. Salinas, Operators with essentially disconnected spectrum, to appear in Acta
Sci. Math. (Szeged).

Received January 19, 1971. This paper is a part of the author's doctoral dissertation
written at the University Michigan. The author wishes to express his sincere gratitude
to Prof. Carl Pearcy for his helpful suggestions during the preparation of this paper.

THE UNIVERSITY OF MICHIGAN






