ACTIONS OF TORUS T^n ON (n + 1)-MANIFOLDS M^{n+1} JINGYAL PAK

Let ξ be a principal T^l -bundle over a lens space L(p,q). It is shown here that the total space of ξ can be identified with $L(k,q) \times S_1^1 \times \cdots \times S_l^1$, for some $k \leq p$. Let (T^n,M^{n+1}) be an effective torus action on an orientable (n+1)-dimensional manifold. An elementary examination of the parity of dimensions of the slice S_x at $x \in M$ and of the orbit $T^n(x)$, shows that the circle subgroups are the only possible stability groups on M^{n+1} . From these two results and the cross-sectioning theorem we can conclude that T^{n+1} and $L(k,q) \times T^{n-2}$ are the only possible types of compact closed orientable (n+1)-manifolds which allow T^n actions.

It is shown in [3] that T^4 and $L(p,q) \times S^1$ are the only compact closed orientable 4-manifolds which allow effective T^3 actions. The purpose of this note is to show, using an argument similar to that of [3], that T^{n+1} and $L(m,q) \times T^{n-2}$ are the only possible compact closed orientable (n+1)-manifolds which allow effective T^n actions for $n \geq 3$. Here L(m,q) includes the case of $S^2 \times S^1$ and S^3 . The key lemma used in the proof of this theorem is that every principal T^i -bundle over the lens space L(p,q) can be identified with $L(k,q) \times T^i$ for suitable $k \leq p$. In later papers we intend to work on T^n actions on compact closed non-orientable (n+1)-manifolds M^{n+1} and (n+2)-manifolds M^{n+2} .

Let G, a compact Lie group, act on a space X. If $x \in X$, $G_x = \{g \in G \mid g(x) = x\}$ will denote the stability group, or isotropy group of G at $x \in X$. $G(x) = \{g(x) \mid g \in G\}$ will be called the orbit of $x \in X$. The orbit space, the set of all orbits, will be denoted by $X/G = X^*$ or \overline{X} with the quotient topology, and the orbit map by $\Pi: X \to X^*$. For each $x \in X$, one can find a certain subset S_x called the slice at $x \in X$, Chapter VIII, with the following properties:

- (i) S_x is invariant under G_x .
- (ii) If $g \in G$, $y, y' \in S_x$, and g(y) = y', then $g \in G_x$.
- (iii) There exists a "cell neighborhood" C of G/G_x such that $C \times S_x$ is homeomorphic to a neighborhood of x. That is, if $f: C \to G$ is a local cross-section in G/G_x then the map $F: C \times S_x \to X$ defined by F(c,s) = f(c)s is a homeomorphism of $C \times S_x$ onto an open set containing S_x in X. The principal orbits are those for which the stability groups are identity. An action is effective if g(x) = x for every $x \in X$ implies g = e. We shall assume that G is acting smoothly and effectively on a smooth orientable manifold. By the slice theorem, given in [1, Chapter VIII], it follows that if T^* acts effectively on a

672 J. PAK

compact closed (n+1)-manifold M^{n+1} , then there exist principal T^n orbits and the orbit space $M/T^n=M^*$ is a compact 1-manifold which we denote by S^1 or [0,1].

LEMMA 1. Let (T^n, M^{n+1}) be a transformation group. Then the circle subgroups of T^n are the only possible nontrivial stability groups on M^{n+1} .

Proof. Let $T^i \times F$, $i = 1, \dots, n$, be a subgroup of T^n , where T^i is *i*-dimensional torus subgroup of T^n and F is any finite subgroup of T^n complementary to T^i . We assume that if i = 1, then F is non-trivial.

First we show that no nontrivial finite subgroup F of T^n can be a stability group. If $M^* = S^1$ then every point in M^* corresponds to a principal orbit, so that we don't have a finite group as a stability group. In any case, if we have a finite stability group F at x, then x is isolated. The orbit is n-dimensional and the slice is a 1-dimensional interval. Thus F must be Z_2 which reverses the orientation (a contradiction, since M is orientable and T^n is connected).

Now cosider the case of $T^i \times F$, $i=1,\cdots,n$. The orbit will be (n-i)-dimensional, and there is an (n+1)-(n-i)=(i+1) dimensional disk slice on which $T^i \times F$ must act as a rotation. But $T^i \times F \not\subset SO(i+1)$ for $i=1,\cdots n$. Thus there is no point $x \in M$ such that $T^n_x = T^i \times F$ for $i=1,\cdots n$. This also implies that the fixed point set $F(T^n,M^{n+1})=\emptyset$ for n>1.

LEMMA 2. Let (T^n, M^{n+1}) be a transformation group. Then the orbit map $\Pi: M^{n+1} \to M^*$ has a cross-section.

Proof. If $M^* = S^1$, then the T^n -bundle is trivial. If $M^* = [0, 1]$, then the action corresponding over (0, 1) is the trivial T^n -bundle, so that we have a cross-section over (0, 1). Now we can extend this cross-section trivially to both ends.

LEMMA 3. If M^{n+1} is a principal T^{n-2} -bundle over L(p, q), $n \ge 3$, then M^{n+1} can be written as $L(k, q) \times T^{n-2}$ for some integer $k \le p$.

Proof. By taking a circle subgroup T_1^1 of T^{n-2} and the complementary subgroup T^{n-3} to T_1^1 in T^{n-2} , we can consider M/T^{n-3} as a principal T_1^1 -bundle over L(p,q). Without loss of generality we can take T_1^1 be the first factor of $T^{n-2} = T^1 \times \cdots \times T^1$. But, this bundle is classified by $[L(p,q), K(z,2)] \cong Z_p$, and (see [5]) for any element $f_i \in [L(p,q), K(z,2)]$, $i \in Z_p$, the total space of the principal T_1^1 -bundle determined by f_i is $L(m,q) \times S^1$, where $m = \gcd(i,p)$. Take a circle

subgroup T_2^n in T^{n-3} as in the first case and denote the complementary subgroup by T^{n-4} . Then M/T^{n-4} is principal T_2^n -bundle over $L(m, q) \times S^n$. This bundle is also classified by

$$[L(m,q) \times S^1, K(Z,2)] \cong H^2(L(m,q) \times S^1, Z)$$
.

Let $\xi \in [L(m, q) \times S^1, K(Z, 2)]$ and denote its total space by E'. Consider the following diagram:

$$E' \stackrel{\varPi'}{\longrightarrow} L(m,q) imes S^1 \ \downarrow \qquad \qquad \downarrow \Pi \ E'' \stackrel{\varPi''}{\longrightarrow} L(m,q) \; .$$

Here E'' is the total space of ξ restricted to $L(m,q) \times t$, where t is any chosen point of S^1 . Here II' and II'' are bundle maps and II is the projection map onto the first coordinate L(m,q). Now E' is the pull-back of E'' relative to the projection map II, so that we have $E' = E'' \times S^1$. Since ξ restricted to $L(m,q) \times t$ is an element of $[L(m,q),K(Z,2)] \cong Z_m$ we can consider $f_j \in [L(m,q),K(Z,2)]$, for some $j \in Z_m$ as representing this bundle element whose total space is E''. But $E'' \cong L(d,q) \times S^1$ as before, where $d = \gcd(j,m)$. Hence $E' \cong L(d,q) \times S^1 \times S^1 \cong L(d,q) \times T^2$. Repeating this process a finite number of times we eventually get $M \cong L(k,q) \times T^{n-2}$ for some $k \leq p$.

THEOREM. If T^n acts effectively on a compact closed orientable (n+1)-manifold M^{n+1} , then M^{n+1} must be either T^{n+1} or $L(k, q) \times T^{n-2}$ for $n \ge 3$.

Proof. If $M^* = S^1$, then every point on S^1 corresponds to a principal orbit, and the total space is a T^n -bundle over S^1 . But these bundles are classified by

$$[S^1, K(Z, 2) \times \cdots \times K(Z, 2)] = H^2(S^1, Z + \cdots + Z) = 0$$

so that the bundle is trivial and $M=S^1 imes T^n=T^{n+1}$.

If $M^*=[0,1]$, then by Lemma 1 there are only two circle subgroups of T^n corresponding to the stability groups at 0 and 1. Let T_0 be a subgroup generated by these two circle subgroups. Then any (n-2)-dimensional subgroup T^{n-2} of T^n which is complementary to T_0 acts freely on M. Then M/T^{n-2} is a 3-dimensional orientable manifold \bar{M} and T_0 acts on it so that $\bar{M} \setminus T_0 \cong [0,1]$. But T_0 actions on 3-manifolds whose orbit spaces are isomorphic to [0,1] are classified as lens spaces L(p,q) in [2]. Now, since T^{n-2} acts freely on M, M is a principal T^{n-2} -bundle over L(p,q). But these bundles can be written as $L(k,q) \times T^{n-2}$ by the Lemma 3.

674 J. PAK

REMARK. Since the maximal torus subgroup of SO(m) is T^n where m=2n or m=2n+1, we see that (T^n,M^n) can have no fixed points unless m>2n or m>2n+1. Also we can see from the theorem that a compact simply-connected (n+1)-manifold does not allow effective T^n actions for $n\geq 3$. Thus extending a result of R. Richardson, Jr. [4] which says that T^3 cannot act effectively on the 4-dimensional sphere S^4 .

REFERENCES

- 1. A. Borel, et al., Seminar on transformation groups, Ann. of Math. Studies, No.
- 46, Princeton Univ. Press, Princeton, N. J., 1960.
- 2. P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. 1, Trans. Amer. Math. Soc., 152 (1970), 531-559.
- 3. J. Pak, Actions of torus T^3 on 4-manifolds M^4 , to appear.
- 4. R. Richardson, Jr., Groups acting on the 4-sphere, Illinois J. Math., 5 (1961), 474-485.
- 5. M. Thornton, Total spaces of circle bundles over lens spaces, to appear.

Received October 18, 1971.

WAYNE STATE UNIVERSITY