
PACIFIC JOURNAL OF MATHEMATIC
Vol. 44, No. 2, 1973

ACTIONS OF TORUS Tn ON (n + 1)-MANIFOLDS Mn+1

JlNGYAL PAK

Let ζ be a principal ίΓ'-biindle over a lens space L(p, q).
It is shown here that the total space of ξ can be identified with
L(fc, q) X Si X X S}, for some k ^ p. Let (Γn, ikΓw+1) be an
effective torus action on an orientable (%+l)-dimensional mani-
fold. An elementary examination of the parity of dimensions
of the slice Sx at xeM and of the orbit Tn{%), shows that
the circle subgroups are the only possible stability groups on
Mn+1. From these two results and the cross-sectioning theo-
rem we can conclude that Tn+1 and L(k, q) x Tn~2 are the only
possible types of compact closed orientable in + l)-manifolds
which allow Tn actions.

It is shown in [3] that T4 and L(p, q) x S1 are the only compact
closed orientable 4-manifolds which allow effective T3 actions- The
purpose of this note is to show, using an argument similar to that
of [3], that Tn+1 and L(m, q) x Tn~2 are the only possible compact
closed orientable (n + l)-manifolds which allow effective Tn actions
for n ^ 3. Here L(m, q) includes the case of S2 x S1 and S*. The
key lemma used in the proof of this theorem is that every principal
Γ*-bundle over the lens space L(p, q) can be identified with L(k, q) x
Tι for suitable k ^ p. In later papers we intend to work on Tn

actions on compact closed non-orientable (n + l)-manifolds Mn+ί and
in + 2)-manifolds M%+\

Let G, a compact Lie group, act on a space X. If x e X, Gx =
{g e GI g(x) = x} will denote the stability group, or isotropy group of
G at x e X. G(x) = {g(x) \geG} will be called the orbit of x e X. The
orbit space, the set of all orbits, will be denoted by X/G = X* or
X with the quotient topology, and the orbit map by Π:X—>X*.
For each xeX, one can find a certain subset Sx called the slice at x
[1, Chapter VIII], with the following properties:

( i ) Sx is invariant under GΛ.
(i i) If geG,y,y'e Sx, and 0(2/) = y', then # G GX.

(in) There exists a "cell neighborhood" C of G/G,, such that
C x Sx is homeomorphic to a neighborhood of x. That is, if /: C—+G
is a local cross-section in G/G* then the map F: C x Sx—*X defined
by F(c, s) = /(c)s is a homeomorphism of C x Sx onto an open set
containing S* in X. The principal orbits are those for which the
stability groups are identity. An action is effective if g(x) = x for
every xe X implies g = e. We shall assume that G is acting smoothly
and effectively on a smooth orientable manifold. By the slice theorem,
given in [1, Chapter VIII], it follows that if Tn acts effectively on a
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compact closed (n + l)-manifold Mn+1, then there exist principal Tn

orbits and the orbit space M/Tn = M * is a compact 1-manifold which
we denote by S1 or [0,1J.

LEMMA 1. Let (Tn, Mn+1) be a transformation group. Then the
circle subgroups of Tn are the only possible nontrivial stability groups
on Mn+\

Proof Ό Let Tι x F, i = 1, , n, be a subgroup of Tn, where
Tι is i-dimensional torus subgroup of Tn and F is any finite subgroup
of Tn complementary to T\ We assume that if i = 1, then F is non-
trivial

First we show that no nontrivial finite subgroup F of Tn can
be a stability group. If M* = S1 then every point in ikf* corresponds
to a principal orbit, so that we don't have a finite group as a stability
group. In any case, if we have a finite stability group F at x, then
x is isolated. The orbit is ^-dimensional and the slice is a 1-dimen-
sional interval. Thus F must be Z2 which reverses the orientation
(a contradiction, since M is orientable and Tn is connected).

Now cosider the case of Tι x F, i = 1, , n. The orbit will be
(n — i)-dimensional, and there is an (n + 1) — (n — i) = (i + 1) dimen-
sional disk slice on which Tι x F must act as a rotation. But Tι x
Fςt SO(i + 1) for i = 1, ••• n. Thus there is no point xeM such
that T; = T x F for i = 1, n. This also implies that the fixed
point set F{Tn, Mn+1) = 0 for n > 1.

LEMMA 2. Lβί (Tn,Mn+1) be a transformation group. Then the
orbit map Π: Mn+1 —• M* has a cross-section.

Proof. If M* = S1, then the Γw-bundle is trivial. If ikf* = [0,1],
then the action corresponding over (0,1) is the trivial T^-bundle, so
that we have a cross-section over (0,1). Now we can extend this
cross-section trivially to both ends.

LEMMA 3. If Mn+1 is a principal Γw~2-bundle over L(p, q), n^3,
then Mn+1 can be written as L(k, q) x Tn~~2 for some integer k ^ p.

Proof. By taking a circle subgroup T} of Tn~2 and the com-
plementary subgroup Tn~* to Tl in Tn~2, we can consider M/Tn~~3 as a
principal T^-bundle over L(p,q). Without loss of generality we can
take Tt be the first factor of Tn~2 = T1 x x Γ1. But, this bundle
is classified by [L(p, q), K{z, 2)] ^ Z9, and (see [5]) for any element
fie[L(p, q), K(z, 2)], ieZp, the total space of the principal T^-bundle
determined by ft is L(m, q) x S\ where m = gcd (i, p). Take a circle
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subgroup Ti in Tn~3 as in the first case and denote the complementary
subgroup by Tn~\ Then M/Tn~4 is principal T^-bundle over L(m, q) x
S1. This bundle is also classified by

[L(m, q) x S\ K(Z, 2)] ^ H2(L(m, q) x S\ Z) .

Let ξ e [L(m, q) x S1, K(Z, 2)] and denote its total space by E'. Con-
sider the following diagram:

E' — L(m, g) x S1

i I-
77// *

E" > L(m, q) .
Here E" is the total space of ξ restricted to L(m, q) x ί, where ί is
any chosen point of S1. Here 77' and 77" are bundle maps and 77 is
the projection map onto the first coordinate L(m, q). Now Έ' is the
pull-back of E" relative to the projection map 77, so that we have
Ef — E" x S1. Since ξ restricted to L(m, q) x t is an element of
[L(m, q), K{Z, 2)] ~ Zm we can consider/,- e [L(m, q), K{Z, 2)], for some
j e Zm as representing this bundle element whose total space is E".
But Έ" ^ L(d, q) x S1 as before, where d = gcd (7, w) Hence £" =
L(cί, q)x S1 x S1 — L(d, q) x T2. Repeating this process a finite number
of times we eventually get M ~ L(k, q) x Tn~2 for some k ^ p.

THEOREM. // Tn acts effectively on a compact closed orientable
(n + l)-manίfold Mn+1, then Mn+1 must be either Tn+1 or L(k, q) x Tn~%

for n ^ 3.

Proof. If M* = S\ then every point on S1 corresponds to a
principal orbit, and the total space is a Γw-bundle over S1. But these
bundles are classified by

[S\ K(Z, 2) x . . . x K(Z, 2)] = H\Sι, Z + . + Z) = 0 ,

so that the bundle is trivial and M = S1 x Tn = Tn+1.
If M * = [0,1], then by Lemma 1 there are only two circle sub-

groups of Tn corresponding to the stability groups at 0 and 1. Let
To be a subgroup generated by these two circle subgroups. Then
any (n — 2)-dimensional subgroup Tn~2 of Tn which is complementary
to To acts freely on M. Then M/Tn~2 is a 3-dimensional orientable
manifold M and Γo acts on it so that M\T0 = [0,1]. But To actions
on 3-manifolds whose orbit spaces are isomorphic to [0,1] are classified
as lens spaces L(p, q) in [2]. Now, since Tn~2 acts freely on M, M
is a principal T^-bundle over L{p, q). But these bundles can be
written as L(k, q) x Tn~2 by the Lemma 3.
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REMARK, Since the maximal torus subgroup of SO(m) is Tn

where m = 2n or m = 2n + 1, we see that (Tn, Mm) can have no
fixed points unless m > 2n or m > 2n + 1. Also we can see from
the theorem that a compact simply- connected (n + 1)-manifold does
not allow effective Tn actions for n ^ 3. Thus extending a result
of R. Richardson, Jr. [4] which says that ϊ73 cannot act effectively
on the 4-dimensional sphere S\
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