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RESIDUAL PROPERTIES OF FREE GROUPS

STEPHEN J. PRIDE

In this paper the following theorem is proved: if π is an
infinite set of primes and n is an odd integer greater than
one, then free groups are residually {PSL(n, p); p e π}. As
a by-product of the proof new generators of SL(nt p) are
obtained for nearly all primes p.

1» The main result* For unexplained notation the reader is
referred to [8].

Let S&Ί and J ^ be sets of groups. J&{ is said to be residually
j*f2 iff, for each group G belonging to J ^ and each non-identity
element g of G there is a homomorphism φ (depending on G and g)
which maps G onto some element H of J^£, and is such that φ{g) is
not the identity of H. An equivalent formulation is: for each G in

there is a set of normal subgroups {Ni}ieI of G such that
-Ni = 1 and for each i in I, G/Ni is isomorphic to an element of
It is obvious that if J ^ and J^f2 are sets of groups and some

or all of the members of JK and J^ζ are replaced by isomorphic copies,
yielding new sets j *J ' and Jzf2 respectively, then J ^ is residually
j ^ 2 iff «-9*ίf is residually j#ϊ'. It is also easy to see that if J ^ is
residually J^£, and j ^ 2 is residually j*J, then j ^ ί is residually j^ζ.

Let {xlt x2, Xs, •••} be a fixed but arbitrary countably infinite set,
and let Fn be the free group freely generated by {xu x2, •••, xn}.
Denote by JF the set {Fn: n ^ 2} In recent years there has been
some investigation into which sets, S*f, of groups are such that J?~
is residually j&l The two-generator groups in j*f must of necessity
generate the variety, <?, of all groups. It has been conjectured by
S. Meskin that this condition is also sufficient. A rich source of
sets of groups which generate ^ is a result of Heineken and Neumann
[3] which states that every infinite set of pairwise non-isomorphic
known (1967) finite non-abelian simple groups generates the variety
of all groups. This theorem has presumably inspired several of the
results obtained so far. Thus Katz and Magnus [5] have proved that
JF is residually {An: neJ}, where An is the alternating group on
{1,2, « ,w} and J is an infinite set of positive odd integers; and
Gorcakov and Levcuk [2] have proved that &~ is residually any
infinite subset of the set of simple groups PSL{2, pr). This latter
result generalizes theorems obtained in [6], [5] and [7], which consider
the cases r — 1 and p variable, r > 1 and fixed and p variable, p > 11
and fixed and r variable, respectively.

In this paper the following main result is obtained.
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THEOREM 1. Let n be an odd integer greater than one, and let
π be an infinite set of primes. Then ^~ is residually {PSL(n, p):
peπ}.

Before discussing the proof of Theorem 1 some notation and
definitions will be introduced. Let R be a commutative ring with
identity 1. The ring of polynomials in the indeterminant x with coe-
fficients from R will be denoted by R[x]. The degree of an element
f(x) of R[x] will be written as deg (/(a?)). As is well-known (see [4],
page 56) the n x n matrices with entries from R form a ring with
identity. The identity will be denoted by E. The n x n matrix with
1 in its ίth row and ith column and zeros elsewhere will be denoted
b y E4ί (i, j = 1,2, -•-, n), a n d E{n+i)S, Ein+i)(n+j), Eiin+j) (i, j = 1, 2, .,
n) will all be defined to be equal to E^. The multiplicative semi-
group of the ring of n x n matrices with entries from R has a sub-
semigroup consisting of all matrices which have a single nonzero
entry, namely 1, in each row and each column. This sub-semigroup
is in fact a group, isomorphic to the symmetric group on {1, 2, , n).
An isomorphism is given by:

where σ is a permutation of {1, 2, •••,%}. The matrix 5>=i Eiσ[i) will
be called the permutation matrix corresponding to σ. When no con-
fusion can arise, and if it is convenient to do so, the matrix Σ?=i ^W)
will be denoted by the permutation σ.

For the rest of this section n will denote a fixed but arbitrary
odd integer greater than one, and p (possibly subscripted) will stand
for a prime number. To simplify the proof of Theorem 1, use is
made of the following two results:

( i ) J?~ is residually {F2},
(ii) For each k ^ 2, {F2} is residually {Tk}, where Tk = (a, b\ak).

The former result is proved in [6], whilst Lemma 1 of [5] proves (ii)
for the case k = 2, and the proof for k > 2 is entirely analogous.
Using (i) and (ii) reduces the proof of Theorem 1 to showing that
{Tn} is residually {PSL(n, p):peπ}.

The first step in proving that {Tn} is residually {PSL(n, p): peπ}
is to find a group of n x n matrices which is isomorphic to Tn.
Consider the ring of n x n matrices with entries from Z[x]. The
multiplicative semigroup of this ring has a sub-semigroup consisting of
all matrices with determinant ± 1 . This sub-semigroup is a group,
called the group of units. The permutation matrix X corresponding
to the permutation (1, 2, 3, , n), and the matrix Y = E + x Σ ^ ^
are in the group of units. They therefore generate a subgroup, ^n,
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of this group. Notice that in this group X has order n and Y has
infinite order. In §2 the following result is proved.

LEMMA 1. When a product of the form

—where r ^ 0, the δζ can have the values 1, 2, , n — 1, the m{ can
have any integer values except zero, v can have any integer value, μ
can be 0, 1, 2, , n — 1, v and μ cannot be zero simultaneously unless
r ^ 1—is multiplied out, it has an entry of degree at least one,
provided v and r are not both zero.

From this lemma follows immediately

THEOREM 2. ^ and Tn are isomorphic.

The problem is now reduced to showing that {%Sn} is residually
{PSL{n, p): peπ}. There are plenty of homomorphisms from %fn into
SL(n, p). In fact, let a be a nonzero element of GF(p). Then, by
Theorem 4 of Chapter III [4], there is a ring homomorphism of Z[x]
onto GF(p) which maps x to a. This homomorphism induces a homo-
morphism φa from the multiplicative semigroup of all n x n matrices
with entries from Z[x] to the multiplicative semigroup of all n x n
matrices with entries from GF(p). The value of φa at the matrix M
is obtained by replacing all appearances of x in M by a, and replacing
all integers appearing as coefficients in the polynomials in M by their
congruence classes modulo the prime p. When restricted to ^n, φa

is a group homomorphism with range contained in SL(n, p). Let
φa{X) = C and <pa(Y) = D{a). It is easy to see that the subgroup
of SL(n, p) generated by C and D(a) is the same as that generated
by C and D = D(l). For there are integers t and u such that ta = 1
and vl - α, and so D(aγ = D and D* = D(α:). In §3 the following
result is proved.

THEOREM 3. Let p be a prime which does not divide 3(π — 1).
Then C and D generate SL(n, p).

(If p divides 3(n — 1), the validity of the theorem remains
undecided.)

It follows immediately from Theorem 3 that φa is a homomorphism
of ^ onto SL(n, p) for all but a finite number of primes p.

Using Lemma 1 and Theorems 2 and 3, it is now possible to prove
that {^} is residually {PSL(n, p): peπ}. It is well-known (see [8],
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page 158) that the centre of SL(n, p) consists of all scalar matrices \Ef

where λn = 1. Given a non-identity element W of ^ , it will be
shown that there is a prime p in π, and a homomorphism φ of ^ n

onto SL(n, p) such that φ(W) does not belong to the centre of SL(n, p).
Then the composition of φ with the natural homomorphism of SL(n, p)
onto PSL{n, p) gives a homomorphism of ^ n onto PSL(n, p) which
does not map W to the identity.

Thus, let W be a non-identity element of ^ n . Then W can be
expressed uniquely as a product of the form (*) (see Lemma 1). First
suppose that in the product (*) v — 0 and r — 0, so that W = Xμ

y

where μ is an integer and 0 < μ < n. Let p0 be a prime in π which
does not divide Z(n — 1). Then the homomorphism of fpn onto
SL(nf Po) determined by

X >C

Y >D

does not map W to the centre of SL(n, p0).
Suppose now that the product (*) is such that not both of v and

r are zero. Then by Lemma 1, W has an entry

α0 + atx + + a8x
8 with a8 Φ 0, s Ξ> 1.

Let Po be a prime in π with the property

Po — 1 > max {|α.|, s(> + 1)} .

The congruence class of an integer kmodp0 will be denoted by k.
Consider the polynomials

f(x) =z aQ + axx + + d8x
8 ,

g(x)=f(χ)[(f(x))n~ΐ],

which are elements of GF(pQ)[x]. Since a8ΦQ, deg (/(a?)) = s, and
so deg (flr(a?)) — s(n + 1). By the choice of p0 there is a nonzero element
α of GF(p0) which is not a root of g(x).

Let <?> be the homomorphism of ^ onto SL(n, p0) determined by

X >C

Y >D(a) .

(Note that pQ does not divide Z(n — 1), so Theorem 3 applies.) The
entries of φ{W) are obtained from those of W by replacing x by a
and working modp0 Hence φ{W) has

f(a) = α0 + α ^ + + άsα
s

as one of its entries. By the choice of a, f(a) Φ 0 and f{a)% Φ ϊ , so
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clearly φ(W) does not lie in the centre of SL(n, j>0)

2* Proof of Lemma 1* In this and the next section it will be
useful to keep in mind the following rule for calculating with per-
mutation matrices. If M is a u x u matrix and P is the permutation
matrix corresponding to a permutation σ of {1, 2, •••, v), then PM is
obtained from M by replacing row i by row σ(i), and MP is obtained
from M by replacing column i by column σ~\i) (1 ^ i ^ u).

Before proving Lemma 1, it should be pointed out that the result
is also valid when n is even (the proof given below does not depend
upon n being odd), but in this case the permutation matrix corre-
sponding to (1,2,3, β ,n) has determinant —1, so that the result
is not of any use here.

A product of the form (*) (as in the statement of Lemma 1) in
which v = μ = 0 will be called a product of type-(XY). When such
a product is multiplied out, a matrix with entries £ίj} (i, j = 1, 2, ,
n) from Z[x] is obtained. The following assertion will be proved by
induction on r.

deg (ξίΓ}) - r

deg (ξlγ) < r for j = 2, 3, , n .

For r = 1 the product is just Xh F W l , which is equal to Xδ^ +
Thus

All other entries of Xh YmL are either zero or one. Since 0 < δt < n,
it follows that K w + l - S i O ι + 1, so that ξ$> is m.x. Thus
( + + ) holds when r = 1.

Now assume ( + + ) holds for all s < r, where r > 1. The first
row of Xδί Γmi JS^-i Γw* -iχ*r y^r i s obtained from that of .
p r -!y«r-i by right multiplication by XδΎmr. Thus

Since l<n + l — δr<n + l, it follows that

deg (ξί[}) - deg (£Γ1}) + 1

= r

Now except for column one, every column of Xδrγmr contains only
zeros and ones. Hence for 2 ^ j ^ n.
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deg (£;>) ^ max {deg (fir1): t = 1, 2, . ., n)

^ r - 1

< r .

This shows that (+ +) holds for r, and completes the induction proof.
Now take a product of the general form (*) in which not both

of v and r are zero, and let W be the matrix obtained when this
product is multiplied out. It is required to show that W has an
entry of degree at least one.

Case ( i ) . v — μ = 0. The product is of type-(XF), so W has
an entry of degree r, by ( + + ) .

Case (ii). v Φ 0, μ Φ 0. Since

and the product on the right is of tyipe-(XY), W~ι has an entry of
degree at least one by ( + + ) ; consequently W has also.

Case (iii). v Φ 0, μ = 0. If r = 0, W is just Y% which has vα?
as one of its entries. Suppose then that r ^ 1. XhYmί ••• Xδrγmr
is a product of type-(Xy), so the entries ξ[γ (j = 1, 2, •••, w) in the
first row of the matrix U obtained when this product is multiplied
out satisfy ( + + ) . The first row of W is the same as that of U, so
W has an entry of degree r.

Case (iv). v = 0, μ Φ 0. If Ϊ7 is the matrix obtained when
X^y^i . . . χ*r-γ*r is multiplied out, then U has an entry of degree
r, and since W is just obtained from U by a permutation of columns,
W also has an entry of degree r.

This completes the proof of Lemma 1.

3* Proof of Theorem 3* The following definitions are used.
A matrix of the form E + XEi3 , where λ Φ 0 and i Φ j y will be called
a transvection. I n a g r o u p G t h e commutator [gλ] o f g^zG w i l l b e
defined to be gt, the commutator [gu g2] of #!, g2s G will be defined
to be g1g2g7ίg2~\ and for % ̂  3, [&, #2, " , 0 j will be defined to be
[[QI, •••, 0n-d, 0»] If S is a nonempty subset of G then s#pS will
denote the subgroup of G generated by S.

Let n denote a fixed but arbitrary odd integer greater than one,
and let p be a fixed but arbitrary prime which does not divide Sn — 3.
It is required to show that the elements

C = Σ Eid+i)
4 = 1
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3=2

of SL(n, p) generate this group. It will be shown below that the
transvection E + Eίn belongs to sgp{C, D], and from this the result
follows, as is now indicated.

It is well-known (see [8], page 158) that the transvections

E + \EiS (ί Φ j ; i, j = 1, 2, . . , n) ,

where λ ranges over the nonzero elements of GF{p), generate SL(n, p).
In fact, it is enough to choose one value of λ, say λ^ , for each pair
(i, j). For λ# has order p in the additive group of GF(p), and so as
t runs through the integers from 1 to p — 1, t\i3 assumes every non-
zero element of GF(p). Since

(E + \iάEiάγ = E + {t\i5)Eiά (i Φ j ; i, j - 1, 2, .. , n)

all transvections can be obtained from the E + \jEiό. Notice that,
in particular, the value 1 can be chosen for each Xi3 .

Let ^ T = sgp{E + Eln, C}. Now for i, j - 1, . . . , n

(**) CEijC λ — -Eϊ(W+i-i)(%+i_i) .

Therefore

Cr(E + Eln)C~r = E -{- -27(W+i-r)(w-r)

= r r, say (0 ^ r ^ ^ — 1) .

It is easily shown that

K Γi, , ^ ] - E + Enn_s) ( 0 ^ s ^ n - 2 ) .

Thus ^ contains all the transvections

E + Eιh h = 2, 3, •••, n .

Finally, using (**) k times (0 ^ k ^ n — 1) gives

Cfc(# + ^ ) C - & - E + #(.+!-*,(.+*-*,, λ - 2, 3, , n,

and so ^g^ contains all the transvections

E+ EiS (iΦJ;ί,j = 1, 2, . . . , w ) .

Therefore
It will now be shown that E + Eln belongs to sgp{C, D}. Straight-

forward computations show
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[D~\ C~ι\D = E+En + Eί2 - # 2 1 - # 2 2

= P, say

[-D1, C~~2]D = E + # n + # 1 3 — # 3 i — # 3 3

= Q> say

C-'dD-1, C~ι]D)C = E+ #2 2 + #2 3 - #32 - #33

= R, say.

Let t be an integer such that 6t = 1 mod p (such a ί exists since p
is not 2 or 3). Then

(QP~ιR-ιy* - # - #1 3 + #2 3 .

This element will be denoted by T. It turns out to be extremely
useful.

Another useful element is

n

T 2 T~> T) X"1 Tp i TP i TP t ΊP
JXJΓ — / j •&%% i J-J\2 I -*- 2̂3 "T" -L^31

i = 4

This is just the permutation matrix corresponding to the permutation
(123). Since, for m Ξ> 3 and odd, the permutations (123) and (123 m)
generate the alternating group Am ([1], page 67), it follows that
$9P{C, D) contains all even permutation matrices.

Suppose that n is greater than 3. It is easy to see that

(1) (34 . . . n)T-\U n)-1 = # + Eίn - E2n

/ (lβ)(2, s + 1)(# + Eln - E2n)(ls)(2, s + 1) = # + E8n - E{s+1)n

(2)

and

(3) (123)-χ# + Eln - #2.)(123) = # + E2n - EZn .

From (1), (2) and (3) it follows that sgp{C, D) contains all the matrices

Λχ — E + Eχn — Etf+1)n 1 ^ λ ^ U — 2 .

This is also obviously true if n equals 3.
Now take the matrix

CDC"1 = E + Σ Ei»

Multiplying by Λn_2 (on either side, since each Λλ commutes with
CDC-1) gives # + Σ E 3 Ein + 2#(._2)%. Then multiplying by ^ _ 3 gives
# + ΣK 4 #iu + 3#(%_3)ίι. Continuing in this manner finally gives the
matrix E + (n — l)Eln. Formally,



RESIDUAL PROPERTIES OP FREE GROUPS 733

(ff 1) = E+(n

Since p does not divide n — 1, there is an integer £ such that t(n —
1) == 1 mod p. Then

(E+(n- l)ElnY = E+ Eίn.

This shows that sgp{C, D) contains the transvection E + Eln, and
completes the proof of Theorem 3
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