ISOMORPHIC CLASSES OF THE SPACES $C_{\sigma}(S)$

M. A. LABBÉ and JOHN WOLFE

Jerison introduced the Banach spaces $C_{\sigma}(S)$ of continuous real or complex-valued odd functions with respect to an involutory homeomorphism $\sigma\colon S\to S$ of the compact Hausdorff space S. It has been conjectured that any Banach space of the type $C_{\sigma}(S)$ is isomorphic to a Banach space of all continuous functions on some compact Hausdorff space. This conjecture is shown to be true if either (1) S is a Cartesian product of compact metric spaces or (2) S is a linearly ordered compact Hausdorff space and σ has at most one fixed point.

Introduction. Let S always denote a compact Hausdorff space. C(S) well denote the Banach space of real or complex-valued continuous functions on S equipped with the supremum norm. A homeomorphism $\sigma: S \to S$ is involutory if $\sigma(\sigma(s)) = s$ for each $s \in S$. Jerison [2] introduced the Banach space $C_{\sigma}(S) = \{f \in C(S): f(\sigma(s)) = -f(s)\}$ of odd functions with respect to an involutory homeomorphism $\sigma: S \to S$. If X and Y are Banach spaces then X is isomorphic (isometric) to Y, and we will write $X \sim Y$ ($X \approx Y$), if there is a bounded (norm preserving) one-to-one linear operator from X onto Y.

A special case of a conjecture due to A. Pełczyński [8] is as follows: for any Banach space $C_{\sigma}(S)$ there is a compact Hausdorff space T with $C_{\sigma}(S) \sim C(T)$. In this paper we prove this conjecture when S is either a Cartesian product of compact metric spaces or a linearly ordered compact Hausdorff space (in the second case we assume σ has at most one fixed point). The results and techniques of this paper generalize, and provide shorter proofs of, some results of Samuel [11].

1. Linearly ordered spaces. A topological space A is a linearly ordered topological space if the topology on A is the order topology ([4], page 57) arising from some linear ordering on the set A. Examples of linearly ordered spaces are the closed interval [0,1], every space of ordinal numbers, every totally disconnected compact metric space ([5], Corollary 2a), and every compact subset of a linearly ordered space.

THEOREM 1. Let S be an infinite linearly ordered compact Hausdorff space. If σ is an involutory homeomorphism on S with at most one fixed point, then $C_{\sigma}(S) \sim C(T)$ for some compact Hausdorff space T.

Proof. The function $\Psi: S \to S$ defined by $\Psi(s) = \min\{s, \sigma(s)\}$ is continuous on S. Set $T = \Psi(S)$; the compact set T contains exactly one point from each of the pairs $\{s, \sigma(s)\}$ and thus $T \cup \sigma(T) = S$ and $T \cap \sigma(T)$ contains at most the fixed point of σ . If $T \cap \sigma(T) = \emptyset$, then $C_{\sigma}(S)$ is isometric to C(T) via the restriction map. If $T \cap \sigma(T) = \{t_0\}$, where t_0 is the fixed point of σ , then restriction of the functions in $C_{\sigma}(S)$ to T is an isometry of $C_{\sigma}(S)$ onto the closed hyperplane $C(T, t_0) = \{f \in C(T): f(t_0) = 0\}$ of C(T). By [1], $C(T, t_0) \sim C(T)$ if T contains a convergent sequence with distinct terms. Since T is infinite, it contains a strictly monotone sequence (t_n) . This sequence converges either to its supremum or to its infimum and thus $C(T, t_0) \sim C(T)$.

REMARK. The first part of the proof shows that if $\sigma: S \to S$ is an arbitrary involutory homeomorphism on a linearly ordered compact Hausdorff space S, T is as in the proof, and $T_0 = \{s \in S: \sigma(s) = s\}$, then $C_{\sigma}(S) \approx C(T, T_0) = \{f \in C(S): f(T_0) \subset \{0\}\}$.

If S is a countable compact metric space, then S is linearly ordered since it is homeomorphic to a closed subset of the Cantor set ([5], page 286). Thus the following result due to Samuel [11] is an easy consequence.

COROLLARY 2. Suppose S is a countably infinite compact metric space and $\sigma: S \to S$ is an involutory homeomorphism on S with at most one fixed point. Then $C_{\sigma}(S) \sim C(S)$.

Proof. If T is an infinite compact metric space, then $C(T) \sim C(T) \oplus C(T)$ ([10], page 514) where \oplus denotes the Cartesian product normed by taking the maximum of the norms of the two coordinates. Now, if T is as in Theorem 1 so that $S = T \cup \sigma T$ and $T \cap \sigma T$ has at most one point, it follows that $C(S) \sim C(T) \oplus C(\sigma(T))$: that is immediate if $T \cap \sigma(T) = \emptyset$; if $T \cap \sigma(T) = \{t_0\}$, then we have the string of isomorphisms $C(S) \sim C(S, t_0) \approx C(T, t_0) \oplus C(\sigma(T), t_0) \sim C(T) \oplus C(\sigma(T))$. Thus $C_{\sigma}(S) \sim C(T) \sim C(T) \oplus C(T) \sim C(T) \oplus C(\sigma(T)) \sim C(S)$ if S is countably infinite compact metric and σ has at most one fixed point.

REMARK. In general, even for an involutory homeomorphism $\sigma\colon S\to S$ having no fixed points on an ordinal space S, it is not true that $C_{\sigma}(S)\sim C(S)$. We are indebted to J. J. Schäffer for the following example. Let ω_1 be the first uncountable ordinal number and let $S=\{\alpha\colon \alpha \text{ an ordinal and } 1\leq \alpha\leq \omega_1\cdot 2\}$. Let $F_1=\{\alpha\in S\colon \alpha\leq \omega_1\}$ and $F_2=\{\alpha\in S\colon \alpha>\omega_1\}$. Then $\tau\colon \alpha\to\omega_1+\alpha\colon F_1\to F_2$ is a homeomorphism, and we define the involutory homeomorphism $\sigma\colon S\to S$ by

 $\sigma(\alpha) = \tau(\alpha)$ if $\alpha \in F_1$, $\sigma(\alpha) = \tau^{-1}(\alpha)$ if $\alpha \in F_2$. Then $C_{\sigma}(S)$ is isomorphic to $C(F_1)$. However, $C(F_1)$ is not isomorphic to C(S) ([12], Theorem 2).

2. Products of compact metric spaces. We begin this section with some terminology and preliminary facts from [9]. A subspace Z of a Banach space X is complemented if there is a bounded linear projection $P: X \to X$ with range Z, i.e., $P^2 = P$ and P(X) = Z. For Banach spaces Y and X, Y is a factor of X if there is a complemented subspace Z of X with $Y \sim Z$. If $\sigma: S \to S$ is an involutory homeomorphism, then the operator $P: C(S) \to C(S)$ defined by $(Pf)(s) = (1/2)[f(s) - f(\sigma(s))]$ projects C(S) onto the subspace of odd functions $C_{\sigma}(S)$. Thus $C_{\sigma}(S)$ is a factor of C(S).

D will denote the two point discrete space $\{0,1\}$ and, for each cardinal number m, D^m will denote the generalized Cantor set which is the Cartesian product of m copies of D. We will need the following isomorphism criterion due to A. Pełczyński ([9], Proposition 8.3): if X is a Banach space and X is a factor of $C(D^m)$ and $C(D^m)$ is a factor of X, then $X \sim C(D^m)$.

Following [9], we say that a space S is an almost Milutin space if, for some cardinal number m, there is a continuous onto map $\theta \colon D^m \to S$ such that the subspace $X = \{f \circ \theta \colon f \in C(S)\}$ of $C(D^m)$ is complemented. If T is a closed subset of the space S, an extension operator is a bounded linear operator $E: C(T) \to C(S)$ such that, for each $f \in C(T)$, $Ef \mid T = f$ where " | " denotes the restriction. A compact Hausdorff space T is an almost Dugundji space if, for every embedding i: $T \rightarrow S$ of T into a compact Hausdorff space S, there is an extension operator $E: C(i(T)) \to C(S)$. Every Cartesian product of compact metric spaces (in particular, every space D^m) is both an almost Milutin and an almost Dugundji space ([9], Theorems 5.6 and The weight of a space S is the smallest cardinal number m such that there is a base for the topology of S consisting of m open sets. If S is either an almost Milutin or an almost Dugundji space, then C(S) is a factor of $C(D^m)$, where m is the weight of S (see the proof of [9], Proposition 8.4).

PROPOSITION 3. Let S be either an almost Milutin space or an almost Dugundji space and let $\sigma: S \to S$ be an involutory homeomorphism on S. Suppose there is a closed subset F of S with $\sigma(F) \cap F = \emptyset$ such that F is homeomorphic to D^m , where m is the weight of S. Then $C_{\sigma}(S) \sim C(S)$.

Proof. Since $C_{\sigma}(S)$ is a factor of C(S) and C(S) is a factor of $C(D^m)$, $C_{\sigma}(S)$ is a factor of $C(D^m)$. Thus, by Pełczyński's criterion, it suffices to show that $C(D^m)$ is a factor of $C_{\sigma}(S)$. Since F and $\sigma(F)$

are disjoint and each is homeomorphic to D^m , $F \cup \sigma(F)$ is homeomorphic to the almost Dugundji space D^{m+1} . Hence there exists an extension operator $E: C(F \cup \sigma(F)) \to C(S)$. Let σ' be the restriction of σ to the invariant set $F \cup \sigma(F)$ and let $P: C(S) \to C_{\sigma}(S)$ be the above-defined projection onto the odd functions. Then $C_{\sigma'}(F \cup \sigma(F))$ is isomorphic to the range of the projection Q defined on Q defi

LEMMA 4. If S is an infinite product of nontrivial compact metric spaces and $\sigma: S \to S$ is an involutory homeomorphism on S that is not the identity, then $C_{\sigma}(S) \sim C(S)$.

Proof. Let $S=\prod_{i\in I}S_i$, where each S_i has at least two points. A basis for the topology of S is given by the open sets U of the form $U=(\prod_{i\in I\setminus A}S_i)\times(\prod_{i\in A}U_i)$ where A is a finite subset of I and U_i is an open set in S_i for $i\in A$. If I is infinite, then the weight m of S is the cardinality of I. So it suffices, by Proposition 3, to construct a closed set F in S which is homeomorphic to D^m with $\sigma(F)\cap F=\varnothing$. There exists $s\in S$ with $\sigma(s)\neq s$; choose a basic neighborhood U of s with $\sigma(U)\cap U=\varnothing$. Then $U=(\prod_{i\in I\setminus A}S_i)\times(\prod_{i\in A}U_i)$ for some finite set A in I. For each i, let $\{t_i^i,t_i^i\}$ be any pair of distinct points in S_i if $i\in I\setminus A$, and just any pair of points in U_i if $i\in A$. Let $F=\prod_{i\in I}\{t_i^i,t_i^i\}$. Then F is homeomorphic to D^m and $\sigma(F)\cap F=\varnothing$.

LEMMA 5. If S is an uncountable compact metric space and σ is an involutory homeomorphism on S such that $\{s: \sigma(s) = s\}$ is countable, then $C_{\sigma}(S) \sim C(S)$.

Proof. Let P be the set of condensation points of S, i.e., $s \in P$ iff every neighborhood of s is uncountable. By the Cantor-Bendixson Theorem ([5], page 253), the complement of P is countable. Thus P is uncountable and there is a point $s \in P$ with $\sigma(s) \neq s$. Let F_0 be a closed neighborhood of s with $\sigma(F_0) \cap F_0 = \emptyset$. Since F_0 is an uncountable compact metric space, it must contain a closed subset F homeomorphic to D^{\aleph_0} ([5], page 445). Clearly $\sigma(F) \cap F = \emptyset$. Since the weight of S is \aleph_0 , the conclusion follows from Proposition 3.

THEOREM 6. If S is a product of compact metric spaces and σ is an involutory homeomorphism on S that is not the identity, then $C_{\sigma}(S) \sim C(T)$ for some compact Hausdorff space T.

Proof. If S is an infinite product of nontrivial compact metric spaces, then $C_{\sigma}(S) \sim C(S)$ by Lemma 4. If S is a finite product of compact metric spaces, then S is compact metric. Let T be the quotient space obtained from S by identifying the fixed points of σ . Let σ' denote the involutory homeomorphism on T which is induced by σ ; it has at most one fixed point. Then $C_{\sigma}(S) \approx C_{\sigma'}(T)$, and $C_{\sigma'}(T) \sim C(T)$ by Lemma 5 if T is uncountable; by Corollary 2 if T is countably infinite. The conclusion is obvious if T is finite.

We conclude with an application to the problem of the isomorphic classification of complemented subspaces of the Banach spaces of type C(S). This result is due to Samuel [11].

COROLLARY 7. Let X be a subspace of C(S), where S is a compact metric space. If X is the range of a norm-1 projection on C(S), then $X \sim C(T)$ for some compact metric space T.

Proof. By [7] or [3] (see also [6]), we have $X \approx C_{\sigma}(K)$ where σ is an involutory homeomorphism on a certain subspace K of a Hausdorff quotient space of S. Since a Hausdorff quotient of a compact metric space is metric, $C_{\sigma}(K) \sim C(T)$ for some compact metric space T by the preceding theorem.

References

- 1. D. W. Dean, Projections in certain continuous function spaces C(H) and subspaces of C(H) isomorphic with C(H), Canad. J. Math., 14 (1962), 385-401.
- 2. M. Jerison, Certain spaces of continuous functions, Trans. Amer. Math. Soc., 70 (1951), 103-113.
- 3. M. Jonac and C. Samuel, Sur les sous-espaces complémentés de C(S), Bull. Sci. Math., $2^{\rm e}$ série **94** (1970), 159-163.
- 4. J. L. Kelley, General Topology, Princeton, New Jersey, 1955.
- 5. K. Kuratowski, Topology, vol. I., New York, 1966.
- 6. K. J. Lindberg, Contractive projections in Orlicz sequence spaces and continuous function spaces, Thesis, University of California at Berkeley, 1971.
- 7. J. Lindenstrauss and D. E. Wulbert, On the classifications of the Banach spaces whose duals are L_1 spaces, J. Functional Analysis, 4 (1969), 332-349.
- 8. A. Pełczyński, Projections in certain Banach spaces, Studia Math., 19 (1960), 209-228.
- 9. ———, Linear extensions, linear averagings and their applications to linear classification of spaces of continuous functions, Rozprawy Matematyczne, **58** (1968).
- 10. ———, On C(S)—subspaces of separable Banach spaces, Studia Math., **31** (1968), 513-522.
- 11. C. Samuel, Sur certains espaces $C_o(S)$ et sur les sous-espaces complémentés de C(S), Bull. Sci. Math., 2° série **95** (1971), 65-82.
- 12. Z. Semadeni, Banach spaces non-isomorphic to their Cartesian squares. II, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 8 (1960), 81-84.

Received March 6, 1972

UNIVERSITY OF PITTSBURGH AND CARNEGIE-MELLON UNIVERSITY