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TOPOLOGIES ON STRUCTURE SPACES
OF LATTICE GROUPS

S J. BERNAU

A structure space of a lattice group G is, coventionally,
a set of prime subgroups of G with the hull-kernel topology.
The set of all prime subgroups of G, together with G when
G has no strong unit, carries a natural topology, stronger than
the hull-kernel topology, which is compact and Hausdorff.
There is a natural closed subspace which is a quotient of the
Stone space of the complete Boolean algebra of polar sub-
groups. Under the hull-kernel topology this subspace is a
retract of the space of prime subgroups, but no longer closed.
These topologies are compared, with particular reference to
coincidences.

Consideration of structure spaces for lattice groups is not new,
Nakano [15], for complete vector lattices and Amemiya [1] for arbitrary
vector lattices were the first to treat the question systematically. Indeed
the germ of our compactness proof is already in [1] (Theorem 2.1).
More recently Isbell [11] and Isbell and Morse [12] have introduced
other structure spaces to solve a specific problem in the theory of f-
rings.

1* Prime subgroups* We recall some definitions. Let G be a
lattice group written additively, but not necessarily commutative. A
subgroup K of G is solid if x e K and | y | ^ x imply y e K; K is prime
if K is solid, proper and x A y = 0 implies x e K or y e K (normality
of K is not required). Properties of prime subgroups are listed in
many places [6, 7, 9, 13]. We record some which will be used later.
The solid subgroups containing prime K from a chain under set inclu-
sion and are prime. If K is prime K contains a minimal prime sub-
group.

If S is a nonempty subset of G, S1 = {ye G: \x\ A \y\ = 0 for all
xeS}. We have S c S u , S c T gives S1 =3 T1, S1 = S111 and S1 is
a solid subgroup of G. Subgroups M of G such that M = MLL are
called polar subgroups. Under set inclusion and L for complementa-
tion the set of polar subgroups is a complete Boolean algebra [16, 2].
A prime subgroup K is minimal if and only if for each xeG exactly
one of x11 and xL is a subset of K, [9].

A subgroup K of G is a z-subgroup if xlj-ciK for each xeK.
This definition makes K solid and is equivalent to the definition given
by Bigard [4]. A z-subgroup of G which is prime will be called a
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z-prime subgroup of G.
Let P(G), Z{G) denote the set of all prime subgroups and all z-

prime subgroups of G respectively. Recall that a weak unit of G is
an element e such that e > 0 and e11 = G; e is a strong unit if e > 0
and for each a e G there is an integer n such that x ^ we. There
are three possibilities for G, (i) G has no weak unit, (ii) G has a
weak unit but no strong unit (iii) G has a strong unit. We define
P*(G) = P{G) in case (iii) and P*(G) = P(G) U {<?} otherwise; we define
Z*(G) = Z(G) U {G} in case (i) and Z*(G) = Z(G) otherwise; finally
we define Z**(G) = Z*(G) in case (iii) and Z**{G) = Z(G) U {G} other-
wise. We have equality of Z*(G) and Z**(G) except in case (ii) and
always Z*(G) c £**(G) c P*{G). For each UΓG P*(G) there is a unique
^-subgroup ζ(K) generated by K. The map ζ: P*(G) -* Z**(G) is (alge-
braically) a retraction with the inclusion map as coretraction. We
state the following without proof.

LEMMA 1.1. (i) If KeP*(G) and M is a polar subgroup of G
then MdK or Mλc:K. (ii) If K is a minimal prime subgroup of
G then KeZ(G).

By a filter ^ in G we mean a nonempty subset of

G+ = {xeGix^O}

such that xe^~ and y ^ x imply y e ^ and x,y^^ imply x Λ ye
^ 7 An ultrafilter in G is a maximal filter. Note that K is minimal
prime if and only if G+~K is an ultrafilter [9].

Our next result is well known for prime subgroups.

LEMMA 1.2. Let j ^ ~ be a filter in G and K a z-subgroup of G
such that J?" Γi K = 0 . If L is a z-subgroup of G maximal with
respect to Ka L and ^ n L — 0 , then L is z-prίme.

Proof. Suppose x Λy = 0, x£ L, y £ L. By maximality there exist
u, ve ί/+ such that xLL V ^ x l and yLL V v11 meet ^~ (commutativity
not used here. Thus &~ meets (xLA- V (u + v)LL) Λ (yLL V (u + v)1 1) =
(ίc11 Λ :2/±x) V (^ + /y)11 = (u + Ί ; ) 1 1 C L. This is impossible so L is
2-prime.

DEFINITION. For a e G,

Ua = {θeP*(G):a$θ}

Va = {θe P*(G): aeθ} = P*(G) - Ua .

The next Lemma summarizes some well-known and easy properties
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of these sets.

LEMMA 1.3. (i) If a, beG+, Ua n Ub = UaAb and Ua U Ub= Ua+b =
Uavb. (ii) Ua c Ub if and only [if there is an integer n such that
\a\ ίg n\b\. (iii) ί/ o c Vb if and only if be a1.

Proof. For (i) see [1, 13]. For (ii) and (iii) use the fact that
a maximal solid subgroup which omits beG is prime [7] (and called
a value of b).

If we write ϋa = Ua Π Z*(G) and Va = Va Π #*(G), we have the
following results.

LEMMA 1.4. (i) Uaczϋb if and only if α 1 J c δ x l . (ii) Uacz
Vb iffbLLd a1, (iii) Ux = Ua Π Fδ i/ and cmϊy i/ a 1 1 = α 1 1 Π δ 1 .

Proof, (i) and (ii) are immediate, Lemma 1.2 is needed.

For (iii) assume x,a,be G+ and xL1 = α 1 1 Π ft1, we have [2] α 1 1 =
( α 1 1 n δ 1 1 ) V ( α 1 1 n δ 1 ) = (α Λ δ ) 1 1 V ί̂ 11 = (α Λ δ + α ) 1 1 . Hence, using
Lemma 1.3 we have Ϊ7O = ί7αΛ6 \J Ut = (Ua Γ\ Ub) (J Ux. It follows that

ϋanvb=ϋ..
Conversely suppose Ux = Z7O Π Ft(fl?, α, δ e G+), then Ϊ7β = ί7αΛ& U Ux

and α 1 1 = (α Λ δ ) 1 1 V xL1. It follows that x11 ID a11 Π δ 1 and the
reverse inclusion is a consequence of (i) and (ii).

2 Topologies* Until now the only topology that has been
studied on P(G) is the hull-kernel topology. Since this is well known
[1, 13, 17] and readily extended to P*(G) we will take most properties
of the hull-kernel topology of P*(G) for granted.

Write P*(G)h for the topological space P*(G) with the hull-kernel
topology. A base for P*{G)h is {Ua: ae G} U {P*(G)} Note that this
topology is not To if GeP*(G). If G$P*(G), P*(G)h is a To space
but not usually Hausdorίf (see Theorem 3.3 to follow). In either case
P*(G)h is a compact space and each Ua is compact [1, 17].

At this point the lattice structure of G plays a vital role. As
has been pointed out, if K e P*(G), G+ — K is a filter (possibly empty)
which is a prime lattice ideal in the dual ordering of G+(x, y eG+ and
x V yeG+ ~ K imply x e G+ ~ K or yeG+ ~ K). Thus there is a
natural, dual hull-kernel topology on P*(G) giving a second topologi-
cal space P*(G)h. It is easy to check that {Va: ae G} is a base for this
topology and that P*(G)h is always a TVspace. It will follow (Corollary
2.2) that P*(G)λ is again compact.

DEFINITION. The strong topology on P*(G) is the supremum of
the hull-kernel and dual hull-kernel topologies. P*(G)S denotes P*(G)
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with its strong topology.
A subbase for P*(G)5 is the set {Ua: a e G) U {Va: a e G} and P*(G)S

is a Hausdorff space. Our main result is the compactness of P*(C?).
This is close to the surface in Theorem 2.1 of [lj.

THEOREM 2.1. The space P*(G)S is compact.

Proof. By Alexander's sub-base theorem [14, p. 139] it is suffi-
cient to show that any covering by sets from the sub-base has a
finite sub-cover. If GeP*(G) then Gί Ua for any aeG. Thus any
cover by sub-basic open sets must contain a set Va for some aeG.
If G ί P*(G) then P*(G) = Ua for some strong unit a. Hence it is
sufficient to prove that each Ua is compact.

Choose a e G+ and let i f = {Ux: x e X} U {Vy: y e Y} be a cover of Ua

which has no finite subcover. Assume, as we may that X\J YaG+.
If Xi, , xn e X then Ua ς£ UXl U U UXn = UXl+...+Xn; t h u s a is not
in the solid subgroup K of G which is generated by X. If yl9 , ym e
Y then Ua<ZVy1U" UVym= VyiA...Aym (Lemma 1.3 ( i ) and take

complements). Hence, Lemma 1.3, ί/iΛ Λ ^ ί α 1 and αΛj/iΛ Λ
ym Φ 0 for any yl9 -",yme Y. Thus {a} U Y generates a filter ^~ in
G + .

Suppose K Π ̂ " ^ 0 , then there exist ^, * ,xneX and τ/i, ,
I / M G 7 such t h a t

αΛί/iΛ Λ | / m ^ 1 + + x»

Let θ e Ua. If α Λ 2/1 Λ Λ ym e θ then, since θ is prime and a $ θ
some y^θ and #6 VVi. If α Λ 2/1 Λ Λ ym$θ, then θe UaAyiA...Aymc
UXl+...+Xn = UXί U ••• U C/%. Thus {Vyv...,VyJ U{Umv...,U.J covers ?7α

contrary to hypothesis.
It follows that Kf] ^"=0 so by the 'non-z' version of Lemma

1.2 there is a prime subgroup ψ of G such that Kaψ and ψ Π ̂ ^ =
0 . Since I c if c f, ψ £ Ux(x e X). Since {a} U Ya J?~ aG~ ψ, ψ$
Vy(y e Y) and ψ e Ua. Thus ^ does not cover Ua, a contradiction.
Compactness of P*(G)S is established.

COROLLARY 2.2. The spaces P*(G)h and P*(G)Λ are both compact.

Now we consider the subspaces Z(G), Z*(G) and Z**(G) of P*(G)
and use subscripts h, S and superscripts h, to denote the subspace
topologies inherited from P*(G)h, P*(G)5 and P*(G)h.

PROPOSITION 2.2. The space Z**(G)h is a topological retract of
P*{G)h. The space Z*'*(G)S is a closed subspace of P*(G)5 and Z*{G)S

is an open and closed subspace of Z**((?)5.
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Proof. We have ζrι(V* Π Z**(G)) = U{Vx: a e xL1} so ζ: P*(G)h ->
Z**(G)h is continuous. If θgZ*(G) and θeP*(G) there exist a,beG
such that α e ^ a n d i G α 1 J -<?. Then 0e VaΠ J7δ and FαΠ E7iΓ)̂ *(G) =
0 . Finally, if Z**(G) =£ Z*(G) then G has a weak unit e, but no
strong unit- Thus Z**(G) ~ Z*(G) = {G} = Ve Π £**((?) which is open
and closed in Z**(G)S.

We now consider the Stone representation space E of the complete
Boolean algebra 33 of polar subgroups of G. We consider E as the
set of maximal ideals of S3 with the hull-kernel topology. A base of
open sets is the collection {{t eE: Mi ί}: Me 33} and each member of
the base is also compact (and hence closed). Define a map ξ: E —>

by

ξ(t) = {ajeG:αj11eί} (teE).

THEOREM 2.3. 7%e map f: E—>Z*(G)S is surjective and the topol-
ogy of Z*{G)S is the quotient topology.

Proof. Surjectivity is easy to check. We have

so ξ^ϋa is a compact open subset of E. The same is true of ζ~ιVa.
Hence ξ is continuous. Since E is compact the quotient topology is
compact. It is finer than the Hausdorff topology Z*(G)Sf (because ξ
is continuous) and the result follows.

Theorem 2.3 suggests that Z*(G)S is a natural structure space
of G. We shall see later that this is not true in the functorial sense
(Proposition 5.2 et seq.)

THEOREM 2.4. The following are equivalent.
(1) E and Z*{G)S are homeomorphic.
(2) ξ: E -> Z*(G)S is injective.
(3) ^8 is generated, as a Boolean algebra, by the set {a11: ae G}.
(4) The subalgebra of S3 generated by {a11: aeG} is complete.

Proof. The equivalence of (1) and (2) is immediate from Theorem
2.3 The equivalence of (3) and (4) is an algebraic triviality.

(1) implies (3). Let Me ^8 and define U= U{UX: xeM}aZ*(G)
and V= Ό{Ux:xeML}c:Z*{G). The sets U, V are disjoint and
open. Since E and Z*(G)S are homeomorphic, Z*(G)S is a Stone space
and cl U, cl V are disjoint and open. Since E is the Stone representa-
tion space of 93 and, in S3, M = V{xL1:xeM} we have

ξ-ιclU={teE:Met] and Γ 1 c l F = {t e E: M1 £ t) .
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By compactness the compact open set cl U is a finite union of sets of
the form Ua, Vb and Uff] Vg, each of which is disjoint from V (and
cl V). Now xeM1 if and only if Ux is disjoint from each Ua, Vb,
ϋff) Ϋg and by Lemma 1.4 this happens if and only if x11aa1 for
each ϋa, xλlc:bL1 for each Vb and xLL c (f1L Π g1)1 for each Uf Π F,.
It follows that I f is the (finite) supremum of the a11, b1 and fλlΠ9L

This demonstrates (3).

(3) implies (2). Let s,teE, s Φ t. Then there exists Me23 such
that ikies and M1 et. By (3), there exist finite subsets A, B, of G
and C of G x G such that 0<£ A, i? contains no weak unit and If =
V k 1 1 : α e i } V V{bι: b e B) V V ί / 1 1 Π # J : (/, </) e C}.

Since M e s and Mit all the α 1 1 , δ 1 and fL1 Π δr± are in s and
at least one is different from {0} and G and is not in t. Suppose this
is f11 Π g1. Then f11 it, g1 it and, because s is prime either f11 e
s or gL G s. lί f11 es we have / e ξ(s) — f(ί) and if g1 es we have
gr G ζ(t) ~ ξ(s). The cases when an a11 or a 61 is in s ~ t are handled
similarly. This proves (2).

3. Comparison of topologies* The possibility that the topologies
on P*(G) or Z*(G) coincide leads to some interesting results. We also
recover some results of Speed [17].

THEOREM 3.1. The following are equivalent.
( 1 ) Z(G)h is a Hausdorff space.
(2) The identity map Z(G)h—>Z(G)h is continuous.
( 3 ) If θ e Z(G) then θ is a minimal prime subgroup of G.

( 4 ) For any a,beG there exists xeG such that a1L f]bλ = x1L.

(The equivalence of (1), (3), (4) is the essential content of Theorem

3.2 of [17].)

Proof. (2) imples (1). By (2) Z(G)h = Z{G)S is Hausdorff.

(1) implies (4). Let W - Ua n Vb. Then WaZ{G) and W is a
compact open subset of Z(G)S = Z(G)h. It follows that there exist
a?!, , xn e G+ such that W = UXl U U UXn = UXl+...+Xn (compact-
ness and the known base for the topology of Z{G)h). Put x = xxΛ h
xn, then x11 = α 1 1 Π δ 1 by Lemma 1.3.

(4) implies (3). Let θ eZ(G). Take beθ nG+,a$θ (possible since
θ Φ G). Let x e G+ satisfy x11 - α^1 n b1 (using (4)). Then (b + x)11 =
bLL V ί̂ 11 = bLL V ^ x l = bL1 V (α1J- Π &1) 3 α 1 1 . Because α ί ^ , α? g ^.
Thus if beθ,bLς£θ and # is a minimal prime subgroup, [8, Theorem
5.1].

(3) implies (2). If δ e G and ^ F t then, because θ is minimal there
exists a e bL - θ. Then θeUaczVb and F δ is an open subset of Z(G)h.
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COROLLARY 3.2. Theorem 3.1 is valid with Z*(G) replacing Z(G)
and (4) replaced by
( 4 ) ' If α e G , α x = δ 1 1 for some beG.

Note that condition (4) of Theorem 3.1 is satisfied if G is pro-
jectable (with x = a — [b]a) and, a fortiori, if G is conditionally σ-
complete. The stronger condition (4)' of Corollary 3.2 is satisfied if
G is laterally complete or orthocomplete [8, 3] or if G is projectable
and has a weak unit.

THEOREM 3.3. The following are equivalent.
( 1 ) P(G)k is Hausdorff.
( 2 ) The identity map P(G)h—> P(G)h is continuous.
( 3 ) If Θ e P(G), Θ is a minimal prime subgroup of G.
( 4 ) G is hyper-archimedean.

Proof. If (3) holds (2) follows from Theorem 3.1. (2) gives
P(G)h = P(G)S and (1) follows. If (1) holds and θeP(G) suppose fe
P(G) and f c ί . Since ψeUa whenever θ e Ua and P(G)h is Hausdorff
ψ — β and θ is minimal. Finally the equivalence of (3) and (4) is
given in [4, Theoreme 6.1] or in [5]. (Either of these references con-
tains the definition of hyperarchimedean, which we do not give here.)

THEOREM 3.4. The following are equivalent.
( 1 ) Z(G)h is Hausdorff.
( 2 ) Z*{G)h = Z*(G)h.
( 3 ) If a e G there exists beG such that a1 — bL1

(This result essentially contains Theorem 3.1 of [15].)

Proof. (1) implies (3). Since VΛΓiVy = Vx+y for x,yeG+, and
Vx = 0 if and only if x is a weak unit of G, we deduce from (1) that
G has a weak unit, u say. Thus Z(G) — Z*(G) and from (1) because
Z*(G)h = Z(G)S, Ua is a compact open subset of Z*(G))h(a e G). Hence
there exist yl9 , yn e G+ such that

Putting b — yx Λ Λ y% we have δ 1 1 = aL by Lemma 1.3.
(3) implies (2). If δ 1 1 = α 1 then Va - Ub. Thus (3) gives

and (2) follows.
(2) implies (1) is trivial.

COROLLARY 3.5. If G has a weak unit the hull-kernel or dual
hull-kernel topology on Z(G) = Z*(G) is Hausdorff if and only if both
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are equal.

EXAMPLE 3.6. Let G be the cardinal sum of countably many
copies of the integers. It is easy to verify condtion (4) of Theorem
3.1. However G has no weak unit so Z*(G)h is not Hausdorff.

THEOREM 3.7. P(G)h is Hausdorff if and only if every element
of P*(G) is minimal.

Proof. This theorem is really a corollary of Corollary 3.5.

4* Other structure spaces* First consider the uniform structure
space β(G) of G [11]. For the construction of β(G) we refer to [11].
It is easy to verify that the proof of Theorem 2 of [11] extends
verbatim to prove.

THEOREM 4.1 The set of polar subgroups contained in any proper
prime subgroup θ of G contains exactly one maximal uniform ideal
u(θ); and the maps u: P(G)h —* β(G) and its restriction to Z(G)h are
continuous onto a dense subset.

Isbell mentions in [11] that β(G) is coarse. Just how coarse can
be seen from the following. For G the group of real continuous func-
tions of compact support on locally compact Y, β(G) is the Stone-Cech
compactification of Y [11, p. 63]. If G* = Z x G (G as above) with
lexicographic ordering (Z first) then (?* has a strong unit, no pair of
polar subgroups (I, J) of G* is supplementary unless {I, /} — {G, {0}}.
Thus {{0}} is the only uniform ideal of the Boolean algebra of polar
subgroups and β(G*) reduces to a single point.

We next consider the structure space /c(G) introduced by Isbell
and Morse [12]. This space is, in our notation, the quotient space of
P{G)h by the smallest equivalence relation which identifies points of
P{G)h whose closures intersect. Adapting parts of [12, p. 304] we
see that the map u: P(G)h-+ β{G) factors naturally as u — ts with s
the quotient map s: P{G)h-+ tc(G) and t defined in the obvious way.
All these maps are continuous.

5* Homomorphisms* The functorial character of our spaces
P*(G) and Z*(G) with their various topologies is easy to establish.

PROPOSITION 5.1. Let T: Gλ -+G2 be a lattice group homomorphism
and define T*θ = T~ι{θ) (θeP*(G2)). Then T* maps into P*(GJ and
is continuous for any of the hull-kernel, dual hull-kernel or strong
topologies of P*(G2) to the corresponding topology of



TOPOLOGIES ON STRUCTURE SPACES OF LATTICE GROUPS 565

Proof. Verification of this is immediate.

The space Z*(G) needs a little more.

PROPOSITION 5.2. Let T: G1 —> G2 be a lattice group homomorphίsm
of lattice groups and define Γ# = ζT*\z*(β2), then T* is continuous
from Z*(G2)

h to Z*(GJk.

Proof. This is obvious using Propositions 5.1 and 2.2.

We leave open the problem of finding reasonable sufficient condi-
tions for T* to be continuous for the dual hull-kernel or strong topo-
logies. Some uninteresting special cases can be constructed out of
the coincidences of the topologies using Theorem 3.1 and 3.4.

6* Applications to C{X). Suppose X is a completely regular
Hausdorff space and C(X) is the lattice group of real continuous func-
tions on X. It is natural to ask for the relationship between P*(C(X))
and X. In general we can say very little, P*(G) is always totally
disconnected while, if G = C(X), X can be as topologically simple as
a unit interval. (We exclude the trivial situation when X is finite,)
We shall consider two cases, the nice one when X is compact and a
more extreme case when X is a P-space (definition later).

In connection with archimedian lattice groups, which always have
representations as sub lattice groups of D(X) (the lattice of extended
real-valued continuous functions which are finit on a dense open set) we
can characterise P*(G) and Z*(G) by properties of all such representa-
tions. Details of this will appear in another paper.

EXAMPLE 6.1. G = C(X) with X compact Hausdorff. In this case
G e Z*(G). For / e G we will write z{f) = {te X:f(t) = 0} (the usual
notation for the zero set of / is Z(f) [10] but it seems desirable not
to use Z with two different meanings here). If θ e P(G) define z(θ) =
Π {z(f): / e θ}. For each θ e P(G), z{θ) is a singleton. To see this let
K be a closed, and hence compact subset of X. If, for each teK,
some element of θ is nonzero at t, a routine compactness argument
produces a positive feθ such that / is bounded away from zero on
K. If this were the case for X we would have θ = C(X) contrary
to hypothesis. This proves z(θ) nonempty. If s, teX and s Φ t, we
can find f,ge C(X) such that / Λ g = 0, s £ z(f) and t £ z(g). Since
θ is prime one of / or g is in θ and s and t are not both in z{θ).
we thus have a map z: P(G) —»X which is clearly surjective. In fact
z is continuous on P(G)h and on P(G)h, and a fortiori on P(G)S* For
continuity on P(G)h suppose U is a neighborhood of z(θ), then there
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exists / e C(X) such that f(θ) — 1 and σ(f) c U (o{f) is the support
of / ) , Clearly θe Uf and for any t£σ{f) there is a geC(X) such
that g(t) = 1 and σ{g) Π σ(f) = 0 . Since | /1 Λ | g \ = 0 we have g e
ψ(ψ e Uf) and hence t ί z(ψ) {f e Uf). It follows that z(ψ) e U {ψ e Uf).
Continuity of z on P(G)h is easier. Take U an open neighborhood
of z(θ) and put K = X ~ U. As we have seen, since K is compact,
there exists geθ such that if Π z(g) = 0. Then θ e Vg c U.

It is illuminating to compare this example with Theorem 4.1. By
[11, p. 63] β{C{X)) = X for compact Hausdorff X and IsbelΓs map u
coincides with our z. Even so we have a stronger result, with less
effort, than Theorem 4.1 will yield directly.

We also note that if X is a Stone space then z is injective on
Z(G) = Z*(C(X)). A good way to see this to check that if θeZ(G),
then θ = {feG:z(θ) gσ(f)}. Under these conditions we also have
Z(G)S a retract of P(G)S This is trivial and indeed trivial in any
case when Z*(G)h is Hausdorff.

EXAMPLE 6.2. G = C(X) with X a P-space. P-spaces are treated
in [10, 4J]. They are spaces in which every zero-set is open. Since
this ensures that the characteristic function of every zero-set (and of
every cozero-set) is in G, condition (4) of Corollary 3.2 is satisfied and
every z-prime subgroup of G is minimal. It is easy now to check
that if θ e Z(G) the set {z(f): f e θ) is a s-filter on X [10, Chapter 2].
Further each such filter is prime. Suppose u,ve C(X) and z(u) U z(v) =
z(w) for some w e θ. Then

z(\u\ A \v\) = z(w) and \u\ A \v\ = V M ^ I Λ \u\ A \v\: n — 1, 2, •} .

Hence \u\ A \v\ ew11 aθ. Because θ is prime u or v is in θ and we
are done. Conversely if F is a prime ^-filter on Xthe set {f eC(X):
z(f) e F) is a ^-prime subgroup of G different from G itself. (This
last because X is a P-space and φ$F). Since every prime ^-filter on
X is contained in a z-ultrafilter which in turn is prime, and since
all 2-prime subgroups of C(X) are minimal it follows that the prime
^-filters on X are precisely the 2-ultrafilters on X. Further we have
just exhibited a natural bijection between Z*(G) = Z(G) and this set
of 2-ultrafϊlters. By [10, Chapter 6] the set of 2-ultrafilters on X
is the Stone-Cech compactification, β(X)9 of X. Let us denote our
bijection Z(G) —> β{X) by z. We check that z is continuous when
Z(G) has its (one) natural topology. By [10, p. 87] a base for the
closed sets of β{X) is the set of sets F = {peβ(X):Fep} where F
is a zero set in X. For each such F, if / denotes the characteristic
function of F we have f eG and z~\F) — Vf. This gives continuity
of z and hence Z*(C(X)) and β{X) are naturally homeomorphic.
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Final comment 6.3. For î -spaces X, as we just saw, the space
Z*(C(X))S is a very natural object. Of course every discrete space
is a P-space and every P-space is basically disconnected, which makes
the class of P-spaces look rather small. However, there are P-spaces
with no isolated points [10, 13P].

Viewing 6.1 and 6.2 a little differently we see that for any com-
pletely regular X we can concoct two compact spaces P(C*(X)) and
Z((C*(X)) (C* denoting bunded continuous functions) and continuous
surjections P(C*(X))8-+β(X) and Z(C*(Z))S-+β(X). For Z(C*(X)),
at least, we can realise the map as relating some prime ^-filters on
X to 2-prime subgroups of C*(X). This correspondence needs further
clarification.

Another way to approach this is to compare C(X), or C*(X),
with CP(C(X)). In the case of compact X the natural surjection
z: P(C(X)) —+ X described in § 6.1 is not an injection. Consequently
it gives rise to a proper embedding of C(X) into CP{C(X)). A
second natural candidate for comparison with CP(C(X)) is the second
dual C**(X) of C(X) since this is also properly larger than C(X).
The referee has raised the possibility of eqality of C**(X) and CP(C(X))
(and is even willing to conjecture it). Besides the Banach space duals
we may also consider one of the possible order duals, relax the re-
quirement that X be compact and ask similar questions.
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