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HAUSDORFF DIMENSIONS FOR COMPACT SETS IN R»

ROBERT J. Buck

A general Hausdorff dimension of sets in R* is studied
by considering the dependence of the dimension upon the
size and shape, relative to the convex measure, of the ele-
ments in the covering family. The Hausdorff dimension of
compact sets is related to the behavior of distribution funec-
tions of finite measures of compact support in R*. A com-
parison of dimensions using diameter and Lebesgue measure
is given in terms of the regularity of the shape of elements
in the covering family.

1. Introduction. Eggleston [3] defined the Hausdorff dimension
of sets F in R™ as follows: Let C denote the collection of all convex
sets in R"; and, for each positive number B, write

C/E) = nf{Z(6(C)* UC: 2 E, (C} = C},

where 0(A) denotes the diameter of A. The Hausdorff dimension of
E, denoted by C(F), is then the supremum over all values @ where
C#E)> 0. This notion of dimension has been generalized in various
ways in R!, e.g., [1], [2], [5], [6]; and it is the intent of this paper
to study the situation in R", where apparently deeper problems are
involved than those studied in [2].

In particular, let 7 be a nonnegative, monotone, translation
invariant set function, defined and sub-additive on the convex sub-
sets of R™ in the sense that if {4} is a convex covering of the
convex set A, then 7(4) < 37(4,). If, in addition, 7(4) tends to
zero with 6(A4), then 7 is said to be a convex measure on R™. Let
K be an arbitrary collection of nm-dimensional rectangles (hereafter
referred to as rectangles) which have edges parallel to the coordinate
axes and uniformly bounded diameters. If K is closed under trans-
lations, and contains a sequence of rectangles {R;} for which 6(R;)— 0,
then K is called a covering class. If K is a covering class, T a con-
vex measure on RE”, B a positive number, and E a subset of R”,
put

KI(E) = inf {37(A4)": U A; 2 E, {A} S K} .

The Housdorff dimension of E relative to the convex measure T and
the covering class K is the number

K.z = sup{B: K}(E) > 0} .
The remainder of this work is concerned with the dependence of K.(E)
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upon the choices of K and z. The nature of this dependence is more
interesting in R*(n = 2) than in R! for various reasons. One reason
is that the usual choices for the convex measure 7, diameter 6 and
Lebesgue measure m, coincide in R!. Another is that covering classes
in R! are completely determined by the length of their members,
while in higher dimensions, shape as well as size plays a key role.

Theorem 1 relates the Hausdorff dimension of compact subsets of
R” to the behavior of distribution functions of finite measures sup-
ported by such sets. The theorem yields a sufficient condition for
the relation

K.(E) =z M.(E)

for all compact sets £, in terms of the shape and size of elements
in the covering classes K and M. "~ A second result, Theorem 2, relates
the dimensions K,(E) and K,,(E) by establishing a necessary and suffi-
cient condition for the relation '

K.(E) = = K.(B)
to hold for all compact sets E.

2. The Hausdorff dimension of compact sets. If K is a cover-
ing class, then K can be completely described by a set of points in
R*; namely by those points x whose ¢*® component, x;, is the length
of the edge of the given rectangle which is parallel to the 7*® coordi-
nate axis. Accordingly, a set of points K in R™, with positive coor-
dinates, is a covering class, if and only if it is bounded and contains
a sequence converging to the origin. In the following, elements of
a covering class will be referred to either as points or as rectangles,
as convenience dictates. Now let E be a compact subset of R™, and
denote by _#Z(F), the class of all positive finite measures g sup-
ported in E. If F, is the distribution function of x, write for a in
K,

4F (@) = V (R, +y), (yeR"
where R, = {x: 0, <a;t1=1,2,---, n}). Finally put
K.(¢) = lim inf (log 4F .(a)/log 7(R,)) ,

as 7(R,) —0,ac K. The number K. (y) is called the Hausdorff dimen-
sion of the measure p with respect to K and z. The connection be-
tween the Hausdorff dimension of E and the Hausdorff dimension of
the measures it supports is given by
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THEOREM 1. For all compact sets E, covering classes K, and
convexr measures T,

K.(E) = sup {K(): pre A (E)}.

Proof. The inequality
K.(E) z sup {K.(): pe Z(E)}

is immediate. Indeed, if e #Z(E) and 0 < 8 < K, (1), then there
is > 0 for which z(R,) < é implies 7(R,)* > 4F.(a), for all ac K.
Hence if .o~ is a countable covering of E by rectangles of K, then

PRCENENTANEE

Since the right-hand side is positive and independent of the covering,
it follows that g < K.(F). To establish the reverse inequality,
assume that the points of K have all coordinates of the form 2-™,
m integral. It will be shown later that this assumption is not re-
strictive. Let {a(m)} be a sequence in K tending to the origin. Fix-
ing m, let K(m) denote the points of K in {x: z; = a(m);}. If g is a
positive number and B < K.(F), then a measure v, can be associated
with E as follows. Each K(m) contains a finite number of points
which are taken to be lexicographicallv ordered, say

b(1) > b@2) > +++ > b(p) ,

with b(p) = a(m). For each j=1,2, ..., p, let A; denote the partition
of R" induced by the rectangle R,;. If Q is a subrectangle of A;,
write 0(E, @) = sup {Yzne(x): x € R"},

fo(x) =Q§A, T(Q)*0(E, Q)Y o(x)
For each index § = 0,1, .-+, p — 2 write

fint) = 3 (YA @[] £i0dx)- zo®) - £,

€dp_(j+1)
allowing 7(Q)* / Se fi(x)dx to take the value + o, when SQ fi(x)dx is
zero. Finally, the measure v, is defined to be

V(4) = Lf,,_l(x)dx .

LEMMA 1. For all Rin 2, 4;, v.(R) < (R)?. Moreover, for each
x in K, there is Q in U?-, A4;, containing x and such that v,(Q) =
7(Q)*. This rectangle @ can be selected so that Qe A, ; implies
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[ fim(x)dx > 2(@p, while | fi(x)dx = =@* G > 0).

Proof. The first assertion follows immediately from the fact that
for all x, f;,,(x) < f;(x). For the second part, let x€ E and xe Pe A4,.
If v,(P) = 7(P)? there would be nothing to prove. Otherwise, let j
be such that

[, fiatodx > v.(P)

and
[, fx)dz = v .

It would then follow that

[, fmmax > | siwde=[1ac@[{ fiiwix]- | 7imax,

where @ is that unique element of A, ; containing P. Hence,
T(Q)? < SQ fi—i(x)dx, and so SQ fi(x)dx = 7(Q)?. If there were an index
l with 7 <1 and

[, x> | fidx,

it would follow that f;(x) > fi..(x) for all x in P, which in turn would
imply that

[, x> | fiodx,

contradicting the choice of j. Hence v,(Q) = 7(Q)* and the lemma
is proved.

Returning to the proof of the theorem, it follows trivially from
the first assertion of Lemma 1, that jthere is a positive constant A4,
independent of m, such that v,(R") < A. Less trivial is the fact
that there is another positive constant B, for which v,(R™ = B for
all m. Indeed, let .o~ be a covering of E by the rectangles of
UrA4;, distinguished by Lemma 1, and with the property that no
element of .o contains another element of & Let P, Qe .
PNQR+@, PeA,;, Qe A, ,, 1 £j<k, and R an arbitrary element
of A, contained in PN Q. The rectangles P and @ satisfy

bu(P) = 2(Py = | fiwdx < | fi(xdx

and
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2@ = 2@ = | fitx) < | fiidx .
If x belongs to R and f;(x) > 0, then
£ = fis0r@? [ | firdx < i
Hence
[ fewdx < riods ==y,

contradicting the choice of P and k. Thus f;(x) = 0 on R, which
shows PN QNS = @, for every Se A, intersecting E. If D denotes
the union of all S in A,, intersecting E, then .oz’ = {PN D: Pe &}
is a disjoint covering of E. Since g8 < K.(E), there is a positive
constant B, such that

D(B?) = 3 vu(d) = 5 va(P)
=P% (P = B.

It follows that the sequence of measures {v,}, has a subsequence
which is weakly convergent to a measure v for which A =y(R") = B.
Since FE is compact and a(m)— 0, it follows that ve Z(F). If @
is a rectangle in K, then @ can be covered by 2" of its translates,
Q’, for which v,(Q) < z(Q')?, provided m is sufficiently large. Since
T is translation invariant and sub-additive on convex sets, it follows
that

v(@Q) = 2"7(Q)F .

Hence, for each ac K, 4F,(a) < 2"t(R,)?, which shows K.(v) = 5,
and thus

K(E) = sup{K.(¢): pe #Z(R)}.

Finally, it must be shown that the assumption that K consists only
of points having all coordinates of the form 2™, can be eliminated.
Let K be an arbitrary covering class, and let K’ be obtained from
K Dby stipulating that a’' ¢ K’, if and only if, there is a in K such
that for each 7,

a, =2 > q; > 2"

for some integer m. By what has already been shown, it is sufficient
to prove that for each compact set E, and each finite measure g of
compact support
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K.(E) £ K(E)
and
K() = KA(p) .

To establish the first of these relations, let g < K.(E) and let &
be a covering of E by rectangles of K’. If P'c.%, then P’ can be
covered by 2" rectangles of K, from which P’ was formed. The col-
lection of such rectangles <# is again a covering of E. It follows
that there is a positive number B such that

B > o(Py =2t > o(P),
Pew Plesr

and so B =< K/(E), which entails K.(E)=< K/(E). By the sub-
additivity of ¢ on convex sets,

(R,) = 2"7(R,)
for each ac K, and so

log 4F,(a’) _ log 7(R,) . log 4F,(a)
logz(R,) ~ mlog2+ logz(R) logz(R)

which implies that K!(¢) < K.(#Y). The proof of Theorem 1 is now
complete.

The following illustrates the usefulness of Theorem 1 in questions
dealing with the dimension of compact sets. Since dimension is
monotone with respect to covering classes, i.e., K, & K, implies
K(F) = K.(E) for all E, it is natural to consider the following
question. Suppose two covering classes, K and M, are given and are
related by a map @: K— M. What conditions on ¢ will guarantee
K. (E) =z M(E) for all compact E? It would be difficult to guess
such conditions using only the definitions of §1. By Theorem 1,
however, it is sufficient to obtain conditions on @ implying K.(y¢) =
M.(¢) for all finite measures of compact support in R". Since 4F,
is sub-additive in each component, it follows that

AF,0 s 2+ (S @ifsdl) - 4F,s)

and so
log 4F(x)
log z(R,)
> log 7(R,) | log AF(P(x)) | 3 log 1V (@/P@))) , log2*
~ logt(R)  log7(R,) = logT(R) log z(R.)

Hence the following
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COROLLARY. Given covering. classes K and M, and the convex-
measure T, M.(E) < K.(E) for all compact E, provided there is a
map P: K— M with the properties:

(1) lim (log z(R,.)/log z(R.)) =1, xeK

7 (Ry)—0

and

(ii) For j=1,2,+++, m,
(gr)n (log (z;/P(%);)/log z(R,)) = 0, xeK.

REMARK 1. The preceding corollary shows that ¢(K).(E) £ K.(E)
for all compact F and for @ satisfying (i) and (ii). If, in addition,
% has the property that (R,) —0 as t(R,.)— 0, then it is clear that
?(K).(E) = K.(E) for all compact E. This fact will be used without
explicit mention in § 3 below.

REMARK 2. The function @ defined by ®(x); = x; A a; for a with
a;>0,42=1,2,..-, n, maps any covering class K into the rectangle
R,. Since K is bounded and

2(B) - I (Z+1) < c(Bow) S (R,

it follows that @ satisfies conditions (i) and (ii), and the property
mentioned in Remark 1. Thus in the following it will be assumed
that covering classes are contained in a rectangle R, for convenient
choice of a.

REMARK 3. In §3, the conditions (i) and (i) are shown to be
necessary for M,(E) < K,(E), in the special case that M consists
entirely of cubes. For n = 1, the conditions are known to be neces-
sary [2], but complete results are not known at present for n = 2.

REMARK 4. The idea for the construction of the measure v in
the proof of Theorem 1 is due to O. Frostman [4], although his
construction is carried out in R!, and for the covering class consist-
ing of all intervals. It seems to be difficult to prove a version of
Theorem 1 when covering classes are presumed closed under all rigid
transformations.

3. Dimension as a function of the convex-measure 7. If F
is a compact subset of R", let K,(E) and K,(E) denote, respectively,
the dimension of E relative to K and Lebesgue measure m, and the
dimension of E relative to K and diameter 6. In general,
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nK.(E) = K;(E) ,
since m(R) < 6(R)" for rectangles in R". The results of this section
establish a necessary and sufficient condition for equality to hold in
the above relation.
THEOREM 2. Given a covering class K,
nK,(F) = K;(E)

for all compact subsets E of R™, if and only if, there is a covering
class S, consisting of cubes, for which S,(E)= K,(E) for all compact
E.

Proof. Suppose nK,(E) = K;(E) holds for all compact E. Let
K* be the covering class of cubes obtained from K by writing a* e K*
if and only if there is @ in K such that

af = max a; for j=1,2,++,m.
If > K,(E) and ¢ > 0, then there is a covering, {R;}, of E in K
such that

e> Y o(R)".

If R} denotes the cube of K* corresponding to, and concentric with
R;, then JR* 2 F and

nfte = Y o(R¥)* .
It follows that g = K;*(E) and so K;(E) = K;*(&). Consequently,
nK,(E) = K;(E) z K*(E) = nKx(E) ,
the last equality arising from the fact that
m(R) = n~™"*0(R)"

for cubes R. Hence K,(F) = K} (FE) for all compact sets E. Before
proceeding, it will be convenient to introduce some notation and new
concepts. Let &# denote the collection of all real-valued function f
defined on R!' and unbounded on the positive portion of R® with the
properties that f(0) < 0 and that ¢ < y implies

0=/l —-f@)=y—=.

With each such function f associate a compact set E = E(f) in R*
as follows. Let {£(j)} be a positive, decreasing sequence for which
f(—log é(j)) = 7 log2. Since f(x) — 2« is nonincreasing, it follows
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that J£(j) <1, and so the set

E ={&:&=2¢4(7),¢;, =0 or 1}
is compact. Moreover, the function

F.(x) = sup {Ze;277: = Fe,;8())}

is sub-additive and is the distribution function of a finite measure g,
supported on E. Now let & be the collection of all functions g on
R™ which are of the form g(x) = >\ fi(x;) for fie . With each
such g, associate the compact set

E, = E(f) X +-+ X E(f,) .

If F; and g, denote, respectively, the distribution function and finite
measure associated with E(f;), then

Fyx) = I Fia)

is the distribution function of the product measure g = g, X .-+ X e,
supported on E,. Since each F; is sub-additive, it follows that
AF, = F,. Finally, if ge & and K is a covering class, define

K,(9) = liminf(g(x)/2x;) ,

taken as Yx;,— oo over points x for which there is @ in K with z; =
—loga; t=1,2, +--, n. The relationship between g and E, is given
by

LEMMA 2. For all ge & and all covering classes K,

Km(g) = Km(Eg) .

Proof. Assuming that g(x) = X fi(x;), let {£,(J)}, satisfy
fi(=log &) =jlog2 (i=1,-+-,m55=1,2,---).
Given the point x, there are indices k, ---, k,, for which
—log &i(k) < @ < —log&(ki+1), (G=1,2,--+,m).
It follows that
—log 2 — log F'i(exp(—=,)) < fi(x;) < log 2 — log F;(exp(—2,)) .
Thus, if a satisfies ; = —loga; (1 =1,2, ---, n), then

n log 2 I log 4F.(a) < g(x)+ —nlog2 | log AF (a)
logm(R,) logm(R,) = Zz; logm(R,) logm (R,
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which implies K,(9) = K.(0). If ne #(E,) and ac K, with, say,
&l + 1) <a; < &(k) =1,2, -+, n), then clearly,

log 4Fy(@) = —3. (k: + 1) log 2 = — nlog 2 + log 4F,(a) .

It follows that K,(\) < K,.(#) so that by Theorem 1,
K.,(9) = K.(¢t) = K,.(E))

and the lemma is proved.

At this point it is necessary to establish the fact that, in so far
as compact sets are concerned, covering classes K can be assumed to
have the property that if {R,} is a sequence of rectangles for which
m(R,) — 0, then 6(R,) — 0 as n — oo,

LeEMMA 3. Given a covering class K, there is a covering class
K' such that

(i) K.(E)= KJ(E) for all compact sets E,
and

(ii) If {R.} & K’ with m(R,) — 0, then d(R,) — 0L(n — o).

Proof. Let p be a permutation of the first » 1
and write
Kp)={acK:ayy = ++* = pm)} «
Define
o(t) = —1/logt; 0 <t <1/e
B 1 ,1lle<t

Then ¢ is nondecreasing and @(tf) =t for ¢ < 1l/e. If x belongs to
K(p), define

"/"(x) =X,

in the case that z,,;, < @(®,;sy) for 1=1,2 -, n — 1. Otherwise
define +(x) by

¢(mp<i+1)) ’ 1 é ) = .7

L)) = . . .
(&) pcs ,(3) itl<i<n,

where j is the largest integer k¥ < n — 1 for which

Toy = P@pitn) »

Consider the set K (1), 1 denoting the identity permutation. The fol-
lowing remarks will apply to K(p) for arbitrary p, by replacing
every index j by its image p(j). If xe K(1), then
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log m(Ryx) =(1+3 log P(#;41) / 1+ log@, +-- w;
log m(R,) ( J log 2y, v x,,) ( log ©;., - x,,)

and, by Remark 2 of § 2 with R, = [[7(0, 1/e),

0 IOg Xy oo X; < ,7 IOg (p(xj+1) < J lOg @(xi+1) .

log ®jyy +o- 2, =~ loga;, e+, (n—17) logw;,

IA

Suppose that K (1) contains rectangles of arbitrarily small measure.
Let ¢ > 0 and 0 > 0 be such that 0 < ¢ < 0 implies

0 < log P(¢)/logt <e/(n —1).

Select ¥ >0 so that 0<i¢ <~y implies 0 < ®"(t) <d. Now if
@y eve®, <", then @, <v and so Pz, <d. Now @i(t) = P*t) if
1=k, and so ’

Lj1 < @(xa‘—x-z) é b é @ﬂ——j—l(xn) < 0 .
It follows that log ®(x;.,)/log #;., < €/(n — 1), and so

1 < log m(Bys) <1l+e¢.
1+e~ logm(R) —

Since K = {J, K(p), it now follows that

log m(Ryx) =1

K).
nry~0  log m(R,) (we X)

A similar analysis shows that condition (ii) of the corollary to Theorem
1 also holds, with ¢ = m. If K’ = (K), then K,(E)= K,(E) for
all compact sets E. For the second assertion of the lemma, consider
again K’(1), this set being typical of the general case. Let ¢ > 0,
and 6 > 0 such that 0 <t <o implies ®"(t) <&. As before, if
Xy oe0 ®, < 0" then ®"(x,) < e and so,

Tin1 S P@jye) < <00 S P"7(,) <€
Hence
(P@) + <+ + Y@ = [GPE) + (n — 5.
Since +r(x), «++ 4(x), — 0 implies x, -+ x, — 0, the second assertion is

proved.

Since K, (F) = K (E) for all compact F, by Lemma 3, the same
relation holds for K’, i.e., K} (E) = K (E). The proof of the first
part of Theorem 2 will be concluded with

LEMMA 4. Let K be a covering class with the property that if
{R,} & K and m(R,)— 0, then 6(R,)— 0 (n—co). If S is a covering
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class consisting of cubes and K, (E) = S,(E) for all compact E, then
the map + defined on K by (a); = maX,cic, @iy, (5 =1,2, 4+, n) has
the properties (i) and (ii) listed im the corollary to Theorem 1 for
T = m.

Proof. Let ¢ >0 and let p be a permutation of {1,2, -+, n}.
Write

loga,, 1

K, = {aeK:a,, < -+ < a, and b — 2 e}

Suppose that K(p, ¢) contains rectangles of arbitrarily small measure.
Let v, «++, v, be selected so that 0 < v, <1 and for all @ in K(p, ¢),

1 _ _logayy _
<1’L log m(Ra)) (Yo — Vo) = €/2

and

n—1

j% | Yoy — Vo [ = 6/4 .

For each 7, (¢ =1,2, «+-, n), define
fi®) =V (=7 logs; A (t+ (1 — ) log sy)) -
Then f;e & (i=1,2, --+, n) and hence consider g(x) = 3 fi(z;) in &.

Clearly S,(9) = 1/n>"v;. On the other hand, for a in K(p,¢) and
x with ;= —loga, t =1, -+, n),

9% _ g filw) | @ 5. loga,
Sz, x;  Sx i log m(R,)

It follows that

Su(@) — Kulp, 9(0) = L S, — 30, 105
n t 1 log m(Ra)
=S5 - Tcl,;if—f}%’)) (T = Tom) Z 64 .

If K,.(p, ¢) is a covering class, Lemma 2 implies that there is a com-
pact set E for which

Sn(E) — Kn(p, ¢)(B) = /4 .

Since K(p,¢) & K, K(p,¢) cannot contain rectangles of arbitrarily
small measure, and thus

. loga; 1\ _
lim ( max m) —1/n (m(R)—0,acK).
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Since > log a;/log m(R,) = 1, it also follows that

. . log a; . .
lim (lrgr}l;i —lm) =1/n (mMR,)—0, acK),

and so,

. (log m(Byw)) _ N
hm( s ) 1 (m(R)—0, acK).

Moreover, for each j,

. (loga; — log r(a);\ _ 1: log a; 1\ _
1 J ) =lim(—="2 _ —~ =) =0
m < log m(R,) ) m < log m(R,) . n>
(m(R,) — 0, a€ K)

and the lemma is proved.

It now follows that K, (E) = 4(K').(E) for all compact sets E, and
so K, (E) = +(K").(E), which concludes the proof of the first part of
Theorem 2. For the second part, assume that K,(E)=S,(&) for all
compact E and some covering class of cubes S. Observe that this con-
dition implies that §(R;) — 0 whenever m(R;) — 0, {R;} S K. Indeed,
if lim sup 0(R,) = b > 0, while m(R,)— 0, then extract a subsequence,
say {P;}, from {R,} for which d(P;) = b/2, and such that there is I,
(1 1< n) for which the edges of the rectangles P,, parallel to the
Ith coordinate axis have length at least /21 %. Then the set

E={x2,=1/2, 1+ 1, and 0 < ;, < b*/2n}

is such that S,.(¥) = 1/n, while K,(E) = 0, which contradicts the
assumption. Now, by Lemma 4 and the corollary to Theorem 1,
K, (E) = y(K),(E) for all compact E. Since

V(E)n(E) = 1/n y(K),(E) ,

it is sufficient to establish the relation (K),(E) = K;(E) for all com-
pact E. For this purpose, let ® be defined on (K) by writing
@(x) = z, for some z in K for which (z) = x. For x in (K),

log z; — log @(x);

log o(R.,)
_ ( log y(2); — log zj> < log m(R.) ) ( log m(Rw,>)) .
log m(R.) log m(Ry,)/ \ log 6(Ry..,)

Now log m(Ry.,,)/log 6(Ry,,) is bounded for all z, since Ry, is a cube.
Moreover, since m(R,) — 0 as 6(R,) — 0, the expressions

log 4(2); — log z; and log m(R.)
log m(R,) log m(Ry.)
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approach 0 and 1 respectively as 6(R,) approaches 0. It follows that

im Jog @; — log P(x); _ S(R.) —
lim oz 3(2) 0 (3(R,) 0, xey(K)) .

Also, since R, 2 R,,,,

log 6(Ry ()  log(max @(x);) _ log 6(R.) —1/21logn

1 = = ,
logd(R) — logd(R,) log 6(R.)

IA

and thus

. log 0(Ry) _ S(R.) —> K)) .
lim Tog 3B 1, (0(R.) 0, zey(K))

The map ®: ¥(K)— K thus satisfies the conditions listed in the corol-
lary to Theorem 1 for = = d, and the desired inequality, +(K),(E) =
K,(E) is established; and the proof of Theorem 2 is complete.
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