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STARLIKE AND CONVEX MAPPINGS IN SEVERAL
COMPLEX VARIABLES

KE1zo KIKucCHI

In this paper, using the Bergman kernel function Kjp(z,
Z), we give necessary and sufficient conditions that a pseudo-
conformal mapping f(z) be starlike or convex in some bounded
schlicht domain D for which the kernel function K,(z, Z) becomes
infinitely large when the point z< D approaches the boundary
of D in any way. We also consider starlike and convex map-
pings from the polydisk or unit hypersphere into C~.

Generalizing the results obtained by M. S. Robertson [10] using
the principle of subordination, T. J. Suffridge has established necessary
and sufficient conditions that a function be univalent and map the
polydisk or

D, = {z: [JE:‘,1 lz,-l”]w <l,p= 1}

onto a starlike or convex domain [11].

Similar problems have been considered by T. Matsuno [8] ivs vase
hypershere. In this paper we deal with the same problems in terms
of the Bergman kernel function Kj,(z, %), and show the results are
equivalent to theorems of Suffridge in case of polydisk or hyper-
sphere.

The author wishes to thank Professor S. Ozaki for helpful dis-
cussions on the preparation of the paper.

1. Preliminaries. We consider bounded schlicht domains D in
C™ for which the kernel function becomes infinite everywhere on the
boundary oD, i.e., it is the union of an increasing sequence of strictly
pseudo-convex domains

1.1) D, =29 =Ky22 —t<0,zeD]
for some number ¢ > 0, where z = (z, +--, 2,)’. (See [3]). First we
have

LeEMMA 1.1. If D is a bounded domain, the Bergman kernel func-
tion Kp(z, 2) is strictly plurisubharmonic and
1.2) l/o(D) < Kp(z, 2) = 1/z(U(z))™,

where U(z) = Mmib.ess O(T, 2), O(7, 2) = max, {|7; — 2,5 =1, -++, n} and
w(D) signifies the euclidean volume of D.
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Proof. The minimum value of the integral || f|% =\ |f(©)|*dv,
D

for functions f({) e &£*(D) satisfying the condition df(z)/dl-u =1,
where 4 = (4,, ---, %,)’ is an arbitrary nonzero column vector, is

G,

0°Kp(z, 2 oC*
Wy e TREE R [ e (@ee (1] [21)
VTR

Here we define partial derivatives of a function g({, 7) as

0.4 0*9(C, T)/oT*dL = (8/0T,, «++, 0/0T,)" X% (9/3C,, + -+, 8/3C,) x g({, T)
) 82070, +« -, 04/0T,0C,,
( ceesvese )xg(C,f),
00T ,0C,, = -+, 0*/0T ,0C,

and if g(§) is a function of only {, we denote dg({)/dl = (9/0,, «--,
0/0¢,) x g({), where the sign x designates the Kronecker product and
the sign * denotes the transposed conjugate matrix. (Cf. [7].)

On the other hand, if we put f(§) = *( — 2)/|u)’, then

dL(z—)u =uw*u/|lulf=1,

dg
therefore
K2, %), u*(C — 2)
Y —tear v = SD lwl

1 . L*w(D)
< — <
=TuF [2SD|C z|'dv; < P

2
d’l];

(1.5)

where L = maX..op |7 — 2| and |u| = 7=, |u; ]
Thus

Kp(2, 2)

ACror u>0

u*
for all ze D, that is, K,(z,?) is strictly plurisubharmonic (see [3]).
Next it is well known that the minimum value of the integral || f||%
under the condition f(2) =1, ze D, becomes 1/K,(z, 7). Then, for the
function f(§) =1, we have

8 UKD = | |K(C B/Kolz, Blidv; < | doe = 0(D) .

Also, using the Cauchy integral formula, we obtain
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‘(KD(C, 5))

KD(Z, _z.) =z

g 1 Szx co e Szx IKD(C’ 2)/Kb(z’ E) | /rld01 e 'rndan ’
@2m)™ Jo 0 Pyoees Ty

1.7)

where {; — z; = r;e¥, 0 <7r; <), =1, +--,n). We get therefore
by the Schwarz integral inequality

iz = - Sp(( z><ts s g),d'vg

1.8) @2r)" K,(z, ?) N -
= (27?)”[(” o gp(( z)<lg %%_;%l d’U;]

Then

(L.9) e <[ %%%rdv;]”’ — UKz, D))",

hence we have (1.2) from (1.6) and (1.9).

2. Convex mappings. We consider the above mentioned domains
D and D,, and suppose that 0K, (z, 2)/0z=2<0, z=<0, in D, and K,(0, 0) =
min,., K,(2,?) at only z = 0. For a holomorphic univalent function
w = f(z) of D, let

2.1 P:(2) = P (w)) = D(w), t > K5(0, 0) ,

and let 4 = f(D), 4, = f(D,).
Then we have

2.2) 4, = [w: &, (w) < 0, we 4]

corresponding to (1.1). On the boundary 0D,: ®,(2) =0, the total
differential of ®,(2) becomes

= 9Pg *a¢t=2@[§&d]=o

2.3) dp, > 2+ dz e > z )

where dz = (dz, -+, dz,)’. Consequently, since 0p,/0z* = 0K ,(z, z)/0z*
is perpendicular to all tangential vectors dz of the boundary oD, at
z, 0p,/0z* is a normal vector of 0D, at z. And we can derive

00, 00, ( dz \/dw _ [_aﬁ ] _
(2.4) %f[ i dw] 9?[ (& “ e dz) dz] - 2| 2dz] =0,
hence 09,/0w* is also a normal vector of the boundary d4,: @, (w) = 0

at w = f(). (See [5],[6].)
We can expand @,(w + dw) into a Taylor series:
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O,(w + dw) = O,w) + 2%[56%%]

(2.5) 5 @

ow

az¢t 2 * 2
+2%[——2dw + dw d ]+0(ldwl) ,
ow

where dw* = (dw,, «--, dw,)’ X (dw, -+, dw,)’. (See [3], Chap. IX.)
Since

50, ]
59[ 2w
at weadd,, it follows that
2.6) O, (w + dw) = 2@;[%@ dw* + dw* z% dw] + 0(ldwl?) .

If the point (w + dw) lie always the outside of 4, for all we a4, and
tangential vectors dw at w, i.e., @,(w + dw) > 0, then 4, is convex.
From (2.6), we must have the following condition in order to consist
always @,(w + dw) > 0:

@.7) | Lo aw + dw 2L qu] > 0.

Now we can calculate as follows by formulas of matrix derivatives
described in [7]:

k= —a-(%%‘(%%)‘l) ) (@) <)
w

2
o8 g () () 22l (42 (4

. 00, . {dw - e, (dw —1} . ¥,
@10 dw's 20 du = duw* (dz) 6z*6z< ) w=de* TPz

Then, substituting (2.9) and (2.10) into (2.7), we obtain

o*p 0P, [ dw ™' d*w acp,
2.11 [{ t 2 dz* + dz* d ] 0.
( ) A Fo ( 7 ) 0 } + az 2| >

Thus we have the following Lemma.

LEMMA 2.1. For a fixed value t, a holomorphic univalent function
w = f(2) of D have convex image 4, of D, defined by (1.1) if and only
iof at every point z on the boundary oD,
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«0°Kp(z, 2) Ky(2,2) _ 0Kz, B)(df\ T LS .
(2.12) %[a aor + { 02 oz \dz> dzz}a ] >0

for all unit vectors a satisfying
g[m a] —0.
0z

DEFINITION. We define the class < of bounded schlicht
domains D for which the kernel function K,(z, Z) becomes infinite
everywhere on the boundary oD, K,(0,0) = min,., K,(2,%) only at
2=0,0K,(2,2)/0z=><0,2=<0, in D, and there is the holomorphic
mapping ¢(z) of D into D satisfying ¢(0) = 0, for some one z* of two
arbitrary points 2, 2®(=<0) in D g(zV) =2®, and K,(z, 2) = K,(9(?), 9(2)).

For example, let D be a minimal domain or representative domain
with center at the origin which is the image domain of £ = {{: || =
(-, 1&;1)® < 1} under the biholomorphic mapping z = ®({) satisfying
0 = »(0). Then det (d®({)/d{) = const. when D is a minimal, domain
and do({)/d{ = const. when D is a representative domain (see [4],
Theorem 3.1). Hence, for any holomorphic mapping g¢(z) of D into D
satisfying g(0) = 0, we have K,(z, ) = K»(9(z), 9(2)) because K,(, ?) =
K.(9(), 9(0)) under the holomorphic mapping @(0) =2 [g(®(©))], 2(0) =0,
of E into E. Also we have K,(0, 0) = min,., K,(z, Z) at only the origin.
Moreover, for arbitrary points 2, 2® € D, if | 7'(z®)| < |#7'(2") |, then

9(2) = sv(-:—g;gf—g:— U, Uﬁ@“(z))

is a holomorphic mapping of D into D satisfying g(0) = 0 and g(z") =
2® where

27! (=")] |7 ()]
0 0
e =U| - pPED=U0 .
0 0

and U,, U, are unitary matrices. And we observe
0K, (2, 2)/0z = 0K,(C, ©)/0C- (dP()/d0) =<0, 22<0,
because

0K, O)/0C = (n + DT KR, /1 — [{)=<0,{=<0.

THEOREM 2.1. Let D be a bounded schlicht domain of the class 2.
Suppose f: D — C* is holomorphic, f(0) =0, and det(df/dz)=<0 for
all ze D. Then f is a univalent map of D onto a convex domain if
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and only if

@19 o SnBa s (FEp R - SR B(E) ] > 0

for all unit vectors a satisfying

7| et Ba] = 0.

Proof. The Bergman kernel function K,(z, Z) of this domain D
becomes infinite on 4D. Then we define D, and 4, by (1.1) and (2.2)
respectively. If 4 = f(D) is schlicht and convex, then all 4, also
become convex, i.e., for any w™, w® edd,,

(2.14) w® =tw? + L-7)wPed,, 0<7<1.

In fact, if we put 2z = f~'(w®), 2® = f~(w®?), then K,(z"“,2") =
K,(z®, 2®) = t. Setting
(2.15) F(z) =7f(9(®) + 1 — 1) f(2)

where g¢(2) is a holomorphic mapping of D into D satisfying ¢(0) = 0
and g(z") = 2®, we observe that F(0) = 0 and F'(z) < f(z) because
the mapping f: D— C* is convex. Hence

(2.16) v(2) = f7(F(z)
is a holomorphic mapping of D into D, so we have
Kp(2®, 27) = Kp(¥(z™), (&) = Kp(f ("), F(w™)) .

Consequently f*(w®)e D,, so w® e 4,. Thus, by Lemma 2.1, (2.13)
holds for all ze D. Contrary, if (2.13) is realized for all ze D, every
4, is convex. Therefore we can conclude that the mapped domain 4 is
convex.

Particularly if D is a unit hypersphere, then

]
K ="
D (z’ ) (1 — |z
Thus we have the following result by Theorem 2.1.

THEOREM 2.2. Let D be the unit hypersphere and let f: D —
C™ be holomorphic, f(0) =0 and det (df/dz) + 0 for all ze D. Then
F(D) is convex if and only if

2.17) [lAz P42 ( J;) df(Az x Az)] >0

where
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A1 0
A=( .'. )?Ajgoszly"','n!

0 A,
and the equality holds only if Az = 0.

Proof. We can compute as follows setting K = K,(z, 2):

(2.18) 0Kfdz = n + )—% K,
1-— |z
(2.19) Kozt = (n + 1)(n + 2)-BX " g
@ -—l=z»
(2.20) 3Kaz*az = (n + 1) 4= lzlaE— +lz(l7%2+ 222" i

Then, from (2.13), we have

%[(n + 2){|z*al + (@)

&2 + = 1shfe - #() Fhat]> 0.

Since
[Z¥a|* + Z@r*a)* =0
from

%[%I—:a] =0, i.e., Zlz*a] =0,

we conclude

(2.22) %[1 - z*(%g_)" %;L:of] >0.

Moreover, under the condition .Z[z*a] = 0 it becomes that z*a =
ip(p = 0,7 =1V — 1), because both @ and -a are satisfy (2.22). There-
fore we can put a = i(Az/|Az|) when Az=<0, where

Al 0
A= .'. ), Ajgoy(j:]ﬂ""n)y

0 A,
are chosen arbitrarily. Thus we obtain (2.17) from (2.22).

REMARK 1. Suffridge’s Theorem 5 [11] shows that
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F = %[Aﬁ’z + (%>—1 %’;(Az X Az)]/z, w = (%)—IFG F s

i.e.,
SURPAL x| A2 df\"'d*f /
%15:31 i12;*/2; = Rz [Az + (_dz> o (AzxAz)] 2

- 2y (ST ES ] /
= %[[Azl + 2 (dz) dzz(Az X Az)|/2=0,
is the necessary and sufficient condition for convexity.

Next, if D is the polydisk {ze C": |2;| < 1,5 =1, -+, n}, the kernel
function K,(z, Z) becomes 1/7"(1 — [z} ++- (1 — |2,]®)’. Hence

(2.23) oK/oz = 2K-2* 7,
Kot = AK-(2x2)(Z X Z)
e
0y
o
2.29) + 2K (2 X 2*(Z X Z) o ,
_________________ 0
o0,
__________ el
(2.25) 3K 3z*0z = AK- Zee*Z + 2K-2°

where

/A — [z[) 0
0 1/Q — |2.])

Substituting formally (2.23), (2.24), and (2.25) into (2.13) and setting

B (*Za) + |2*Zal* = 0 and a = il—g:—z:j—;

V1 =1z 0
Z--ll2 = .- 9
0 V1I=Tz,[

where
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in place of the condition
%[a—%@a] — 2K.F[e*Za] = 0,
we arrive at
(2.26) %D Az| + z*Z<-@f-)_1d2—f(Z X Z)"(Az X Az)] >0,
dz dz*
where the equality holds only if Az = 0.

THEOREM 2.3. Let D be the polydisk and let f: D — C™ be
holomorphic, f(0) =0 and det (df/dz)=<0 for all ze D. Then f 1is
a univalent map of D onto a convex domain if and only if the con-
dition (2.26) 1s fulfilled.

Proof. If f is a convex mapping, then by Suffridge’s Theorem
3[11] f = T(P:i(2), +++, P.(2,)) where T is a nonsingular linear transfor-
mation and each ®;(z;) is a univalent mapping from the unit disk
in the plane onto convex domain in the plane. Then we have

(ﬂ)” a’f
dz az?
@21 =[P @)/P()0 .-+ 0 0
09; (2:)/P:(25)0 <+« O
0 0 00L)IPLR) ).

Substituting this into the left side of (2.26), we get
(2.28) |3 45 18P + 59)(@)/9 (=) |

Hence from the hypothesis Z[1 + 2;97(z;)/Pi(z;)] > 0,7 =1, «+«, m,
we get the inequality (2.26).

We will prove the converse. Fix k,1 <k <n and choose 4, =
1,A,=0,h=<k 1=<h=<mn From (2.26)

2l — |25 & Z; 2
2.29 ng[ Nl £ ; ;s] >0,
(2.29) I P 3§ e PR
where J = df/dz and G¥ is obtained from detJ by replacing the jth
column by the column 0°f/0z% = (3°f,/02}, +++, 0 f,[07%)'. For 1,1 <
L= m, i<k setting [z;| <1/2,j=<l,1=j=<n 01— |zP)/A- 2
tends to infinity when |z, —1. Then we must have always
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1 72 2
2.30 %‘/‘[ # Gk] >0
(2:30) detJ 2z,
from the condition (2.29). Here, since it becomes 0 at z, = 0, we see
that G¥* = 0 for each I,l=<k,1 <1< n. Next, if we set 4, = 4, =
1,A,=0,m=k, 1, then (2.26) becomes as follows from the above
results:

2 2 |2, |2sz}l:2 |2 lzzzG?
(2.31) %[izkl T lal detJ det J
+ otV (A — 20 — (&) v _ 26 ] >0.
det J = (1 — |#]%)

For 5,1 < s < n, setting

2] <1/2, ha<s,1<h<mn, LI lsz)‘(l!- 209
1— |z,

tends to infinity when |2,| —1. Then we must have always

2.32) %[aet—j -z-;ﬁG;”] >0.

Since it attains to the minimum value 0 at 2,2, = 0, we must have
G¥ = 0 for each s. Thus we arrive at the conditions of the Theorem

8 of Suffridge following his methods. So we can conclude that f is
a convex mapping.

3. Starlike mappings. We now consider univalent functions of
D which map D onto a starlike domain with respect to 0. First we
set up the definition of starlikeness following Suffridge:

DEFINITION. A holomorphic mapping f: D — C* is starlike if f
is univalent, f(0) = 0 and (1 — 7)f < f for all eI = [0, 1].

THEOREM 3.1. Let D be a bounded schlicht domain for which the
kernel function K,(z, %) becomes infinite everywhere on the boundary,
K,(0,0) = min,., K,(2, Z) at only the origin, and K,(z,%z) = K,(9(z),
g(®)) for any holomorphic mapping g(z) of D into D satisfying g(0) =
0. Suppose f: D— C" is holomorphic, f(0) =0 and det (df/dz)=<0
for all ze D. Then f is starlike if and only if

for all ze D, z=<0.
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REMARK 2. Domains which belong to the above mentioned class
<7 satisfy the conditions of this Theorem.

Proof. If f is starlike, then all image 4, are starlike, that is,
for all w® edd, we have w® = (1 — ) wV ed,, tel. In fact, if we
set 2V = f(w"), Ky(z™, 27) = ¢t and () = f((1 — 7)f(2)), then we
obtain

3.2)  Kp(?,27) 2 Kp(y (™), v(&)) = Kp(fw®), F7w™) ,

because +(z) is a mapping of D into D and +(0) = 0. Then it holds
that f~'(w'”) € D, which yields w'” € 4,. Now, since

q)t( 0. ) l ad’tl 406> 0
8w
when ¢ > 0 is sufficiently small and wedd,, N, = 00,/ow* is the

outward normal vector at the boundary point w € 64,. Hence (1 — t)w e
4 (wedd,, 0 <7 <1) implies

(8.3) cos (—N,, — [3@ ] /I 00,

which yields (3.1) by virtue of
By = K (L) 50

ow 0%

Conversely, if (3.1) holds, then we conclude (1 — ) we 4, wedd,, 0 <7<
e( < 1) for some ¢ > 0 by (3.3). Moreover, we can conclude (1 — 7)we
4, weodd,, 0 <7t <1, because, if 1 — 7)w = w* €dd, and 1 — 7)we
4,,0 < v <7, for some 7, <1, then (1 — 7)w™ ¢ 4,, w" €04, which is
a contradiction. Then the image domain 4 of D becomes starlike.

COROLLARY 3.1. Let D be the unit hypersphere, and let f: D —
C* be holomorphic, f(0) = 0 and det (df/dz)=<0 for all ze D. Then
f(2) 1s starlike if and only if

3.4) %[z*(%)_lf] >0

for all ze D, z=<0.

Proof. Substituting (2.18) into (8.1), we obtain the required
result.

REMARK 3. The conditions of Suffridge’s Theorem 4 [11]: f =
Jw, w e &, are the same as (3.4).
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