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GENERALIZED CONTINUATION

ALAN S. COVER

In this paper the operation of analytic continuation is
generalized by relaxing the condition that a direct continua-
tion of a function must have the same values as the original
on the intersection of their domains of definition. Thus the
generalized continuations of a function can have some other
property in common with the original function such as being
preimages of a single function under a local integral opera-
tor. This generalization is accomplished by developing
continuation of ^~ = {(fa, Sa)\faeΦ and Sa a ball in
with respect to a collection of maps, J ^ of subsets of
into J^7 J ^ must satisfy some compatibility conditions.
Many of the proofs in this development parallel those for
analytic continuation and lead to the introduction of a mani-
fold on which the generalized continuation is single valued.
A generalized continuation of function elements (/α, Sa) is
achieved when all the /α 's are complex valued functions de-
fined on Sa and some examples are given.

In § 1 .^continuation is developed for j ^ . A manifold
is developed on which j^-continuation is single valued and the complete
J^function is introduced which is similar to the complete analytic
function of Weierstrass. Theorem 11 states a necessary and sufficient
local condition that M(jβΓ, jzf) and M{3ίf, &) be holomorphic. In
section 2 .^continuation is specialized to sets, J^~, where fa is a func-
tion with Sa as its domain of definition. Then (/α, Sa) is referred to
as a function element. For function elements a compatible set of
maps can be considered as a generalization of direct analytic continua-
tion of power series. An indicator function is defined to help describe
a complete J^-function. Direct analytic continuation and continuation
of the coefficients of a linear Weierstrass polynomial are given as
examples.

Given in § 3 is the more intricate example of continuing the nor-
malized i?3-associate of the Bergman-Whittaker Integral Operator.
Using Theorem 11 this generalized continuation is shown to be
equivalent to analytically continuating the harmonic function repre-
sented by the J33-associate. This is the example which motivated the
study of generalized continuation.

1* Generalized continuation* Let Φ be a set and with each fa

in Φ associate ball, Sa, in Cn and let ^ = {(/α, Sa)\faeΦ}. Let xa

denote the center of Sa and consider a set of operators or maps
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{Ax I x e Cn) such that

Ax: {fa\xeSa}-*{fa\xa = %} .

In this paper the statement, "a property holds for an expression
for every a and x" means that this property holds for all a and x
for which the indicated expression is defined.

DEFINITION. A set of operators, J^J is called a compatible set of
operators for j ^ if s^f satisfies

( i ) for every a, x and y, faAx = faAyAx

(ii) if faAx = fβ then r ^ ra - d(xa, xβ)
(iii) for every α, /αAββ = /«.
In the preceding definition d(x, y) denotes the distance between

the two points x = (x\ •••,&*) and 2/ = (y\ *",yn) in C% given by

d(x,y) =

and rα is the radius of S«.

DEFINITION. If j ^ is a compatible set of operators and faAx ==
/s, then /^ is called a direct generalized J ^ continuation of fa or simply
a direct discontinuation of fa.

As in the case of an analytic function of one complex variable
an analytic manifold is introduced on which ^^continuation is single-
valued. First, the following definitions are given.

1. A finite sequence of balls, Si, •••, Sn is called a chain if the
center ai+1 of Si+1 lies in Si.

2. If fiAa.+1 = fi+1 for i = 1, , n — 1, then fx is said to have
been j^cont inued along the chain of balls.

3. A curve or path C on Cn is a continuous mapping, μ> of the
closed unit interval, I, into Cn and is denoted by C — (μ(t), I ) . The
inverse curve C"1 of C = (μ(t), I) is the curve (δ, I) where δ(t) —
μ(l - t) for t e I.

4. Let C = (μ, I) be a curve in Cn with an element (ft, St) in
^ associated with each tel such that the center of St is μ{t). If
for every t0 and tγ such that μ(t) lies in Sh for all t in the interval
t0 <L t ^tγ we have ftl is a direct J^continuation of / ίo, then ft is
said to be the ^^-continuation of f0 along the curve C.

In order to construct the analytic manifold some properties of
J^continuation are needed. These results are contained in the fol-
lowing Theorems. Some of the proofs are similar to the proofs of
the corresponding properties in one complex variable and these proofs
are omitted and the reader is referred to [8, pages 63-69]. For the
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rest of this section it is assumed that <s$f is a compatible set of
operators.

LEMMA 1. If xl9 , xn e Sa and faAXl AXι is defined then

JaAXl AXn = jaAXn

The proof of this Lemma is by induction and (i) of the definition
of compatibility.

For a given f0 and any xa e So define r(xa) to be the radius of Sa9

the ball associated with f0AXa. Using (ii) of compatibility the fol-
lowing Theorem can be proven.

THEOREM 1. r(xa) is either identically infinite or is a continuous
function of xa.

THEOREM 2. Let fβ = faAx and let C — (μ, I) be a curve such
that \C\aSa, μ(0) — xa, and μ(ϊ) — xβ. Then there exist xl9 * ,xn

on \C\ such that

JβAXl AXn = j a

Lemma 1 is used in the proof of Theorem 2. This Theorem says
that if fβ is a direct J^continuation of fa and C is a path in Sa which
joins xp to xa then there exists an .^continuation of fβ along a chain
Sx, , Sn to obtain fa where the centers of the S/s, j = 1, , n lie
on \C\.

THEOREM 3. If faAx = fβAx = fr and if xa = xβ, then fa = fβ.

Proof. By Theorem 2 there exists zί9 , zn = y = xa = xβ on the
line segment between y and x such that

JyAZl Az% — Ja

Also substituting for f7 and using (iii) of compatibility and Lemma 1

(fβAx)AZl Az% = fβ .

Hence, fa = fβ.

COROLLARY 1. If faAXl . AXn = fβAXl . A.n and if xa = xβ,
then fa=fβ.

THEOREM 4. Let {ft} be the elements of an ^/-continuation of fQ

along the path C to obtain fx. Then {f-.t} are the elements of an
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j^-continuation of ft along the path C"1 and this continuation gives

u
THEOREM 5. Jzf-continuation of a given element fQ along a given

curve C always leads to the same element fx.

THEOREM 6. If an jzf-continuation of f0 along a path C is possi-
ble, it can always be accomplished by Jzf-continuatίon along a finite
chain of balls.

THEOREM 7. Let Sly , Sn be a chain of balls with centers
xl9 , xn and C = (μ, I) be a path from xγ to xn and passing through
x2, , xn-ι such that μ(t) e S3- for all t, t5 ^ t ^ tj+ι where μ(tj) = xό.
Then if fu , fn is an J^-continuation along this chain, there exists
an J^f-continuation of f0 along C which gives fn at xn.

The desired j^-continuation along the curve C for Theorem 7 is
given by: for each t e [0,1] associate the element ft — fx.Aμ(t) where

DEFINITION. For every a and β define

&> = {x\faAx = fβAx} .

THEOREM 8. ^ = 0 or &£ = Saf) Sβ.

Proof. Both ^ c Sa Π Sβ and (Sa Π Sβ)\&J! are open sets. The
theorem follows since Sa Π Sβ is connected.

J ^ continuation need not be possible along a given curve C=(μ, / ) .
The point μ(t0) is a singular point or an J ^ singular point relative to
C and /o if the element f0 can be continued along the segment 0 to
t for all t < t0 but not along the segment if t > t0.

DEFINITION. The (complete) j^function is the set F of all ele-
ments obtainable from a given element by J ^ continuation.

From this definition and Theorem 4, it is clear that each element
of F can be obtained from any other element of F by ^^continuation.
Furthermore, two J ^ functions Fλ and F2 which have a single element
in common are identical. Let

MF = {(xa, fa) \fa e F and xa is the center of /„}

and for p < r(xa) let

KP{xa, fa) = {(y, g)\g = f a A y a n d d(y, xa) < p] .
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Let {Kp(xa,fa)} be the base for a topology on MF and the projection
map of Kp(xa9 fa), (y, g)—+v be the coordinate map for MF.

THEOREM 9. Γ = (μ(t)9I) where μ(t) = {xuft)9 is a path on MF

if and only if ft is an sO-continuation along the path C = (xt, I).

Proof. Clearly (xt, I) is a path. For any t0, let tt be such that
xt G St0 for all Mo ̂  ^ t,. In particular xh e Sto and (xh, fh) e Kp(xto, ft)
of some p > rtQ. Hence, fH = ftQΛx and we have an j^continuation.

DEFINITION. The union of all MF is called the manifold of
with respect to .^continuation and is denoted by

THEOREM 10. MF is a connected analytic manifold.

DEFINITION. Given discontinuation for &~ and ̂ -continuations
for & a mapping ψ from M{^, Szf) to M(&, &) is called an sf.έ%-
morphism if

(i) Ψ(xa,fa) = (ya, Qa) implies xa = ya

(ii) ψ(xa, fa) = (xa, ga) implies φ(xa, faA9) = (xa, g*Bx) if both faAx

and gaBx are defined.
Since an j^^-morphism leaves the first entry in (xa, fa) fixed it

is convenient to write ψfa in place of φ(xa,fa). Using this convention
(ii) can be stated as:

(ii)' ψ(faAx) = (ψfa)Bx.

LEMMA 2. ψ a bijective s^^-morphism implies ψ"1 is a iso-
morphism.

Proof. Let ψfa — ga have their center at x and assume faAy — fβ

and gJBy = gβ both exist.

Ψfβ = Ψ(faAy) = {ffa)By - gaBy - gβ .

Hence,

ψ~ι(gaBy) - ψ-'gβ =fβ= faAy = (ψ -^A,, .

THEOREM 11. Let ψ be a bijective mapping from M(^", SO) to
M{3ίf, έ%) such that ψ{x, f) = (x, h). ψ is a homeomorphism if and
only if ψ is an

Proof. Assume ψ is an j^^-morphism, ψfa = ha, (fa, Sa) e
{K, Ta) G ̂ 7 a n d U = Sa Π Ta. T h e n

x, faAx)\xeU} = {(x, haBx)\xeU}
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implies that ψ and ψ"1 are continuous.

Assume ψ is a homeomorphism and using the same notation

is a basic open set in M(3t?\ &) and ψ a homeomorphism implies
ψ~~\E) contains a basic open set of the form

{(y,faAy)\yeNa}

where Naa U is a ball, ψ preserves first coordinate and is injective
implies

(1) Ψ(v,f«Av) = (y,KBy)

for all y in Na. Hence, <ψfa = ha implies there exists a ball Na such
that (1) holds for y in Na.

Let 2 be in S and L denote the line segment from xa to z. For each
a? in L let Λ =/αAβ and Nx be the ball where (1) holds for fx. Let Mx be
the ball concentric with Nx and having a radius which is one fourth the
radius of Nx. L compact implies there exist {MXj \j — 1, , n} which
covers L. Then assuming x = xl9 x2, , xn = z are ordered along L
then Xj is in N,.^. Hence,

X3

f a A z = faAX2AX3 --- AX

and since (1) holds for fx in ΛΓ̂ .̂

= ψ[(faAX2 AXnJAx%] - [ f (ΛA β l . . . AXnJ]BXn

- (ffa)BX2 5 β w

Therefore, (1) holds in S which is the ball in which both faAx and
haBx are defined.

COROLLARY. If ψ is a bijective j^?-morphism and ψ(f09 %o) =
(̂ o, ô) then MF is homeomorphic to MG where F and G are the *$/-
function and ^-function of f0 and g0, respectively.

THEOREM 12. Let ψbe a bijective Jzf^-morphism and C—{a{t), I)
be a path in Cn. {ft\te 1} is an Jάf-continuation along C if and only
if {ϋt\ir{x{t),ft) = (x(t), gt) and tel} is a &-continuation along C.

Proof. From Theorem 9 {ft\tel} an J^-continuation along C is
equivalent to {{x(t),ft)\tel} being a path on M(^~, J&). Since ψ is
homeomorphism {ψ(x(t)),ft)\tel} is a path on M(g^, &) and this is
equivalent to {gt\ψ(x(t),ft) — (»(ί), Qt)9tel} being a &- continuation
along C.
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2* Examples of generalized continuation of function ele-
ments* The elements of Φ are called function elements if (fa, Sa) in
J^ implies fa is a complex valued function whose domain of defini-
tion is Sa or Sa x T where T is fixed (see §3). In general, for y in
Sa ΓΊ Sβ, where (fa, Sa) and (faAX9 Sβ) are in ^

(faAx){y)Φfy{y)

as can be seen in the examples. The Complete Weierstrass Analytic
is quite similar to the complete j^-continuation of function elements
except the values of a function element do not have to agree with its
direct J^continuation.

DEFINITION. Let F be a complete j ^ function generated by a
function element then the single-valued function, /, defined on Mp by

is called the indicator function of F.
In the case of jy-continuation of function elements the Law of

Permance of Functional Equations can be applied, however, the func-
tional equations to which it applies depends on the particular J^con-
tinuation. Two examples of generalized continuation of function ele-
ments are given.

1. Analytic Continuation: Let Φ denote the set of absolutely
convergent power sesies of one complex variable with positive radius
of convergence,

Φ = lPa(z) - Σ <*<»>(* - z A ,
I Λ = 0 J

and for Pa in Φ let Sa be its disc of convergence so that

&- - {(Pβ, Sa)} .

Analytic continuation can be represented by

= {Az}zeC

where Az is the operator which expresses a function element defined
in a neighborhood of z as a power series about the point z. In this
case it is known that ά?" and Szf satisfy the conditions for being a
compatible set of operators. Indeed Szf is referred to as a direct
analytic continuation. The indicator function in this example is the
multivalued analytic function which is generated by the power series.

3* Continuing the coefficients of linear Weierstrass Poly-
nomials* Let Φ be the functions defined by a power series with
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positive radius of convergence and which have the value zero at the
center of their disc of convergence,

and for fa in Φ let Sa be its disc of convergence. Now a set of
operators, Ύ^ can be defined on Φ by fWZl is defined by the power
series of f(z) — f{z^) with center zx whenever zx is in the disc of con-
vergence of /. This set of operators is compatible and hence gives a
generalized continuation, ^^continuation, on ^C Note, that indica-
tor function of any complete "^function is

(fWz)(z) EE 0 .

For ^^continuation the Law of Permance of Functional Equations is
quite similar to that of analytic continuation. For instance the "W"-
continuation of an algebraic function element is again an algebraic
function element.

This example can be generalized to Cn by letting Sa be the largest
ball in which the power series converges absolutely. Then f0 in Φ
can be considered as the coefficient of a linear Weierstrass Polynomial
which is regular in W,

P(w, z) = (w - w0) + fo(z)

which has center (w0, z0). [6, page 68]. If (wl9 z,) is a zero of P and
z1 is So then representing the zero set of P in a neighborhood of (wl9 zt)
is the Weierstrass Polynomial with center (wl9 zj9 namely,

(w - wd + (fWz)(z) .

Hence, ^^continuation continues the coefficient of a linear Weierstrass
Polynomial.

4* Continuing the normalized .^associate of the Bergman
Integral Operator* Let ^f = {ζ| | ζ | = 1} and set X = (x, y, z) in E3

( 1 ) Z=±.(iy + z), and Z* = ±(iy - z) .

Bergman introduced the integral operator

(2) f(ufζS
ζ

where / is an analytic function of the complex variables n and ζ
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having at most a finite number of isolated singularities [1]. The
integral operator defined in (2) is called the Bergman-Whittaker
Integral Operator. Bergman has shown that in a neighborhood of Xo

(2) represents a harmonic function [1, 2]. The function / in (2) is
called the 2?3-associate of the harmonic function which it defines. ί?3-
associates of the form

(3) /KC) = Σ Σ
n—0 k=—n

where (3) converges absolutely for u in a neighborhood, N, of zero
and uniformly for u in a compact subset of N and ζ on ££> are called
normalized ^-associates. Then (2) gives a one to one correspondence
between normalized j?3-associates and harmonic functions which are
regular in a neighborhood of the origin [3, 4]. A translation of the
origin in (1) gives

(4) u(X - Xo, ζ) - (x - a*) +(Z- ZQ)ζ + (Z* - Zf)ζ-'

(5) fa(X, ζ) = fa(u(X - Xo, ζ), ζ) = Σ Σ <%[u(X - Xθ9 ζ)] ζ* .

Then (2) gives a one-to-one correspondence between normalized J53-
associates centered at XQ,fa(u(X— Xθ9 ζ), ζ), and harmonic functions
regular in a neighborhood of Xo.

The 2?3-associate may be defined for all u and ζ but the Bergman
integral operator only represents the harmonic function in a domain,
called the domain of association, which is usually not all of E% [4].
Rational J53-associates generate harmonic functions which are not in
general regular throughout E5. The space is divided by surfaces of
separation into a finite number of regions. As X moves from one
domain of association to another, a new harmonic function is defined.
If X changes from one demain of association to another the singular
points of f(u, C) may enter or leave the interior of the curve of integ-
ration. In this section the generalized continuation developed for
normalized ^-associates overcomes this difficulty. That is, generalized
continuations of a normalized ^-associate generate the same harmonic
function.

Let Φ = {ftt} be the set of all normalized ^-associates with centers
Xa in C3. That is, in (1) continue x, y, and z to complex numbers
x = χ1 + iχ2f y = y1 + iy2, and z = zx + iz2. Set ^ί^ = {(/α, Sa)} where
fa is in Φ and £* is the largest ball with center Xa such that for
any compact subset M of Sa, (5) converges absolutely and uniformly
on if x Sf. Hence, fa is defined on Sa x J*f. The compatible set of
operators & defined on ^Y* is a generalization of analytic continua-
tion such as one finds in Hille [7: page 128]. Assume
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( 6 ) fa(X, ζ) = fa(u(X, ζ), ζ) - Σ Σ an,h[u(X, ζ)]%"
n—0k=—n

is normalized .^-associate which is centered at the origin. To apply
BXQ to obtain a normalized U3-associate which is centered at Xo the
steps are:

(A) In (6) express u(X, ζ) as

u(X - Xo, ζ) + u(X0, ζ) - u(X - Xo, C) + %o + Zoζ + Z%-'

and then expand this last four termed expression in a multinomial
expansion to obtain

(7) Σ Σ auj± Σ " i f br,s,txiZizrMX - -XΌ, C)]rζ'-')cfc

% = 0 A;=—1 \ r = 0 s=0 ί=0 /

where δr,s, t is the multinomial coefficient and q — n — r — s — t.
(B) If (7) converges absolutely as a multiple series we can add

the series in any admissible manner [8; page 114]. In particular (7)
can be expressed as

f*(x, 0 = Σ ί; tr,Mχ - -ΣΌ, ore
0r=0 v=—c

where cTtV is obtained by adding all the coefficients for a fixed r and
v.

(C) Normalize /* , that is, remove all the terms from (8) for
which 11; I > r This gives the direct ^-continuation

( 9 ) f.BZt = Σ Σ cr,v[u(X - Xo, C)]'C
r~o v=—r

Note that f* is an analytic continuation of fa, hence, the integrals
of f* and fa defined in (2) will be equal for X in the intersection of
the domains of definition of f* and fa. Moreover, normalizing /β* does
not change the value of the integral (2) as can be seen by applying
the Residue Theorem to a term by term integration of the series.
This implies that Bergman's Integral operator carries direct-^-con-
tinuation of normalized ^-associates over into analytic continuation
of their respective harmonic functions.

To show that & is a compatible set of operators it is necessary
to show that

(10) ro^ra- d(X0, 0)

where r0 is the radius of the ball of definition of /0 = faBXo. First,
note that

(11) \u(X - Xβ, ζ) I <£ VΎd(X, Xβ)
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and that for every R there exists a X and ζ such that

\u(X- X,Q\ = VΎd{X, X) = V2R .

Hence, if ra is the radius of Sa then V~2ra is the radius of convergence
of

(12)
n

Second, if X = (x, y, z) and is represented by (x, Z, Z*) then X =
(\x\, \Z\, \Z*\) has the property that d(X, 0) - d(X, 0).

In examining the absolute convergence of (7)

\br,.,ttiίZSZ0*
tMX - Xo, ζ)] rζ-Ί = Cr,a,t

are the terms in the expansion of

[u(X - Xo, ζ) + u(X0,1)]*

Hence, (7) converges absolutely for d{X, XQ) < rα — d(X0, 0) since (11)
and (12) imply that

oo n n n—r n—i—s

Σ Σ Σ Σ Σ |α..4Cr,..(|
n=0 k=—n r=0 s=Q ί=0

^ Σ ( Σ |α.,*l)ίl«(^ - Xo, ζ) I + u(X0, i)]
(14)

^ Σ ( Σ \α.Λ\)[V2d(X, Xo) + V~2d(X0, 0)]"

Σ |α.,*|W2/o]

where p < rβ. This convergence is uniform on compact sets of Sα Ω So.
Let Sίf = {.Hα, So)} where Hα is a regular harmonic function rep-

resented by a power series whose largest ball of absolute convergence
is Sα. The Bergman Integral Operator defines a map ψ: M(^V] &) —>
M{3%\ Sf) where sf is analytic continuation and ψfα is given by (2).
From previous statements it is noted that ^ is injective and as noted
in (c) ψ is .^J^morphism. Theorem 11 implies that M(^4^, &) is
homeomorphic to M{§ίf, j%f) and the Corollary implies that the mani-
fold obtained by normalized continuation of fα is the same as the
manifold obtained by analytically continuing the harmonic function
Hα = ψfα.

In particular when

f«{X, Q = Σ Σ αn,k[u(X - Xα,
n=0k=—n

with center Xα is ^-continued to the function
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fA0(X, 0 = Σ Σ KuMX-X, Q\Xk

0 k
0(

n=0 k=—n

with center Xo the bnrk's can be calculated in the following cases.
( i ) δ.,» = Σ~=M a.,k(jϊ/nl(j - n)l)d>-» when Xo - Xa = (d, 0, 0)
(ϋ) KΛ = ΣΓ=« Σi=» a.i,^k-iSM{h - n)\n\{j - Λ)!)(«i/2)'- when Xo -
Xα = (0, d, 0), and
(ϋi) K,k = ΣΓ=« Σ ί U αJ,,+,»_,_»(-l)A-κ(i!/(/ι-%)!%!(i-A)!)(d/2)'- when
Xo - Xa = (0, 0, d).

For example if

C) = Σ
0

Σ
which has center (0, 0, 0) is ^-continued using above expressions it
is found that the ^-function determined by fQ is

F={(Xtt,fa)\Xa=(afb,c), aΦl a n d b + 0} ,

where

, Q = Σ ( z 7

=-n VI — (α + 6)
Hence, f0 is the 53-associate of a harmonic function AQ whose analytic
extensions are single-valued since F is single-valued. Also the analytic
continuation of h0 is regular everywhere except for {(x, y, z)\x+iy=l}.

Indeed it can be shown by using (2) that in a neighborhood of
(0, 0, 0)

ho(x, y, z) = — — — .
1 — (x + vy)

In a less tedious manner one can observe that

1 Cf(χr)-MX, ζ) - f

and hence is the normalized Z?s-associate of the same h0 [5, Theorem
2.1].

For ^-continuation the indicator function of a complete ^"-func-
tion generated by (fa, Sa) is the complete J ^ function generated by
(ψfa, Sa) as can be seen from (2). Hence, the indicator function for
^-continuation is the harmonic function obtained by the integral
operators.
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