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DECOMPOSITION OF PLANE CONVEX SETS,
PART I

RUTH SILVERMAN

The class K of plane convex bodies has the property that
the sum of any two members of the class is again a member
of the class. This paper characterizes I(K), the subclass con-
gisting of all indecomposable members of K, as the class of
all triangles and line segments.

This was stated by Gale several years ago, but a proof was never
published.

A compact convex set in n-dimensional real linear space R™ will
be called a convexr body. Let K, and K, be two convex bodies in R".
Their vector sum, K, + K,, is the convex body given by:

K+ K,={&+y|lreK, and yecK)j}.

If C= K, + K,, where C, K, and K, are convex bodies, then K, and
K, are called summands of C. If A > 0 then any translate of \C is
said to be homothetic to C.

A convex body C is said to be written as a sum in a nontrivial
way if neither summand is homothetic to C nor a one-pointed set.
We remark that every convex body can be expressed trivially as a
sum, for, if C is a convex subset of R",xze R", and A€ (0, 1), then

C=(@+ANC)+ (—z+ 1 -2)0C).

A convex body is said to be decomposable if it admits a summand
which is neither homothetic to it nor a one-pointed set; otherwise, the
set is called indecomposable. Thus a decomposable set is one that
can be expressed as a sum of two convex sets in a nontrivial way.
The results of this paper will be concerned with the decomposition
of convex bodies.

This paper contains a proof that the only indecomposable plane
convex bodies are triangles and line segments. This result was con-
jectured by Gale in 1954 [4], but a proof was never published, although
the partial result that the only indecomposable plane convex polygons
are triangles and line segments appears as an exercise in Yaglom and
Boltyanskii [9]. The author proved this result in 1964. Independently
of the author Meyer [7] proved this result in 1969.

1. Preliminary definitions and results. Consider the class F™"
of all functions f on R" such that
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(1) f is nonnegative; for every « in R", f(x) = 0

(2) f is subadditive; for every z,y in R*, f(x + ¥) < f(%) + f(v)

(8) f is positively homogeneous; for every « in R", t = 0, f(tx) =
tf(x).

The set F™ is a convex cone whose apex is the 0 function. If
S, fi, and f, are all members of F*, and f = f, + f: we will call f, a
summand of f. We will use the word homothetic to describe functions
in a manner analogous to its previous use for sets. If fe F \ > 0,
and % is a linear function on R", then F, = )\f -+ h will be called
homothetic to f. A function f in F™ will be called irreducible if it
admits only homothetic and linear summands. Linear functions thus
play a role with respect to functions analogous to the role of one-
pointed sets with respect to sets.

Any fe F™ has the property that for some compact convex set
B in R", and all ze R", f(z) = sup, .5 <z, 7). f is called the support
Sunction of the set B. Let K be the unit ball of f, i.e., the set in
R" defined by K = {x|f(x) <1}. We define the polar of K to be
{z|sup, .x <z, 2’y < 1}. Clearly, if f is the support function of B, and
K is the unit ball of f, then B is the polar of K. If Bis a compact
convex set in B", B has a translate B’ with support function f; € F~.

The set B’ is homothetic to B exactly when the corresponding
support functions have the property that f; is homothetic to f,. B
is indecomposable as a set exactly when f is irreducible as a function.
(See well-known material on polar bodies in, for example, Fenchel
[2].)

In this paper we will obtain results about decomposition of sets
by studying their support functions and making use of the preceding
remark, as well as, in some cases, by studying the sets directly.

The elementary result that a set K is polygonal exactly when P,
its polar, is polygonal, will be repeatedly used in the sequel.

2. Decomposition of general convex sets. In the special case
of functions on R? the properties of support functions enable us to
reduce the problem in dimension by one; i.e., to study certain func-
tions on the real line.

Let L, ={¢,1)|t| real)} and L_ = {(t, —1)|t real}.

Suppose {®,, #,} is an (unordered) pair of real-valued functions on the
real line. We will call this pair admissible if there is a function f
in F*® with the property that f|L, = @, and F|L_ = @,. If fe F?is
the support function of the set B, and {®,, ®,} is the admissible pair
consisting of the restrictions to L_, L. of f, then {®,, ,} is called the
supporting admsissible pair of B.
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We remark that the one-sided derivatives of a convex function
@, exist everywhere, and the two-sided derivatives exist everywhere
except on a countable set. Defining, where necessary, ®i(x) = @i .(x) =
D, p(x) (right derivate), #} is defined everywhere and is nondecreasing.
This definition of the “derivative” of a convex function will be used
throughout this paper without making explicit reference to the
convention as stated above.

The following characterization of admissible functions is the basis
for our results on decomposability.

THEOREM 1. The function pair {p,, P,} is admissible if and only
iof it satisfies all three of the following conditions:

(1) @) is a nmonnegative convex function of the real variable
t,i=1,2.

(4) There are nonnegative numbers m_, and m, such that m, =
sup ®; and —m_, = inf @}.

(5) There are nonnegative numbers « and B such that

lim [p,(2) + Pu(z) — 2m2] = @,

and
lim [@,(%) + Py(w) + 2m_&] = B .

The proof of Theorem 1 depends on the following lemma, whose
proof will be referred to the appendix for clarity of the exposition.

LeMMA 1. The function pair @,, P, is admissible if and only if
it satisfies the following three conditions:

(1) @(t) is a nonnegative convex function of the real variable
t,i=1,2,

(2) There are nonnegative numbers m, and m_, such that

lim%—(t)='m1 and limm=m_1,i=l,2.

t—oo t t—o—oc0 —

(8) For all nonzero t, and t,, and 7 =1, 2.
Pilty + 1) — Pult) = L] Mugn o, < Pt + &) + PA—1)
where sgnt, is defined to be 1 if t,> 0, —1 if t, < 0.

Proof of Theorem. We note that the numbers m, and m_, will
be shown equal to the similarly designated numbers in condition (2)
of Lemma 1. We prove first that if {p,, #,} satisfies (1), (4), and (5),
it is an admissible pair. It suffices to show that conditions (2) and
(8) of Lemma 1 are satisfied. Since ®j(x) is nondecreasing, if z> 0,
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Pi@)/x < P0)/x + Pix). Letting & — oo, im,_., @i(x)/z < m..

On the other hand, since lim,.. ®i(x) = m,, for any % > 0, there
exists C such that when & > C, then @j(x) > m, — h. Pick y > C.
Then for >y > C, (%) =2 P(y) + (@ — y)(m, — k). lim, .. P(2)/x =
m, — h, for every h > 0. Therefore, lim,_.. ;(x)/z = m,, 7 = 1,2. Thus
{®.} satisfies (2).

For all ¢, ¢, 8+ 0, —m_, < @,(t, + &) — @i(t)/t, < m,. Therefore,
{P., P.} satisfies the left-hand inequality of (3) for ¢, - 0, and trivially
for t, = 0.

To show the pair {p,, ®,} satisfies the right-hand inequality of
(3) is equivalent to showing that

F(:E, Y) = @1(-'5) + Pyy) — | + y| Mgzt = 0
for all real x and y. Suppose, first, that x + y = 0. Then
F(z,y) = [p(v) — ma] + [P.y) — my] .

Each of the two functions in brackets has a nonpositive derivative,
and therefore is a nonincreasing function.
If x =y, then

F(z, y) =z [p.(x) — ma] + [Po(2) — ma] = Pi(2) + Pa(w) — 2m,
= lim, ... [P.(2) + Pu2) — 2ma] =a=0.
Similarly, if  + y £ 0, then F(z,y) = 8= 0. It follows that {p, ¢,}
satisfies (3) and hence is an admissible pair.
To prove the converse, it suffices to show that admissibility of
{p,, .} implies (4) and (5). Since {p,, .} is admissible, by the left-
hand side of condition (3) of Lemma 1 for 4x > 0, every z,t =1, 2,

Pix + dx) £ (dwym, + () ,
and
Pi(x) = (dw)ym_, + Pi(x + 4w) ,
SO

—_m_, = Px + Aj) — @) <m,.
&x

@, is convex, and has a nondecreasing derivative almost everywhere,
therefore, whenever it exists, —m_, < ®i(t) < m,. Since @j({) is
bounded from below and above, it has a glb and a lub. That these
are actually equal to —m_, and m, is seen easily; by convexity of o,

?:(t) — 2:(0) < PUt),
—-——-—-—~t =

SO
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Lm Pi(t) — 20 = lim P8 _ m,
t

Z—00 oo

< lim @i(t) < lim @j(t) .
t—oo t—eo

Therefore, lim,_. ®i(t) actually equals m,. The proof is similar for the
greatest lower bound; so (5) is satisfied.

By the right-hand inequality of condition (8), letting y = x,
Po(x) + Pi(x) — 2|2 | Meyp o, = 0 for every a. If 2> 0, Glw) = @,(x) +
@.(x) — 2¢m, is a nonincreasing function, so lim,.. G(x) = a exists
and is nonnegative.

Similarly, for x < 0, G(z) = P,(x) + P.(x) + 2xm_, is a nondecreasing
function, so lim,, . G(x) = 8 exists and is nonnegative.

We next prove a useful lemma.

LemMMA 2. A pair of nonnegative convex functions, differing from
a pair of admissible functions on at most a bounded interval, is itself
an adwmissible pair.

Proof. Suppose {@,, #,} an admissible pair, {s,, 0.} a pair of non-
negative convex functions, such that o,(t) = ®;(¢) if ¢ ¢ [a, b]. Condi-
tion (1) of Theorem 1 is satisfied by hypothesis. For any ¢ > b, 0i(f) =
Pi(t) = m,, so by convexity of o, for any ¢’ <t, ¢}(t') < m,. So for all
t,0i(t) £ m,. Similarly o¢l(t) = —m_,. Therefore, condition (4) is
satisfied. Since condition (5) depends on limiting values only, it is
clearly satisfied. Therefore, by Theorem 1, {g,, 7,} is an admissible pair.

We are now ready to prove the key theorem on admissible pairs.

THEOREM 2. An admissitble function pair which 1s the restriction
to lines L_ and L. of the support function of a nonpolygonal plane
convex set 1s the sum in a nontrivial manner of two other admissible
PATTS.

For clarity of exposition, this proof is postponed to the appendix.

We can now characterize the indecomposable plane convex bodies.

We first state the well-know result (see, for example, Yaglom and
Boltyanskii, [9]; Problem 4-12):

THEOREM 3. FEwvery convex polygon can be written as the sum of
triangles and lines segments. Triangles and line segments are inde-

composable.

We therefore have our characterization:
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THEOREM 4. The only indecomposable plane convex bodies are
triangles and line segments.

Proof. Immediate from Theorems 2 and 3.

APPENDIX 1

Proof of Lemma 1. We prove first that if {p,, #,} is admissible,
conditions (1), (2), and (8) are satisfied. Let f be a member of F*
such that f|., = @, and f|.. = @,.

(1) This is immediate from the nonnegativity and convexity
of f.

(2) f is continuous.

Therefore,
lim—f’z;(—t)— — lim f[l, %] —f1,0=0.

t—oo t—oo

Similarly,

lim"’f_(tt) —f(-1,0=0.
t——oc0 —
Thus the numbers f(1, 0) and f(—1, 0) play the roles of m, and m_,

respectively.
(8) For all nonzero ¢, and ¢,

¢i(t1 + tz) = f[tu ("Dil + f(tz, O) = ¢i(t1) + ItZImsgn ty

and

[tzlmsgn ty — f(tz, 0)
= f[t1 + tz, 1] + f('—tu _1) = ¢z(t1 + tz) + ¢1(_t1) .

This proves that all three conditions are satisfied when {p,, @,} is
admissible.

To prove the converse, assume @, on L_ and @, on L, satisfy all
three of the above conditions. We extend the functions {®,, .} to a
function f on R’, in the obvious fashion. If a, # 0, define T, (t) =
Py(t) if @, > 0, and T, (¢) = @,(—%) if a, < 0. Then, letting v be a
unit vector in the horizontal direction, and # a unit vector in the
vertical direction,

= T (%
Flaw + ap) = | Tal(al) )
If a, = 0, but a; # 0, faw) = [@;|Mygn o,. (Of course, f(0) is defined to
be 0.)

The function f is clearly nonnegative and positively homogeneous.
The proof that f is subadditive is quite long, and is achieved by
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considering subcases, according to whether the vectors ¢ = au + ayv,
¥y = B + Bw, and their sum, x + vy, (u and v as above), fall on,
above, or below the » axis.

Case 1. All three vectors are multiples of v, ie., a, = 8, = 0.
Subadditivity is immediate if «, and B, are of the same sign. If not,
suppose m, = m_,. We need check only the case where a, = 0, 8, = 0,
and @, + 8, = 0. In this case |a, + B:] < ||, S0

J@+ ) =mla + B = mla| + m.]B] = flw) + fly) -

Case 2. Neither 2 nor y is a multiple of v, but their sum is, i.e.,
a = —pB, #0.

Without loss of generality, assume «, + B8, > 0 and «, > 0. Then
Sflw) = la, | To,(r/er), fly) = |8:1T5,(8:/Bu)s and f(z + y) = mi|a + Bl
By the right side of inequality (3), letting ¢, = (@, + B.)/ex, and %, =
('—;82/“1)’

fo+ 0 s el (F) +lalp( =) = s + 1) -

1

Case 3. One of the two vectors is a multiple of v; say a, = 0
and B, = 0. Without loss of generality, assume a, >0, B8, > 0. By
the left side of inequality (3),

&

e+ o s1al-2(2)+ 16|

m, = f(x) + f(y) -

Case 4. All three vectors are on the same side of the line
through »; say «, > 0 and B8, > 0. Since 0 < a/(a, + B,) < 1, by con-
vexity of @,

fo+ 0 S la+ 6l e(3) + o Bn(2) = s + 50 -

Case 5. Finally, we consider the case where two vectors are on
one side of the line through v, the third on the other. Without loss
of generality, assume a, < 0,8, >0, |a,| < B,. By the left side of
inequality (3), letting ¢, = (8:/8) and ¢, = (@B, — a.B)/(@, + BB,

f(()& + y) é Ial + Bl|¢2<%) + %%msgn ty *

Then applying the right hand side of inequality (3), the right hand
side of the preceding is not greater than
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@+ Blo(Z) +lalo(2) + 2(F2)] = s + 70

Proof of Theorem 2. We do not need the full strength of the
nonpolygonality; we need merely that ®{(x) or ®j(x) assumes at least
four different positive values, or four different negative values. This
clearly is implied by the hypothesis. Without loss of generality, as-
sume @;(x) assumes at least four different positive values. Pick
X, s, %3, and z, such that

0 < pi() < Pl(y) < Pi(xy) < Pl(xy) = My

Let o:(x) = 1/2[®;(2) + v:(@)], and y(2) = 1/2[P:(%) — y:(v)], where y;(x)
will be defined so that ¢;(x) and +;(x) are both admissible. Let y,(x) = 0
for every x. Let %i(x) = 0 if o < &, or if v = w,. For ze [z, z], yi(%)
is defined as follows:

alPi(x) — Pi(x)], if @ S <
a[pi(x,) — Pi(x)] — blPi(x) — Pi()], if = =2 <w,
a[pi(@) — Pi(x)] — blPi(w) — Pil,)]

+ clpi(@) — Piws)], U m=z<lw.

Yi(x) =

We then let y,(z) = ’ yi(t)dt. The numbers e, b, and ¢, are se-
lected to satisfy conditions that D_y,(x) = 0, Sz4y{(t)dt =0, and vy (t)
neither increases nor decreases faster than 901(51 increases.

As a result of these conditions, 0 < a=Z Pi(z)/m =1,0< b=
Pix)/m, £ 1 and 0 < ¢ < @,(x)/m, < 1.

We now check that {o,, 0;} and {y,, v} are admissible pairs.

Functions ¢, and +r, certainly satisfy the conditions of Lemma 2.
For o, and +, we must check that the two functions are nonnegative
convex functions on [z, «,], and that o] — (&) < 0] + (), ¥ — (&) =
i+ (@), PL— (@) = 0] + (), and Y] — (@) S 91+ (). o, s 2<a,

@) | < % (@ — o) [Pl) — Pi(@)]
< 2@ (4 _ pypa) < 2@ (4 — gym,

é @;(xl)[w - xl] + ¢;(w1) § @1(37) ’

so, 0,(x) and +(x) are nonnegative.

Since a, b, and ¢ are positive, o] is clearly nondecreasing on [, 2,] U
[#;, 2] and +] is nondecreasing on [x,, #;]. The inequalities b <1,
a <1, and ¢ £ 1 imply that ¢}, v} and +, are nondecreasing on [x,, @],
[#,, @.], and [z, x,] respectively.
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Since o} and | are nondecreasing on each interval [x;, 2;..],7 =
1, 2, 8, the functions ¢, and - are convex on each of these intervals.
To prove the two functions are convex on the entire line, it suffices
to show that the left-hand derivative does not exceed the right-hand
derivative for each function at each of the four points z;, 7 =1, 2, 8, 4.
By definition of y,(x),

o]+ (@) — ol — (@) = 121 + 9)[P; + (w) — P — (2)] = 0.

The rest follow similarly.

Therefore, by Lemma 2, {0,, 6;} and {y,, v~} are admissible pairs.
It is clear that ¢, and + are not multiples of ®,, so the decomposi-
tion is nontrivial.

APPENDIX 2

The results and methods preceding were also used to characterize
I(K) when K consists of all planar compact sets with a given sym-
metry property. As the results are all easily obtainable, they are
presented in summary only, without proofs. The interested reader
can communicate with the author for the proofs.

A support function will be called centrally symmetric if it is the
support function for a centrally symmetric compact convex set. A
centrally symmetric support function with nonpolygonal unit ball is
the sum in a nontrivial manner of two other centrally symmetric
support functions. Since every centrally symmetric plane convex
polygon can be written as the sum of line segments, we have:

THEOREM 1A. Let K be the family of all centrally symmetric
compact convex sets in the plane. Then I(K) tis exactly the family of
all line segments.

COROLLARY 1A. A seminorm on R* is extreme if and only if it
18 the absolute value of a linear fumction on R*. Corollary 1A was
proved in a different manner by E. K. McLachlan.

Generalizing Theorem 1A, we have:

THEOREM 2A. Let K be the family of all planar compact convex
sets with n-fold rotational symmetry. Then I(K) is exactly the family
of all regular n-gons.

We also obtain:

THEOREM 3A. Let K be the family of planar compact convexr sets
with an axis of symmetry parallel to the x axis. Then I(K) is exactly
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the family of all quadrilaterals with diagonals parallel to the x and
Y awis (and degenerate forms of these quadrilaterals, i.e., horizontal
line segments, vertical line segments, and isosceles triangles with
vertical base).

We also obtain:

THEOREM 4A. Let K be the family of all planar compact convex
sets with two axes of symmetry, parallel to the v and y axes. Then
I(K) 1is exactly the set of all rhombi with diagonals parallel to the
x and y axes (and degenerate rhombi, i.e., horizontal and vertical line
segments).

The following corollary to Theorem 3A holds in R*

COROLLARY 2A. Let K be the family of compact convex sets in
R?® with an axis of rotation. The K-indecomposable sets are exactly
double cones and degenerate double cones, which include single cones,
disks, and line segments.
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