GENERALIZED CONTINUATION

ALAN S. COVER

In this paper the operation of analytic continuation is generalized by relaxing the condition that a direct continuation of a function must have the same values as the original on the intersection of their domains of definition. Thus the generalized continuations of a function can have some other property in common with the original function such as being preimages of a single function under a local integral operator. This generalization is accomplished by developing \mathscr{A} continuation of $\mathscr{F} = \{(f_{\alpha}, S_{\alpha}) | f_{\alpha} \in \emptyset \text{ and } S_{\alpha} \text{ a ball in } \mathscr{C}^n\}$ with respect to a collection of maps, \mathcal{A} , of subsets of \mathcal{F} into F. A must satisfy some compatibility conditions. Many of the proofs in this development parallel those for analytic continuation and lead to the introduction of a manifold on which the generalized continuation is single valued. A generalized continuation of function elements (f_{α}, S_{α}) is achieved when all the f_{α} 's are complex valued functions defined on S_{α} and some examples are given.

In §1 \mathscr{A} -continuation is developed for \mathscr{F} . A manifold $M(\mathscr{F}, \mathscr{A})$ is developed on which \mathscr{A} -continuation is single valued and the complete \mathscr{A} -function is introduced which is similar to the complete analytic function of Weierstrass. Theorem 11 states a necessary and sufficient local condition that $M(\mathscr{F}, \mathscr{A})$ and $M(\mathscr{H}, \mathscr{B})$ be holomorphic. In section 2 \mathscr{A} -continuation is specialized to sets, \mathscr{F} , where f_{α} is a function with S_{α} as its domain of definition. Then (f_{α}, S_{α}) is referred to as a function element. For function elements a compatible set of maps can be considered as a generalization of direct analytic continuation of power series. An indicator function is defined to help describe a complete \mathscr{A} -function. Direct analytic continuation and continuation of the coefficients of a linear Weierstrass polynomial are given as examples.

Given in §3 is the more intricate example of continuing the normalized B_3 -associate of the Bergman-Whittaker Integral Operator. Using Theorem 11 this generalized continuation is shown to be equivalent to analytically continuating the harmonic function represented by the B_3 -associate. This is the example which motivated the study of generalized continuation.

1. Generalized continuation. Let Φ be a set and with each f_{α} in Φ associate ball, S_{α} , in C^{n} and let $\mathscr{F} = \{(f_{\alpha}, S_{\alpha}) | f_{\alpha} \in \Phi\}$. Let x_{α} denote the center of S_{α} and consider a set of operators or maps $\mathscr{H} =$ $\{A_x | x \in C^n\}$ such that

$$A_x$$
: $\{f_lpha \,|\, x \in S_lpha\}
ightarrow \{f_lpha \,|\, x_lpha = x\}$.

In this paper the statement, "a property holds for an expression for every α and x" means that this property holds for all α and x for which the indicated expression is defined.

DEFINITION. A set of operators, \mathcal{A} , is called a compatible set of operators for \mathcal{F} if \mathcal{A} satisfies

(i) for every α , x and y, $f_{\alpha}A_{x} = f_{\alpha}A_{y}A_{x}$

(ii) if $f_{\alpha}A_{x} = f_{\beta}$ then $r_{\beta} \ge r_{\alpha} - d(x_{\alpha}, x_{\beta})$

(iii) for every α , $f_{\alpha}A_{x_{\alpha}} = f_{\alpha}$.

In the preceding definition d(x, y) denotes the distance between the two points $x = (x^1, \dots, x^n)$ and $y = (y^1, \dots, y^n)$ in C^n given by

$$d(x, y) = \left(\sum_{j=1}^{n} |x^{j} - y^{j}|^{2}\right)^{1/2}$$

and r_{α} is the radius of S_{α} .

DEFINITION. If \mathscr{A} is a compatible set of operators and $f_{\alpha}A_{x} = f_{\beta}$, then f_{β} is called a direct generalized \mathscr{A} -continuation of f_{α} or simply a direct \mathscr{A} -continuation of f_{α} .

As in the case of an analytic function of one complex variable an analytic manifold is introduced on which \mathcal{M} -continuation is singlevalued. First, the following definitions are given.

1. A finite sequence of balls, S_1, \dots, S_n is called a chain if the center a_{i+1} of S_{i+1} lies in S_i .

2. If $f_i A_{a_{i+1}} = f_{i+1}$ for $i = 1, \dots, n-1$, then f_1 is said to have been \mathscr{A} -continued along the chain of balls.

3. A curve or path C on C^n is a continuous mapping, μ , of the closed unit interval, I, into C^n and is denoted by $C = (\mu(t), I)$. The inverse curve C^{-1} of $C = (\mu(t), I)$ is the curve (δ, I) where $\delta(t) = \mu(1-t)$ for $t \in I$.

4. Let $C = (\mu, I)$ be a curve in C^n with an element (f_t, S_t) in \mathscr{F} associated with each $t \in I$ such that the center of S_t is $\mu(t)$. If for every t_0 and t_1 such that $\mu(t)$ lies in S_{t_0} for all t in the interval $t_0 \leq t \leq t_1$ we have f_{t_1} is a direct \mathscr{A} -continuation of f_{t_0} , then f_1 is said to be the \mathscr{A} -continuation of f_0 along the curve C.

In order to construct the analytic manifold some properties of \mathscr{A} -continuation are needed. These results are contained in the following Theorems. Some of the proofs are similar to the proofs of the corresponding properties in one complex variable and these proofs are omitted and the reader is referred to [8, pages 63-69]. For the

rest of this section it is assumed that \mathcal{M} is a compatible set of operators.

LEMMA 1. If $x_1, \dots, x_n \in S_\alpha$ and $f_\alpha A_{x_1} \cdots A_{x_n}$ is defined then

$$f_{lpha}A_{x_1}\cdots A_{x_n}=f_{lpha}A_{x_n}$$
 .

The proof of this Lemma is by induction and (i) of the definition of compatibility.

For a given f_0 and any $x_{\alpha} \in S_0$ define $r(x_{\alpha})$ to be the radius of S_{α} , the ball associated with $f_0A_{x_{\alpha}}$. Using (ii) of compatibility the following Theorem can be proven.

THEOREM 1. $r(x_{\alpha})$ is either identically infinite or is a continuous function of x_{α} .

THEOREM 2. Let $f_{\beta} = f_{\alpha}A_x$ and let $C = (\mu, I)$ be a curve such that $|C| \subset S_{\alpha}, \mu(0) = x_{\alpha}, \text{ and } \mu(1) = x_{\beta}$. Then there exist x_1, \dots, x_n on |C| such that

$$f_{\beta}A_{x_1}\cdots A_{x_n}=f_{\alpha}.$$

Lemma 1 is used in the proof of Theorem 2. This Theorem says that if f_{β} is a direct \mathscr{A} -continuation of f_{α} and C is a path in S_{α} which joins x_{β} to x_{α} then there exists an \mathscr{A} -continuation of f_{β} along a chain S_1, \dots, S_n to obtain f_{α} where the centers of the S_j 's, $j = 1, \dots, n$ lie on |C|.

THEOREM 3. If $f_{\alpha}A_x = f_{\beta}A_x = f_{\gamma}$ and if $x_{\alpha} = x_{\beta}$, then $f_{\alpha} = f_{\beta}$.

Proof. By Theorem 2 there exists $z_1, \dots, z_n = y = x_{\alpha} = x_{\beta}$ on the line segment between y and x such that

$$f_{\gamma}A_{z_1}\cdots A_{z_n}=f_{\alpha}.$$

Also substituting for f_{γ} and using (iii) of compatibility and Lemma 1

$$(f_{\beta}A_x)A_{z_1}\cdots A_{z_n}=f_{\beta}$$
.

Hence, $f_{\alpha} = f_{\beta}$.

COROLLARY 1. If $f_{\alpha}A_{x_1}\cdots A_{x_n} = f_{\beta}A_{x_1}\cdots A_{x_n}$ and if $x_{\alpha} = x_{\beta}$, then $f_{\alpha} = f_{\beta}$.

THEOREM 4. Let $\{f_t\}$ be the elements of an \mathscr{A} -continuation of f_0 along the path C to obtain f_1 . Then $\{f_{1-t}\}$ are the elements of an \mathscr{A} -continuation of f_1 along the path C^{-1} and this continuation gives f_0 .

THEOREM 5. \mathcal{A} -continuation of a given element f_0 along a given curve C always leads to the same element f_1 .

THEOREM 6. If an \mathcal{A} -continuation of f_0 along a path C is possible, it can always be accomplished by \mathcal{A} -continuation along a finite chain of balls.

THEOREM 7. Let S_1, \dots, S_n be a chain of balls with centers x_1, \dots, x_n and $C = (\mu, I)$ be a path from x_1 to x_n and passing through x_2, \dots, x_{n-1} such that $\mu(t) \in S_j$ for all $t, t_j \leq t \leq t_{j+1}$ where $\mu(t_j) = x_j$. Then if f_1, \dots, f_n is an \mathscr{A} -continuation along this chain, there exists an \mathscr{A} -continuation of f_0 along C which gives f_n at x_n .

The desired \mathcal{A} -continuation along the curve C for Theorem 7 is given by: for each $t \in [0, 1]$ associate the element $f_t = f_{x_j} A_{\mu}(t)$ where $t_j \leq t \leq t_{j+1}$.

DEFINITION. For every α and β define

$$\mathscr{R}^{\scriptscriptstyle\beta}_{\scriptscriptstylelpha} = \{x | f_{\scriptscriptstylelpha} A_x = f_{\scriptscriptstyleeta} A_x\}$$
 .

THEOREM 8. $\mathscr{R}^{\scriptscriptstyle\beta}_{\scriptscriptstyle\alpha}=\oslash \ or \ \mathscr{R}^{\scriptscriptstyle\beta}_{\scriptscriptstyle\alpha}=S_{\scriptscriptstyle\alpha}\cap S_{\scriptscriptstyle\beta}.$

Proof. Both $\mathscr{R}^{\beta}_{\alpha} \subset S_{\alpha} \cap S_{\beta}$ and $(S_{\alpha} \cap S_{\beta}) \setminus \mathscr{R}^{\beta}_{\alpha}$ are open sets. The theorem follows since $S_{\alpha} \cap S_{\beta}$ is connected.

 \mathscr{N} -continuation need not be possible along a given curve $C = (\mu, I)$. The point $\mu(t_0)$ is a singular point or an \mathscr{N} -singular point relative to C and f_0 if the element f_0 can be continued along the segment 0 to t for all $t < t_0$ but not along the segment if $t > t_0$.

DEFINITION. The (complete) \mathcal{A} -function is the set F of all elements obtainable from a given element by \mathcal{A} -continuation.

From this definition and Theorem 4, it is clear that each element of F can be obtained from any other element of F by \mathscr{A} -continuation. Furthermore, two \mathscr{A} -functions F_1 and F_2 which have a single element in common are identical. Let

 $M_F = \{(x_{\alpha}, f_{\alpha}) | f_{\alpha} \in F \text{ and } x_{\alpha} \text{ is the center of } f_{\alpha}\}$

and for $\rho < r(x_{\alpha})$ let

$$K_
ho(x_lpha,f_lpha)=\{(y,g)\,|\,g=f_lpha A_y \quad ext{and} \quad d(y,x_lpha)<
ho\}$$
 .

Let $\{K_{\rho}(x_{\alpha}, f_{\alpha})\}$ be the base for a topology on M_{F} and the projection map of $K_{\rho}(x_{\alpha}, f_{\alpha}), (y, g) \rightarrow y$ be the coordinate map for M_{F} .

THEOREM 9. $\Gamma = (\mu(t), I)$ where $\mu(t) = (x_t, f_t)$, is a path on M_F if and only if f_t is an \mathcal{A} -continuation along the path $C = (x_t, I)$.

Proof. Clearly (x_t, I) is a path. For any t_0 , let t_1 be such that $x_t \in S_{t_0}$ for all $t, t_0 \leq t \leq t_1$. In particular $x_{t_1} \in S_{t_0}$ and $(x_{t_1}, f_{t_1}) \in K_{\rho}(x_{t_0}, f_{t_0})$ of some $\rho > r_{t_0}$. Hence, $f_{t_1} = f_{t_0}A_{x_{y_1}}$ and we have an \mathscr{S} -continuation.

DEFINITION. The union of all M_F is called the manifold of \mathcal{F} with respect to \mathcal{A} -continuation and is denoted by $M(\mathcal{F}, \mathcal{A})$.

THEOREM 10. M_F is a connected analytic manifold.

DEFINITION. Given \mathscr{A} -continuation for \mathscr{F} and \mathscr{B} -continuations for \mathscr{G} a mapping ψ from $M(\mathscr{F}, \mathscr{A})$ to $M(\mathscr{G}, \mathscr{B})$ is called an \mathscr{AB} morphism if

(i) $\psi(x_{\alpha}, f_{\alpha}) = (y_{\alpha}, g_{\alpha})$ implies $x_{\alpha} = y_{\alpha}$

(ii) $\psi(x_{\alpha}, f_{\alpha}) = (x_{\alpha}, g_{\alpha})$ implies $\psi(x_{\alpha}, f_{\alpha}A_x) = (x_{\alpha}, g_{\alpha}B_x)$ if both $f_{\alpha}A_x$ and $g_{\alpha}B_x$ are defined.

Since an \mathscr{MB} -morphism leaves the first entry in (x_{α}, f_{α}) fixed it is convenient to write ψf_{α} in place of $\psi(x_{\alpha}, f_{\alpha})$. Using this convention (ii) can be stated as:

(ii)' $\psi(f_{\alpha}A_x) = (\psi f_{\alpha})B_x$.

LEMMA 2. ψ a bijective \mathscr{AB} -morphism implies ψ^{-1} is a \mathscr{BA} -morphism.

Proof. Let $\psi f_{\alpha} = g_{\alpha}$ have their center at x and assume $f_{\alpha}A_y = f_{\beta}$ and $g_{\alpha}B_y = g_{\beta}$ both exist.

$$\psi f_{\scriptscriptstyleeta} = \psi(f_{\scriptscriptstylelpha} A_{\scriptscriptstyle y}) = (\psi f_{\scriptscriptstylelpha}) B_{y} = g_{\scriptscriptstylelpha} B_{y} = g_{\scriptscriptstyleeta}$$
 .

Hence,

$$\psi^{\scriptscriptstyle -1}(g_lpha B_y) = \psi^{\scriptscriptstyle -1}g_eta = f_eta = f_lpha A_y = (\psi^{\scriptscriptstyle -1}g_lpha)A_y$$
 .

THEOREM 11. Let ψ be a bijective mapping from $M(\mathscr{F}, \mathscr{A})$ to $M(\mathscr{H}, \mathscr{B})$ such that $\psi(x, f) = (x, h)$. ψ is a homeomorphism if and only if ψ is an \mathscr{AB} -morphism.

Proof. Assume ψ is an \mathscr{AB} -morphism, $\psi f_{\alpha} = h_{\alpha}, (f_{\alpha}, S_{\alpha}) \in \mathscr{F}, (h_{\alpha}, T_{\alpha}) \in \mathscr{F}$, and $U = S_{\alpha} \cap T_{\alpha}$. Then

$$\psi\{(x, f_{\alpha}A_{x}) | x \in U\} = \{(x, h_{\alpha}B_{x}) | x \in U\}$$

implies that ψ and ψ^{-1} are continuous.

Assume ψ is a homeomorphism and using the same notation

$$E \equiv \{(y, h_{\alpha}B_{y}) | y \in U\}$$

is a basic open set in $M(\mathcal{H}, \mathcal{B})$ and ψ a homeomorphism implies $\psi^{-1}(E)$ contains a basic open set of the form

$$\{(y, f_{\alpha}A_y) \mid y \in N_{\alpha}\}$$

where $N_{\alpha} \subset U$ is a ball. ψ preserves first coordinate and is injective implies

(1)
$$\psi(y, f_{\alpha}A_{y}) = (y, h_{\alpha}B_{y})$$

for all y in N_{α} . Hence, $\psi f_{\alpha} = h_{\alpha}$ implies there exists a ball N_{α} such that (1) holds for y in N_{α} .

Let z be in S and L denote the line segment from x_{α} to z. For each x in L let $f_x = f_{\alpha}A_x$ and N_x be the ball where (1) holds for f_x . Let M_x be the ball concentric with N_x and having a radius which is one fourth the radius of N_x . L compact implies there exist $\{M_{x_j} | j = 1, \dots, n\}$ which covers L. Then assuming $x = x_1, x_2, \dots, x_n = z$ are ordered along L then x_j is in $N_{x_{j-1}}$. Hence,

$$f_lpha A_z = f_lpha A_{x_2} A_{x_3} \cdots A_{x_n}$$

and since (1) holds for f_{x_j} in N_{x_j}

$$\psi(f_{\alpha}A_{z}) = \psi[(f_{\alpha}A_{x_{2}}\cdots A_{x_{n-1}})A_{x_{n}}] = [\psi(f_{\alpha}A_{x_{2}}\cdots A_{x_{n-1}})]B_{x_{n}}$$
$$= (\psi f_{\alpha})B_{x_{2}}\cdots B_{x_{n}} = (\psi f_{\alpha})B_{z}.$$

Therefore, (1) holds in S which is the ball in which both $f_{\alpha}A_x$ and $h_{\alpha}B_x$ are defined.

COROLLARY. If ψ is a bijective \mathscr{AB} -morphism and $\psi(f_0, x_0) = (g_0, x_0)$ then M_F is homeomorphic to M_G where F and G are the \mathscr{A} -function and \mathscr{B} -function of f_0 and g_0 , respectively.

THEOREM 12. Let ψ be a bijective \mathscr{AB} -morphism and $C = (\alpha(t), I)$ be a path in C^n . $\{f_t | t \in I\}$ is an \mathscr{A} -continuation along C if and only if $\{g_t | \psi(x(t), f_t) = (x(t), g_t) \text{ and } t \in I\}$ is a \mathscr{B} -continuation along C.

Proof. From Theorem 9 $\{f_t | t \in I\}$ an \mathcal{M} -continuation along C is equivalent to $\{(x(t), f_t) | t \in I\}$ being a path on $M(\mathcal{F}, \mathcal{M})$. Since ψ is homeomorphism $\{\psi(x(t)), f_t) | t \in I\}$ is a path on $M(\mathcal{G}, \mathcal{B})$ and this is equivalent to $\{g_t | \psi(x(t), f_t) = (x(t), g_t), t \in I\}$ being a \mathcal{B} - continuation along C.

2. Examples of generalized continuation of function elements. The elements of Φ are called function elements if (f_{α}, S_{α}) in \mathscr{F} implies f_{α} is a complex valued function whose domain of definition is S_{α} or $S_{\alpha} \times T$ where T is fixed (see §3). In general, for y in $S_{\alpha} \cap S_{\beta}$, where (f_{α}, S_{α}) and $(f_{\alpha}A_x, S_{\beta})$ are in \mathscr{F}

$$(f_{\alpha}A_{x})(y)\neq f_{y}(y)$$

as can be seen in the examples. The Complete Weierstrass Analytic is quite similar to the complete \mathscr{A} -continuation of function elements except the values of a function element do not have to agree with its direct \mathscr{A} -continuation.

DEFINITION. Let F be a complete \mathcal{A} -function generated by a function element then the single-valued function, f, defined on M_F by

$$f[(x_{\alpha}, f_{\alpha})] = f_{\alpha}(x_{\alpha})$$

is called the indicator function of F.

In the case of \mathscr{A} -continuation of function elements the Law of Permance of Functional Equations can be applied, however, the functional equations to which it applies depends on the particular \mathscr{A} -continuation. Two examples of generalized continuation of function elements are given.

1. Analytic Continuation: Let Φ denote the set of absolutely convergent power sesies of one complex variable with positive radius of convergence,

$$arPhi = \left\{ P_{lpha}(z) = \sum\limits_{n=0}^{\infty} a_n^{(lpha)} (z-z_{lpha})^n
ight\}$$
 ,

and for P_{α} in Φ let S_{α} be its disc of convergence so that

$$\mathscr{F} = \{(P_{\alpha}, S_{\alpha})\}$$
 .

Analytic continuation can be represented by

$$\mathscr{M} = \{A_z\}_{z \in C}$$

where A_z is the operator which expresses a function element defined in a neighborhood of z as a power series about the point z. In this case it is known that \mathscr{F} and \mathscr{A} satisfy the conditions for being a compatible set of operators. Indeed \mathscr{A} is referred to as a direct analytic continuation. The indicator function in this example is the multivalued analytic function which is generated by the power series.

3. Continuing the coefficients of linear Weierstrass Polynomials. Let Φ be the functions defined by a power series with

positive radius of convergence and which have the value zero at the center of their disc of convergence,

$$arPsi_{y}(z) = \left\{f_{y}(z) = \sum\limits_{n=1}^{\infty} a_{n}^{(lpha)}(z-z_{0})^{n}
ight\}$$
 ,

and for f_{α} in Φ let S_{α} be its disc of convergence. Now a set of operators, \mathscr{W} , can be defined on Φ by fW_{z_1} is defined by the power series of $f(z) - f(z_1)$ with center z_1 whenever z_1 is in the disc of convergence of f. This set of operators is compatible and hence gives a generalized continuation, \mathscr{W} -continuation, on \mathscr{F} . Note, that indicator function of any complete \mathscr{W} -function is

$$(f W_z)(z) \equiv 0$$
.

For \mathscr{W} -continuation the Law of Permance of Functional Equations is quite similar to that of analytic continuation. For instance the \mathscr{W} continuation of an algebraic function element is again an algebraic function element.

This example can be generalized to C^n by letting S_{α} be the largest ball in which the power series converges absolutely. Then f_0 in Φ can be considered as the coefficient of a linear Weierstrass Polynomial which is regular in W,

$$P(w, z) = (w - w_0) + f_0(z)$$

which has center (w_0, z_0) . [6, page 68]. If (w_1, z_1) is a zero of P and z_1 is S_0 then representing the zero set of P in a neighborhood of (w_1, z_1) is the Weierstrass Polynomial with center (w_1, z_1) , namely,

$$(w - w_1) + (f W_{z_1})(z)$$
.

Hence, \mathcal{W} -continuation continues the coefficient of a linear Weierstrass Polynomial.

4. Continuing the normalized B_3 -associate of the Bergman Integral Operator. Let $\mathscr{L} = \{\zeta \mid |\zeta| = 1\}$ and set X = (x, y, z) in E^3

(1)
$$u = u(X, \zeta) = x + Z\zeta + Z^*\zeta^{-1}$$

 $Z = \frac{1}{2}(iy + z)$, and $Z^* = \frac{1}{2}(iy - z)$.

Bergman introduced the integral operator

(2)
$$H(X) = \frac{1}{2\pi} \int_{\mathscr{L}} f(u, \zeta) \frac{d\zeta}{\zeta}$$

where f is an analytic function of the complex variables u and ζ

having at most a finite number of isolated singularities [1]. The integral operator defined in (2) is called the Bergman-Whittaker Integral Operator. Bergman has shown that in a neighborhood of X_0 (2) represents a harmonic function [1, 2]. The function f in (2) is called the B_3 -associate of the harmonic function which it defines. B_3 associates of the form

(3)
$$f(u, \zeta) = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} a_{n,k} u^n \zeta^k$$

where (3) converges absolutely for u in a neighborhood, N, of zero and uniformly for u in a compact subset of N and ζ on \mathscr{L} are called normalized B_3 -associates. Then (2) gives a one to one correspondence between normalized B_3 -associates and harmonic functions which are regular in a neighborhood of the origin [3, 4]. A translation of the origin in (1) gives

$$(4) u(X - X_0, \zeta) = (x - x_0) + (Z - Z_0)\zeta + (Z^* - Z_0^*)\zeta^{-1}$$

(5)
$$f_{\alpha}(X,\zeta) \equiv f_{\alpha}(u(X-X_0,\zeta),\zeta) = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} a_{n,k}^{(\alpha)} [u(X-X_0,\zeta)]^n \zeta^k.$$

Then (2) gives a one-to-one correspondence between normalized B_3 -associates centered at X_0 , $f_{\alpha}(u(X - X_0, \zeta), \zeta)$, and harmonic functions regular in a neighborhood of X_0 .

The B_{s} -associate may be defined for all u and ζ but the Bergman integral operator only represents the harmonic function in a domain, called the domain of association, which is usually not all of E^{s} [4]. Rational B^{s} -associates generate harmonic functions which are not in general regular throughout E^{s} . The space is divided by surfaces of separation into a finite number of regions. As X moves from one domain of association to another, a new harmonic function is defined. If X changes from one demain of association to another the singular points of $f(u, \zeta)$ may enter or leave the interior of the curve of integration. In this section the generalized continuation developed for normalized B_{s} -associates overcomes this difficulty. That is, generalized continuations of a normalized B_{s} -associate generate the same harmonic function.

A. S. COVER

(6)
$$f_{\alpha}(X,\zeta) = f_{\alpha}(u(X,\zeta),\zeta) = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} a_{n,k}[u(X,\zeta)]^{n} \zeta^{k}$$

is normalized B_s -associate which is centered at the origin. To apply B_{X_0} to obtain a normalized B_s -associate which is centered at X_0 the steps are:

(A) In (6) express $u(X, \zeta)$ as

$$u(X-X_{\scriptscriptstyle 0},\,\zeta)+u(X_{\scriptscriptstyle 0},\,\zeta)=u(X-X_{\scriptscriptstyle 0},\,\zeta)+x_{\scriptscriptstyle 0}+Z_{\scriptscriptstyle 0}\zeta+Z^*\zeta^{-1}$$

and then expand this last four termed expression in a multinomial expansion to obtain

$$(7) \qquad \sum_{n=0}^{\infty} \sum_{k=-1}^{n} a_{n,k} \left(\sum_{r=0}^{n} \sum_{s=0}^{n-r-s} \sum_{t=0}^{n-r-s} b_{r,s,t} x_{0}^{q} Z_{0}^{s} Z_{0}^{*t} [u(X-X_{0},\zeta)]^{r} \zeta^{s-t} \right) \zeta^{k}$$

where $b_{r,s,t}$ is the multinomial coefficient and q = n - r - s - t.

(B) If (7) converges absolutely as a multiple series we can add the series in any admissible manner [8; page 114]. In particular (7) can be expressed as

(8)
$$f^*_{\alpha}(X,\zeta) = \sum_{r=0}^{\infty} \sum_{\nu=-\infty}^{\infty} c_{r,\nu} [u(X-X_0,\zeta)]^r \zeta^{\nu}$$

where $c_{r,v}$ is obtained by adding all the coefficients for a fixed r and v.

(C) Normalize f^* , that is, remove all the terms from (8) for which |v| > r. This gives the direct \mathscr{B} -continuation

(9)
$$f_{\alpha}B_{X_{0}} = \sum_{r=0}^{\infty} \sum_{v=-r}^{r} c_{r,v} [u(X - X_{0}, \zeta)]^{r} \zeta^{v}.$$

Note that f_{α}^{*} is an analytic continuation of f_{α} , hence, the integrals of f_{α}^{*} and f_{α} defined in (2) will be equal for X in the intersection of the domains of definition of f_{α}^{*} and f_{α} . Moreover, normalizing f_{α}^{*} does not change the value of the integral (2) as can be seen by applying the Residue Theorem to a term by term integration of the series. This implies that Bergman's Integral operator carries direct- \mathscr{B} -continuation of normalized B_{3} -associates over into analytic continuation of their respective harmonic functions.

To show that \mathscr{B} is a compatible set of operators it is necessary to show that

(10)
$$r_0 \geq r_\alpha - d(X_0, 0)$$

where r_0 is the radius of the ball of definition of $f_0 = f_{\alpha}B_{X_0}$. First, note that

(11)
$$|u(X - X_{\beta}, \zeta)| \leq \sqrt{2} d(X, X_{\beta})$$

and that for every R there exists a \hat{X} and $\hat{\zeta}$ such that

$$|u(X-\hat{X},\hat{\zeta})|=\sqrt{2}d(X,\hat{X})=\sqrt{2R}\;.$$

Hence, if r_{α} is the radius of S_{α} then $\sqrt{2} r_{\alpha}$ is the radius of convergence of

(12)
$$\sum_{n=0}^{\infty} \left(\sum_{k=-n}^{n} |a_{n,k}| \right) u^{n} .$$

Second, if X = (x, y, z) and is represented by (x, Z, Z^*) then $\tilde{X} = (|x|, |Z|, |Z^*|)$ has the property that $d(X, 0) = d(\tilde{X}, 0)$.

In examining the absolute convergence of (7)

$$|b_{r,s,t}x_0^q Z_0^s Z_0^{st}[u(X-X_0,\zeta)]^r \zeta^{s-t}| \equiv C_{r,s,t}$$

are the terms in the expansion of

$$[u(X - X_0, \zeta) + u(\widetilde{X}_0, 1)]^n$$
.

Hence, (7) converges absolutely for $d(X, X_0) < r_{\alpha} - d(X_0, 0)$ since (11) and (12) imply that

(14)

$$\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \sum_{r=0}^{n} \sum_{s=0}^{n-r} \sum_{t=0}^{n-r-s} |a_{n,k}C_{r,s,t}| \\
\leq \sum_{n=0}^{\infty} \left(\sum_{k=-n}^{n} |a_{n,k}| \right) [|u(X - X_0, \zeta)| + u(\widetilde{X}_0, 1)]^n \\
\leq \sum_{n=0}^{\infty} \left(\sum_{k=-n}^{n} |a_{n,k}| \right) [\sqrt{2} d(X, X_0) + \sqrt{2} d(\widetilde{X}_0, 0)]^n \\
\leq \sum_{n=0}^{\infty} \left(\sum_{k=-n}^{n} |a_{n,k}| \right) [\sqrt{2} \rho]^n$$

where $ho < r_{lpha}$. This convergence is uniform on compact sets of $S_{lpha} \cap S_0$.

Let $\mathscr{H} = \{H_{\alpha}, S_{\alpha}\}\$ where H_{α} is a regular harmonic function represented by a power series whose largest ball of absolute convergence is S_{α} . The Bergman Integral Operator defines a map $\psi: M(\mathscr{N}, \mathscr{B}) \to M(\mathscr{H}, \mathscr{A})$ where \mathscr{A} is analytic continuation and ψf_{α} is given by (2). From previous statements it is noted that ψ is injective and as noted in (c) ψ is $\mathscr{R}\mathscr{A}$ -morphism. Theorem 11 implies that $M(\mathscr{N}, \mathscr{B})$ is homeomorphic to $M(\mathscr{H}, \mathscr{A})$ and the Corollary implies that the manifold obtained by normalized continuation of f_{α} is the same as the manifold obtained by analytically continuing the harmonic function $H_{\alpha} = \psi f_{\alpha}$.

In particular when

$$f_{\alpha}(X,\zeta) = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} a_{n,k} [u(X - X_{\alpha}, \zeta)]^n \zeta^k$$

with center X_{α} is \mathscr{B} -continued to the function

A. S. COVER

$$f_{lpha}B_{X_{0}}(X,\,\zeta) = \sum_{n=0}^{\infty}\sum_{k=-n}^{n}b_{n,k}[u(X-X_{0},\,\zeta)]^{n}\zeta^{k}$$

with center X_0 the $b_{n,k}$'s can be calculated in the following cases. (i) $b_{n,k} = \sum_{j=n}^{\infty} a_{n,k} (j!/n!(j-n)!) d^{j-n}$ when $X_0 - X_{\alpha} = (d, 0, 0)$ (ii) $b_{n,k} = \sum_{j=n}^{\infty} \sum_{h=0}^{j} a_{j,n+2h-j-k} (j!/(h-n)!n!(j-h)!) (id/2)^{j-n}$ when $X_0 - X_{\alpha} = (0, d, 0)$, and (iii) $b_{n,k} = \sum_{j=n}^{\infty} \sum_{h=n}^{j} a_{j,n+2h-i-k} (-1)^{h-n} (j!/(h-n)!n!(j-h)!) (d/2)^{j-n}$ when $X_0 - X_{\alpha} = (0, 0, d)$. For example if

$$f_0(X,\zeta) = \sum_{n=0}^{\infty} \sum_{k=-n}^n [u(X,\zeta)]^n \zeta^k$$

which has center (0, 0, 0) is \mathscr{B} -continued using above expressions it is found that the \mathscr{B} -function determined by f_0 is

$$F = \{ (X_{lpha}, f_{lpha}) \, | \, X_{lpha} = (a, \, b, \, c) \, , \quad a
eq 1 \quad ext{and} \quad b
eq 0 \} \, ,$$

where

$$f_{lpha}(X,\,\zeta) = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \left(rac{1}{1\,-\,(a\,+\,bi)}
ight)^{n+1} (u(X-\,X_{lpha},\,\zeta))^n \zeta^k \;.$$

Hence, f_0 is the B_3 -associate of a harmonic function h_0 whose analytic extensions are single-valued since F is single-valued. Also the analytic continuation of h_0 is regular everywhere except for $\{(x, y, z) | x+iy=1\}$.

Indeed it can be shown by using (2) that in a neighborhood of (0, 0, 0)

$$h_0(x, y, z) = rac{1}{1 - (x + iy)} \; .$$

In a less tedious manner one can observe that

$$f_0(X, \zeta) = rac{1}{1-\zeta} \Big\{ rac{1}{1-u\zeta^{-1}} - rac{\zeta}{1-u\zeta} \Big\}$$

and hence is the normalized B_3 -associate of the same h_0 [5, Theorem 2.1].

For \mathscr{B} -continuation the indicator function of a complete \mathscr{B} -function generated by (f_{α}, S_{α}) is the complete \mathscr{A} -function generated by $(\psi f_{\alpha}, S_{\alpha})$ as can be seen from (2). Hence, the indicator function for \mathscr{B} -continuation is the harmonic function obtained by the integral operators.

References

1. S. Bergman, Zur Theorie der Ein- und mehrwertigen harmonischen Funktionen des dreidimensional Raumes, Math. Z., 24 (1926), 641-699.

2. ____, Zur Theorie der algebraischen potential Funktionen des dreidimensional Raumes, Math. Annalen **99** (1928), 629-659, **101** (1929), 534-558.

3. _____, On solutions with algebraic character of linear partial differential equations, Trans. Math. Soc. 68 (1950), 461-507.

4. _____, Integral Operators in the Theory of Linear Partial Differential Equations, Ergebnisse der Math. N. F. 23, Rpringer, 1961.

5. A. S. Cover, Domains of regularity of a harmonic function determined by the coefficients of its power series, Ann. Mat. Pura Appl., **62** (1966), 11-28.

6. Robert Gunning, and Hugo Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall Inc., Englewood Cliffs, N. J., 1965.

7. Einar Hille, Analytic Function Theory, Vol. I, Ginn and Company, Boston, 1950.

8. G. Springer, Introduction to Ricmann Surfaces, Addison-Wesley Publishing Co., Reading, Mass., 1957.

Received December 22, 1970 and in revised December 4, 1971.

CLEMSON UNIVERSITY