PACIFIC JOURNAL OF MATHEMATICS
Vol. 48, No. 2, 1973

CAPACITY THEORY IN BANACH SPACES

PETER A. FOWLER

In classical potential theory one way of defining capacity
of a compact K c R" puts cap K equal to the total mass of
¢, where ¢ is the measure associated with the inferior envelope
of the family of nonnegative superharmonic functions majoriz-
ing the characteristic function I;. A second (equivalent)
definition puts cap K = 1/|| 7o||c where 7, is the projection of
the null measure onto the set of positive Radon measures 7

supported by K, satisfying S dy = 1 and having finite energy:

Ilrlle=SU’dr<+°°-

In the axiomatic Hilbert space setting of Dirichlet spaces
Beurling and Deny have shown that equivalence of definitions
of the two above types leads to a rich capacity theory. In
this article all of these results are extended to the family of
Banach-Dirichlet (BD) spaces, i.e., uniformly convex Banach
spaces of (equivalence classes of) functions satisfying the
Dirichlet space axioms. This is accomplished by using a capa-
city of the first type in the BD space D, and of the second
type in the dual space D’.

THEOREM 1. The two types of capacity are equal.

THEOREM 2. Euxterior capacity is a true capacity in the
sense of Brelot.

THEOREM 3. A set E has zero exterior capacity 1 E is
capacitable and pE =0 for all measures p generating a pure
potential w*e D'.

THEOREM 4. For every quasi-continuous representative
w* of ue D and every p generating a pure potential u*, the

formula (u, u*) = S u*dy holds, where (-, -) is the bi-linear

form on D X D'.

The reader will be aided by familiarity with [6]. Some defini-
tions therein will be reiterated in § 2.

1. Preliminary lemmas concerning certain Banach spaces. Let
{E}};.; be a nonvoid family of nonvoid subsets of a set A.

DEFINITION 1.1. The family {E};.; is directed downward by inclu-
ston if for each pair 4, j € I there exists keI with E, C E;N E,.
The family {E;} is also called a filter base.

DEFINITION 1.2. The family {E};.; is directed upward by con-
tatnment if for each pair 1, j € I there exists ke I with E, D E; U E,.
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Note. If {Ej};., is directed downward by inclusion (upward by
containment) and ;e E; for each 7¢I, then {x;};.; is 2 net in A
when I is directed by the rule ¢ = j iff E;C E; (E;D E)).

LEMMA 1.3. In a Banach space B with morm || « || let {E;};.; be
a family of closed convex sets directed downward by inclusion such
that the set of mumbers {inf{||z]|||2z¢€ E;}};c; has a supremum M < o.

(i) If B s reflexive, then E = (\;.r E; = O and there exists ze¢ E
with ||z]] = M.

(ii) If B is uniformly convex and for each ic I, x; is the unique
element of minimum norm of E;, then the met {%;};.; 1s Cauchy and
x = lim,.; x; is the unique element of minimum norm of E.

Proof. (i) Let By ={zeB|||z2|| = M}. The family {E; N By}i.;
is directed downward by inclusion. Each E; N B, is closed and convex,
thus weakly closed. Since B is reflexive, B, is weakly compact.
Hence Ni.; E: N By # &, i.e., there exists z¢ E with ||z]|| < M.

(ii) Since each E; is closed and convex, E is also. By uniform
convexity there exists a unique z € E of minimum norm and (i) assures
|| || < M. Moreover, x € E; for each i€ Iand M = sup({|| »;|| | 7 € I} entail
[|#||=M. Thus ||z| = M.

The net {x;};.; is Cauchy. In fact, it is clear that lim;., || ;|| = M,
i.e., for ¢ > 0 there exists 7€ I such that j =4 implies || ;|| > M — ¢/2.
Moreover, for all j, k = <,

2M = [[well + o]l = @ + @5l = 2[| (0 + 25)/2]]

But =z, z;€ E; so convexity assures (®, + x;)/2¢€ E;. Since z; is the
unique element of minimum norm in E;, we have

2M = 2] (v + wp)/2] 2 2] @ || > 2M — ¢

This shows lim; ... ||, + ;|| = 2M. The fact that {z;};.; is Cauchy
follows directly from the definition of uniform convexity. Put y =
lim ;. Then ||y|| = lim || 2;]| = M. Since {E;};.; is directed downward
by inclusion and each E; is closed, we have ye ;. F; = E. But &
is the unique element of minimum norm in E, so y = =.

LEMMA 1.4. Let B be a uniformly convex Banach space and
{E};er a family of closed convex subsets of B directed wpward by con-
tainment. Let K C B be closed and convex with KD ;. E;. Denote
by x;, x the unique elements of minimum norm of E,;, K respectively.
If ||z|] = inf {||x;|| | 1€ I}, then lim, ;x; = x.

Proof. To see that {z;};.; is Cauchy, first observe that lim|| z;|| =
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inf{||z;{||tel} =||z|l. Given & >0 choose nel such that m = n
implies |[#]|| + ¢/2=]|«,]||. Then for i, = n,

2llell ez llall + [l = [l + a5l
=2|[ (@ + w)/2] = 2| @, ||

for any m = 1, J since m = 1, j implies K, D K, U E; and E, is convex.
Thus lim; ., || 2; + 2;]| = 2]/ 2|] and uniform convexity assure {x;} is
Cauchy. Put y = limx;,. As in the proof of Lemma 1.3, y = 2.

COROLLARY 1.5. Let B, {E;};icr, {2:)}:e; be as in Lemma 1.4. Then
H=UEFE; is the closed convex hull of UE;, and limz; = & where &
denotes the unique element of mintmum mnorm in H.

Proof. Since each E; is convex and family is directed upward
by containment, JE; is convex. Thus H = (JE; is the closed convex
hull of UE;. Given ¢ > 0 there exists 1 and ze E, with ||| =
2]l —e=la;l| — e so||a| = inf{||x;] | 7€ I} and Lemma 1.4 applies.

2. Review of definitions and basic facts. Much of the below is
expanded upon in [6].

A normal contraction T: R — R of the line verifies T(0) = 0 and
[ Tx) — Ty)| = |z —y|. A duality map S: N— N’ of a smooth
normed linear space N to its dual is the unique map satisfying || S(u) |l =
lw| and | (u, S(w))| = ||u||>. Also, for nonzero w e N

(@, S) = || u]j-lim [t E0 = [

for all xe N. Let X denote a locally compact Hausdorff space,
" = & (X) the continuous real valued functions ® on X with support
&7 (@) compact supplied with the inductive limit topology, & a positive
Radon measure on X. Let F = F(X, & denote a Banach space with
norm||-|l of equivalence classes of real valued, locally &-integrable
functions on X. As with L? spaces, we assume each equivalence class
contains all functions which are equal &-a.e. to a given representative
of that class. (A departure from this convention is suggested in § 10,
where “refinements” of classes are considered.)
The three Dirichlet axioms are

(a) For any compact K < X there exists a constant A(K) =0
such that for ue F’

[ tuldz = 4@) |lu] .

~

(b) The measure & is everywhere dense in X, and FN % is
dense in F' and in &
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(¢) For any normal contraction T and u € F we have the com-
position Tu e F and || Tul| < || u]|.

A Banach-Dirichlet (BD) space is a Banach space D = D(X, &) of
equivalence classes of real valued locally &-integrable functions which
satisfies the three Dirichlet axioms. Several examples of BD spaces
are given in [6]. Pure potentials are elements of the positive dual
cone F'* where the natural order is assumed on F. If F' is uniformly
convex and satisfies axioms (a) and (c), then S(u) € F'* implies # = 0
a.e. &, If fe D'+t where D is a BD space, there exists a unique Radon
measure ¢ = 0 such that

(1) (sv,f)zggbdp for all peDN & .

The measure associated with f is pt and p generates f. Write f = u*,
or in case ¢ = g-&, write f = u?. A potential f satisfies (1) where g
need not be positive.

3. Capacity and dual capacity of open sets. Throughout the
remainder of this article it is assumed that F(X, &) is uniformly con-
vex and verifies axiom (a).

DErINITION 3.1. Let w < X be an open set.
(i) #,CF is defined

#Z,={ueF|u=1 a.e. {§on w}.

(ii) The capacity of ® is a nonnegative real number or + oo
given by
capw = inf {|ju|||ue@.} .
(iii) If %, + @, the unique element of minimum norm of %,
is called the capacitary element associated with .
Using axiom (a) it is easy to show %/, is closed and convex,

thus (iii) follows. In case 7, = @, then capw = +oo. If 0, Cw,
then %/, D %, SO cap @, < cap W,.

DEFINITION 3.2. For open w C X, the set P, C F’ is the closure
of the set of pure potentials 4/ where f = 0 is a bounded measurable

function with compact support contained in ®, and with S fdé = 1.
It is immediate that P, is closed and convex.

DEFINITION 3.3. For open w C X, the dual capacity of w is

sup {1/|| ||| z € P.} for P, = @

—
ualcap @ 0 for P.— o
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(Convention 1/0 = + .)

REMARK. Definitions 3.1 and 3.3 are slightly different from their
analogs used by Deny [4]. The change is required by technical
problems due to the weaker assumptions. The change is not serious
since it is clear that sets of zero exterior capacity are the same with
either definition. Further, the exterior capacity herein is a true
capacity in the sense of Brelot [2], (see §4).

LEMMA 8.4. Let {®;};c; be a family of open subsets of X directed
upward by containment, with {cap ®;};.; a bounded set of real numbers.
For each ie I denote by w; € F' the capacitary element associated with
w,;. Then

(i) © = Ui 0; has a capacitary element u,

(ii) wu s the limit of the met {u;};c;-

Proof. By Lemma 1.3 with E; = %/, «; = u;, and & = u, it fol-
lows that ie; %, # @. Now %, = ie; %o,» In fact, ve NZ,,
entails » = 1 a.e. £ on w; for each ie [, i.e., if A, = {xew,|v(x) <1},
then £(4;) = 0 for each 1 I. Let A = {xcw|v(x) <1}, and compact
Kc A. Since Kc w = Jw,, there is a finite subcover: K c U, ®;;.
Since the family {®;};.; is directed upward, there exists 7¢I with
Kcw;, so KcA; and §(K) =0. Thus &4) =0 and N%., C %
The reverse containment is immediate. Lemma 1.3 gives the result.

In the proof of the following theorem it will be made clear that
&(w) = 0 entails capw = 0 for open w. Let T:F’'— F denote the
duality map. Since F' is uniformly convex, F' is smooth so T is
unique.

THEOREM 3.5. For open wC X,
(i) dualcap @ = cap w,
(ii) if 0 < dualcap @ < o, the set

E={weP,|1/||v]| = dualcap w}
is a nonvoid subset of F'. Moreover,
T(E) =|v|w

where u e F' is the capacitary element associated with w.

Proof. Case 1. &(w) =0. Here 0cF is =1 a.e. £ on ® so
cap @ = 0; any bounded measurable function f supported by o verifies

S fdé =0, so P, = ¢, thus dualcap w = 0. Hence cap w = dualcap w.
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In preparation for Cases 2 and 3, suppose &(w) > 0. Let Kcw
be compact with &(K) > 0. Then f = 1/6(K).Ix is an element of P,,
so P,# @. Since P, is closed and convex and F"” is reflexive, it
follows that P, has at least one element of minimum norm. Denote
by E the set of all such elements. Let ve E and consider T'(v) e F.
For any f: X — R which generates a pure potential 4 ¢ P, we have
(T(v), " — v) = 0. In fact, if v = 0, then Tv = 0 so (Tv, ' — v) = 0.
If v+0,

1 7yt — ) = lim L2 =) = |lv]]

[|v]] ’ =0 t
:hm”(l“t)?/-i-tufll — ]| ~0.

t—0 t -

The limit exists by smoothness of F” and the inequality holds because
1 — tv + tu e P, by convexity and the fact that ||v| is minimal
over P,. Thus for all such w'¢P,,

(Tv, w") = (Tv,v) = [[v]]*.
This inequality implies

(2) (Tv)() = || 2| a.e. & on @ .

Case 2. &w) >0 and capw = +o. This entails %, = @.
Recall ve P, and 1/||v|| = dualcapw. If ||v|[* > 0, then

fueFluz|v| ae §onwl=g

because %/, = @. Hence (2) implies ||7|* =0, so 0 =ve P,. Thus,
dualcap @ = + oo,

Case 3. &(w) >0 and 0 <capw < + . Here %, # @. Letu
be the capacitary element associated with w. For any ' e¢ P, we

have Sfdf =1, then since v =1 a.e. £ on w,
1< Sufdé ~ (u, w) .

But any ve P, with 1/||v|| = dualcap w is the limit of a sequence of
such elements u/, so
1< (u,v) = Jullllv] .

Thus, ||v]|| # 0 and

=

Ol < ol L2 < gy
ol ol

(3)
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But Tw = ||v|]* a.e. on @ implies Tv/||v||*€ #/,. Thus by the unique-
ness of % as the element of minimum norm in %, (3) implies
Tv/||v||* = u, which verifies (ii). Finally,

capw = [[ul| = || Twll/||v|}* = 1/[v] = dualcap ®
which verifies (i).
4. Exterior capacity and capacitability.

DEFINITION 4.1. For any E C X, the exterior capacity of E is
defined by

cap, E/ = inf {cap w | ® D E,  open} .

Observe that cap, is defined on all subsets of X, and that for o
open, cap ® = cap, .

DEFINITION 4.2. Any Ec X is cap,.-capacitable or merely capaci-
table, if

cap, £ = sup {cap, K| £ D K, K compact} .

It will be shown that cap, verifies
(i) ecap, is increasing, i.e., K, C E, implies cap, E, < cap, E..
(ii) For any increasing sequence of sets {F,},

lim cap, E, = cap, lj E,.

n—rco

(iiiy For any decreasing sequence of compact sets {K,},

lim cap, K, = cap, ﬁ K, .
n=1

n—00

These are precisely the three conditions which must be verified in
order that cap, be true capacity; it then follows that K-analytic
subsets of o-compact sets in X are capacitable, see [2, Chapter I
part II] and [3, Chapter VI]. In this section (i) and (iii) are indicated
for cap,. That (ii) holds is shown in § 7.

PROPOSITION 4.3. The set function cap, verifies condition (i) for
true capacity.

The proof follows immediately from the fact that cap is increasing
on open sets.

DEFINITION 4.4. A set function G is continuous on the right on
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compact sets if for any compact K and € > 0 there is an open neigh-
borhood U> K such that K’ compact and K< K’ c U imply G(K') <
GK) + e.

The notion “continuity on the right” is due to Choquet [3, pp.
147, 174]. The following lemma is from [2, p. 12].

LEMMA 4.5. Let G be an increasihg set function on the subsets
of a Hausdorff space. If G is continuous on the right om compact
sets, then G satisfies condition (iii) for true capacity.

PROPOSITION 4.6. The set function cap, verifies condition (iii) for
true capacity.

Proof. Let Kc X be compact and ¢ > 0. By definition of cap,
there exists an open w D K with capw < cap, K + €. Let a compact
K’ satisfy K K' c w. Then cap, K’ <capw = cap, K + ¢. Lemma 4.5
now applies with G = cap,.

5. Some properties of cap,. Capacitability of open sets. The
lemmas of this section lead to the proposition that open sets are
capacitable. Moreover, the results of these lemmas are used in §7.

DEFINITION 5.1. For any EC X, the set Z, C F is defined by
Ze = (U Z.)”

wDE

the union being over all open supersets of E. (Here the bar denotes
closure.)

LEMMA 5.2. (i) %+ @ if cap, B < .

(ii) For any EC X, Z/y is closed and convex.

(iii) In case E =V 1is open, then 7/ is identical to %, of Defini-
tion 3.1.

Proof. (i) %y + @ iff for some open w D E, Z, + @ iff for
some open @ D K, o > cap @ iff « > cap, K.

(ii) Corollary 1.5 applies with {E:}ic; = {Z%w}ooze Thus Z/; is
the closed convex hull of U %,

(iii) If E = V is open, then %, D %, for all open w D> V. Thus

Uy = Uy D (wLDJV ) = (wL:JE W) = Uz -
Conversely, Zz 2> Uovoz %o D Xy-

As a result of (ii) of the above lemma, we can give the following
definition.



CAPACITY THEORY IN BANACH SPACES 373

DEFINITION 5.3. For any EcC X with %, +# @, the exterior
capacitary element associated with E, wpc F, is the unique element
of minimum norm of %/.

LEMMA 5.4. Let B X with Z» + ©. Then

(1) [lugll = cap. E.

(i) If {w;);e; s any family of open sets in X directed downward
by inclusion with each w; > E, cap w; < < and cap, E = inf {cap w;|i e I},
then uy = lim w;, where w; denotes the capacitary element associated
with @,.

Proof. (i) Apply Corollary 1.5 with {E;} = (%.}, H = %
(ii) Apply Lemma 1.4 with K= Z,. By (i) above, ||z] = |[uz|| =
cap, F. By hypothesis,

cap, F = inf {cap w; | 1€ I} = inf {|| ;|| | 1 € I}
in the notation of Lemma 1.4,

Uy = = limz;, = limw, .

LEMMA 5.5. For any EcC X with cap, B < oo, there exists a
decreasing sequence of open sets {w,}r-, with each w,D E and u, =
lim u,, where {u,)>_, is the corresponding sequence of capacitory
elements.

Proof. From the family of all open supersets of E with finite
capacity, one uses an easy induction argument to construct a decreas-
ing sequence {®,} with the property cap, £ = limcap @,. The result
follows by Lemma 5.4.

For the purposes of the next corollary, we assume &ENK) =0
for all compact K implies £E = 0.

COROLLARY 5.6. For EcC X with cap, E < oo, uy = 1 a.e. £ on E.
In case cap, E = 0, then &(E) = 0.

Proof. Let {w,}, {u,} be as in Lemma 5.5. Then limu, = uz.

Let K E be compact. Axiom (a) assures lim,_.., S %, — uz|dé = 0.
K

Thus for some subsequence u,,limu, = %, pointwise a.e. £ on K.
But %, =1 a.e. £ on @,, and hence a.e. £ on K. But u,=1a.e. §
on w,, henceon £ w,. Thus 4, =limu, =1 a.e. £ on ENK, ie.,
%=1 a.e. & on E.

In case cap, E = 0, we have ||u;]|| = 0, so for any compact K C X,
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0 gg ugde <ATBENE) ||zl =0
ENK

(here A(E N K) is the constant of axiom (a)). Thus, since u; =1
a.e. £ on EN K, it follows that ¢(E N K) = 0.

PROPOSITION 5.7. Any open w C X is capacitable.

In view of the fact that cap, is increasing, for any Ec X if
sup {cap, K | E D K compact} = + o, then cap, £ = + o, so E is capaci-
table. Thus it suffices to consider open w satisfying sup {cap, K| @ D
K compact} < c. Using Lemmas 1.3 and 3.4 and Corollary 5.6, a
proof similar to that given by Deny [4, pp 1-05, 1-06] for the Hilbert
space case will suffice.

6. Denumerable sub-additivity of cap and cap,. In this section
and the remainder of the article we assume that the uniformly convex
space F(X, &) satisfies axiom (c) as well as axiom(a). In this section
the normal contraction “modulus”, i.e., u — | % |, is the only contraction
needed, so the full strength of axiom (c) is not required.

LEMMA 6.1. For any finite family of open subsets of X we have
caanJwi = icapw«; .
=1 =1

Proof. Without loss of generality, each Z,, # @. Let w;eF
be the capacitary element associated with w;,? =1, --+, n. By axiom
() ue Z.,, implies ju|e Z,, and || |u||[ =|/u|]. Thus u; =|u;| =0
a.e. £, Hence D7, u; =1 ae. § on UL, ®; so 37 u; € Zyo,, and

cap Uo, = [[ X || = [ wi || = Sicap o; .

REMARK. It is the last inequality in the above proof which makes
our modified definition of capacity desirable.

LEMMA 6.2. For any denumerable family of open subsets of X,

8

capJw; = D capw; .
=1 =1

Proof. Assume Z/,,# @. Put 0,=UL,©,,n=1,2,.--. Then
{0,} is strictly increasing. If limecap0, = o, then

co = lim cap 0, = lim, cap 0 @;
b=t}

< lim, 3, capw; = >, cap w;,
i=1
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the inequality holds by Lemma 6.1. The result follows.
If lim cap 0, < o, the hypotheses of Lemma 3.4 are satisfied by
{0,}. Thus,

cap 0 w,; = cap 0 0, = limecap0, .
i=1 n=1
But

lim cap 0,, = lim, cap Cj w;
i=1
< lim, f. cap @; = i cap @; ,
=1 =1
the inequality holds by Lemma 6.1.

PROPOSITION 6.3. The set function cap, is denumerably sub-
additive, i.e., for a sequence of sets {E,}r_,

cap, g K, < g,l cap, E, .

Proof. For each m, choose an open w,D E, with capw, <
cap, E, + ¢/2”, ¢ > 0 preassigned. Then

cap, U E, =capU v, = Dl capw,,

the first inequality holds since cap, is increasing, the second by
Lemma 6.2. By choice of w,, S, capw, < 3, cap, F, + e.

7. Quasi-continuous functions; exterior capacity is a true
capacity. In this section definitions and results which lead to Theorem
7.12 are listed. Several proofs are omitted, but using the earlier
results in this article, proofs similar to those in [4] can readily be
supplied.

DEFINITION 7.1. A function f: X — R is quasi-continuous if for
each €> 0 there exists an open w C X with capw < ¢ and the restric-
tion f|y_. is continuous.

DEFINITION 7.2. A statement is true quasi-everywhere (quasi-
everywhere on a subset A C X) if itistrue forall re X — E (xc A— E)
and cap, EF = 0. The abbreviation is g.e. (q.e. on A).

By Corollary 5.6, g.e. implies a.e. &. It is emphasized that “q.e.”
depends not merely on the measure space (X, &), but on the function
space F(X, ). Examples are given in §8.

ProproSITION 7.3. Let f: X — R be quasi-continuous, VC X open,
and a€ R constant. Then f<a a.e. £ on V implies f <a qg.e.on V.
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The proof requires axioms (a) and (c), uniform convexity of F,
and relies heavily on Theorem 3.5.

COROLLARY T.4. Let f, g be quasi-continuous functions. Then
f =g a.e. § implies f = g q.e. Consequently, since g.e. always implies
a.e. & f and g are quasi-continuous representatives of the same
element weF iff f =g q.e.

Proof. Since f =g a.e. £ implies f—g<0ae.fand g—f=0
a.e. & Proposition 7.3 gives f— g =0 qge. and g — =<0 q.e., so
f =g qe.
, DEFINITION 7.5. An element u € F' is continuwous if v has a con-
tinuous representative.

LEMMA 7.6. Let u denote any continuous representative of a
continuous element of F and ||u]|| the norm of that element of F.
Then for any a > 0,

cap {z | u(®) >a >0} = [ul/a.

Note. In [4], the right hand side of the above inequality is
[|w]|[*/a?, due to the different definition of capacity.

At this point axiom (b) is assumed. Consequently, from here on
we will be concerned with a uniformly convex BD space, D(X, &).
Observe that because axiom (b) requires & to be dense in X, i.e.,
&(w) > 0 for nonvoid open w, each continuous # € D has exactly one
continuous representative, which is also denoted u.

PROPOSITION 7.7. Every we D has a quasi-continuous represen-
tative (g = ¢ rep).

Proof. By axiom (b) there exists a sequence {u,;} in & N D con-
verging to u. By passing to a subsequence we may assume

(4) S 2t~ < + o=
For each k = 1,2, .-+ put
e = {2 ]| (@) — w(@) | > 277 .
By Lemma 7.6 and axiom (c)
cap e, = 28 || [y — Wi | Il = 2° (| thess — % []

Put w; = Uz.;e,. Then {w;}5, is a decreasing sequence of open sets
and by (4)
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cap w; = kZa 2% (| Uiy — U || — 0
=2

as j — oo; cap, (N ®;) = 0 as a result, so &() w,) = 0.

Clearly {u,(x)} is a convergent sequence of reals for v € X — 7, ®;.
Put

limu,(®) for xe X — N o;

* =
w(@) 0 for xeNw;.

The convergence u, — w* is uniform on the complement of any w;, so
u* is continuous there; thus w* is quasi-continuous since cap w; — 0.

Finally, if w denotes any representative of u € D, we show u* =
a.e. & It suffices to show that for all j, w* = u a.e. § on X — w,.
To this end, let f be a bounded measurable function with compact
S (f)c X — w;. Then

Sufdé = lim, S U, fdé = Su*fdf ,

the first equality holds since %, — % in D and S (+)fdé e D’ by axiom (a);

the second equality follows from the uniform convergence u, — %* on
X — w;. Thus v = u* a.e. £ on X = w; and u* is a ¢ = ¢ rep of u.

LeMMA 7.8. If w* is any quasi-continuous representative of an
element we D, then for any a > 0,

cap, {x | u*(®) = a > 0} = [[ull/a .

PRroOPOSITION 7.9. Let {v,} be a sequence in D converging to v e D;
let v,*, v* be any quasi-continuous representatives of v,, v respectively.
Then there ewists a subsequence {v,*} of {v.*} conmverging to v*
quasi-everywhere.

LemMMmA 7.10. Let EC X with cap, E< + o. If weD has a
quasi-continuous representative u* =1 q.e. on E and v = 0 a.e. & on
X, then we Zy (Definition 5.1).

Proof. Let ue D satisfy the hypothesis, and u* be a ¢ = ¢ rep
of u. By adjusting u* on a set of exterior capacity zero and observ-
ing that lim, (1 + (1/n))u = w and %/ is closed, we see that the lemma
will be proved if we assume u* >1 everywhere on E, = 0 a.e. £ on
X, and show %€ Z/%.

Let ¢ >0, w,c X open with capw, < e and w*|y_,, continuous.
Consider the open set
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Q ={zlu@>1Uo.,

and the capacitary element v, associated with w.. Since », =1 a.e.
& on w, and by axiom (c) v, = 0 a.e. £ on X, it follows that v + v. =1
a.e. £ on 2, ie.,, u +v.€%,,. But 2.OF so u + v.€ . Letting
¢—0 we have ||v.|] =capw,— 0 so w = lim, u + v. € Z%.

LeMMA 7.11. Let Ec X with cap, E< . Then ug, the exterior
capacitary element associated with E, is = 0 a.e. § on X. Moreover,
any quasi-continuous representative verifies uz* = 1 q.e. on K.

Proof. By axiom (c), the capacitary element associated with an
open set is =0 a.e. &, Thus in the notation of Lemma 5.5, limu, =
uy and u, = 0 a.e.f. Axiom (a) assures that the cone of nonnegative
elements in D is closed. Therefore, u; = 0 a.e. &.

Let uz*, w,* be ¢ =c reps of uy, u, respectively, n=1,2, ---. By
Proposition 7.3, #,* =1 a.e. £ on w, implies %,* =1 g.e. on ®,.
Proposition 7.9 implies u*(x) = lim,u, *(®) q.e., so u;* =1 q.e. on
Ni., @, D E.

THEOREM 7.12. The set function cap, is a true capacity.

Proof. In view of Propositions 4.3 and 4.6, it remains to show
that cap, verifies condition (ii) for a true capacity (see §4). Let a
sequence {E,} of sets verify E,cE,.,n=12 ---and put E =
Us-. E,. Clearly cap, F = lim,cap, E,. We prove the reverse
inequality.

If lim, cap, E, = + o, equality holds. Assume cap, E, < M < + o
forn=1,2,.... Lemma 7.11 assures %, = 0 a.e. £ where u, denotes the
exterior capacitary element associated with E,. Put Z = N7, %%,-
Since {E,} is increasing, {Z/; } is decreasing; further ||, || = cap. K, =
M. Thus Lemma 1.3 applies: % = limu, is the unique element of
minimum norm of . Observe that » = 0 a.e. & since %, = 0 a.e. &.
If ,* is a ¢ = ¢ rep of u,, by applying Lemma 7.11 and adjusting
u,* on a set of exterior capacity zero, we assume #,* = 1 everywhere
on E,. Proposition 7.9 assures »* = lim, %, * q.e., so u* = 1 q.e. on
E=,E,. Thus by Lemma 7.10, 4 € Z, so

cap, F = inf {||v|||ve %%} < ||u]|| = limecap, F, .

5°

8. Conditions under which £(E) = 0 implies cap, (F) = 0. In
this section and the next we investigate the nature of sets of exterior
capacity zero. In this section a connection is made with quasi-con-
tinuous functions; § 9 deals with measures pte D’. The results of this
section were motivated in part by the work of Thomas [7]; it is not
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hard to show that the union of the equivalence classes of a space
F(X, & which is reflexive and satisfies axioms (a) and (c) forms a
semi-norm space & (X, p) of [7].

To emphasize that “cap, E = 0” depends on the functions in D(X, &)
and not merely on &, we give two brief examples of BD spaces over
the same measure space but with diverse notions of capacity. In
both examples X = (0, 1), ¢ is Lebesgue measure, and 1 <p < .

ExaMPLE 8.1. D = L*(X,£. We show that &E =0 implies
cap, E =0 for £ (0,1). In fact, given £¢E = 0, cover E with an
open o verifying &w < ¢, € > 0 preassigned. The indicator I, is an
L? function, and clearly

capw = (S prd§>llp < gir .
Thus, cap, & = inf {cap w | @ D E, w open} = 0.

EXAMPLE 8.2. D(X, &) is the space of equivalence classes of
R-valued functions on (0, 1), each class containing an absolutely con-
tinuous representative satisfying lim,_,w(x) = lim,_, u(x) = 0. The
norm is defined by

llull”zglu’l”dé< oo .

Here the prime denotes derivative which may be taken in the ordinary
sense in the case of the absolutely continuous representatives, or
generally taken in the sense of distributions.

That D is a BD space is an easy exercise. We show any open
interval @ = (a, b) with 0 < @ < b < 1 verifies cap w > 27, from which
it follows that cap, E = 2'» for all nonvoid E < (0,1). In fact, let
UE Xy i€y, €D, =1 on (a,b). (Here we are actually consider-
ing the absolutely continuous representative of #.) Then

lule = {twraez T jwiras+ [ jwpas.
By Holder’s inequality, (¢ = p/p — 1)
e i/p a
([ ra)” 2 e s - omvioz a1,
0 0

Here the variation Vi(u) = 1 since u(a) = 1 and lim,_, u(x) = 0. Simi-
1
larly Sb[u'[ dé > 1. Thus |[u|| > 2"7, so cap @ > 2"7,

It is clear from this example that &E = 0 does mnot generally
imply cap, £ = 0. Conversely, Corollary 5.6 assures cap, £ = 0 does
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entail £ = 0. The next proposition gives one condition under which
EE =0 and cap, E =0 are equivalent. We consider a uniformly
convex BD space D(X, &), and the indicator I, for Ec X. (In Proposi-
tions 8.3 and 8.4 it is assumed that &(E N K) = 0 for all compact K
implies £ = 0; thus Corollary 5.6 applies.)

PropPOSITION 8.3. If I, s quasi-continuous, then &E =0 if
cap, £ = 0.

Proof. Assume I, quasi-continuous and éE = 0. Then I; is a
g =c rep of 0eD. Since the null function is a ¢ =¢ rep of 0e D,
Corollary 7.4 assures I = 0 g.e., so cap, E = 0. Corollary 5.6 gives
the converse.

As the following result indicates, in 8.1 all representatives of all
elements in the space are quasi-continuous, but in 8.2 the only ¢ =¢
reps are the absolutely continuous representatives of each element.

PROPOSITION 8.4. In order that for all EC X £E =0 implies
cap, B, it is mecessary and sufficient that all representatives of all
elements of D be quasi-continuous.

Proof. Necessity. Assume &E = 0 implies cap, E = 0. Let w
and u* be two representatives of the same element of D, u* quasi-
continuous (u* exists by Proposition 7.7). Put E = {x|u(z) # u*(x)}.
We have £E = 0 so the hypothesis entails cap, £ = 0. Thus, u = u*
g.e., S0 % is quasi-continuous because u* is.

Sufficiency. If EE = 0, then I, is a representative of 0e D, so
by hypothesis I, is quasi-continuous. Proposition 8.3 applies.

9. Sets of exterior capacity zero and pure potentials. It has
been shown in previous sections that, roughly speaking, sets of zero
capacity are smaller than sets of &-measure zero: cap, £ = 0 implies
EE = 0. In this section we consider the question “how small is a set
of zero exterior capacity?’ More precisely, we give the following
analog to a classical result: cap, F = 0 iff E is cap,-capacitable and
tE = 0 for all pure potentials u*. It is assumed D(X, &) is a uniformly
convex BD space.

For any open w c X, the characteristic function I, is lower semi-
continuous. Consequently, for any Radon measure g = 0, we have
by definition

) = p*(L,) =sup {P) |pe &, P = L} .



CAPACITY THEORY IN BANACH SPACES 381

The next lemma shows that the supremum can be taken over a smaller
set. We use the normal contraction T.:R — R defined for ¢ > 0 by
T()=x—cifao=ze T(a) =x +cifa < —cand T(x) =0if |z| < e.

LeMMA 9.1. For any open w C X and any Radon measure 1t = 0

tw) =sup{p) |peenND, 09I, (P Co}.

Proof. LetI' ={p|lpeznND,0<sp <1, F(P)Cwl. It suffices
to show that 7" is upward directed and I, = sup I” (see, for example,
[3], Proposition 4.5.1). That I" is upward directed is immediate:
P, vel” implies @ \V4r = 1/2(® + 4 + | @ — 4r|) € I" because & N D is
a vector space closed under normal contractions (axiom (c)).

To see I, =sup/’, let pew, e with y(p) =1,0=+ <1 on
X and () Cw. Such a + exists since {p} is compact and X is
locally compact. Since "N D is dense in &, given ¢, 0 < ¢ < 1/2,
there exists pc & N D with | — | < ¢ on X. An easy calcula-
tion shows T.peI’. Finally,

1 — T.p(p) = y(p) — T.9(p)
= y(p) — P(p) + < 2.
Letting ¢ tend to 0,
I,(p) = sup{P(p) | Pel},
so I, =sup{.

For open w — X, recall P, D’ given in Definition 3.2.

LEMMA 9.2. For any open wC X and pr =0 for which uw'eP,,
() C@ holds.

Proof. We show that any p e X — & has a p-negligible neighbor-
hood. Let U be an open neighborhood of p» not meeting @. Let
pezr ND with ¢ £ I, &¥(®)cU. By definition of w*e¢P,, there
exists a sequence f, of bounded measurable functions supported by
such that

| #dee = tim, [ or,a: = 0.
Lemma 9.1 applied to U gives #(U) = 0.

THEOREM 9.3. Let EcC X. The following two conditions are
equivalent:
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(i) FE 1s cap.-capacitable and pE = 0 for every Radon measure
1= 0 generating a pure potential u*e D',
(ii) cap,E = 0.

Proof. (i) implies (ii). First, we prove the contrapositive for
compact E. Suppose cap, F > 0, i.e., for some a > 0, capw = «a for
every open @ D K. For every such w

a < dualcap w = 1/inf{||z||| z€ P,}

and therefore 1/a = inf{||z|||2e P,}. Now P, is convex and closed
in D' and w C Q implies P, c P, for open 2. Thus {P, | @ D E, ® open}
satisfies the hypothesis of Lemma 1.3 (i) (here D" is reflexive because
D is uniformly convex), so there exists z,€ N ooz Po-

Now 2z, # 0. In fact, E is compact so some open w DO E is rela-
tively compact. Therefore, since z,¢ P,,

4+ o >capw = dualcapw = I/Hzoll ’

80 || % ]| = 1/cap @ > 0. Thus since z,¢ P, it follows that z, = u* for
some Radon measure p£>0. We show #E = 1. That 2 N D is dense
in & assures the existence of e & N D verifying 01— <e
on the compact @. Let Uc X be open with

EcUcUcw.

Such U exists because E is compact and X is locally compact Haus-
dorff. For all 4’ € P, with 0 < f measurable, bounded and .&°(f) c U,
we have

| pracza-of fiz=1-c,

since > 1 — ¢ on @. By definition of 2z, = u* ¢ P,, there exists a
sequence {f,} of such functions so that

1-e<lim, | oras={ o
U (22
by Lemma 9.2, thus
1~e§§ svd#églwd#:#(w).

Therefore,
1—-e¢=<inf{y(w)| EC wopen} = p(E)

so #F = 1, and our result holds for compact sets FE.
For the general case, E capacitable means
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cap, £ = sup {cap, K | £ O K compact} = 0

since (#(&) = 0 assures (K) = 0 for KC E.
(ii) implies (i). For any open w X and any pure potential w”,
we establish the inequality

(7) M) =llu'lcapo .
In fact, by Lemma 9.1,
tw) =sup{p) |l pez ND,0<Lp <1, (P Cw}.

If capw = +o, the inequality holds. Assume capw < + oo, let
u ¢ D denote the capacitary element associated with w; then I, < u
a.e. & Since u* is a positive form on D, we have for any e (see
Lemma 9.1),

1) = (p, v") = (u, u*)
s=lwlfJu ]l = [uw| capw .

Taking the supremum over all u(®), ® ¢ I, inequality (7) is proved.
Now, assume cap, & = 0. Since cap, K = 0 for all compact K C E,
it is immediate that E is capacitable. By definition,

0 = cap, E = inf{cap w | £ < w open} .

By (7)
ME) = inf {¢{w) | B C @ open}
< |lu"|| inf{cap w | E C w open} = 0

for all pure potentials u".

10. Quasi-continuous representatives and pure potentials. In
this section we indicate that by considering only the quasi-continuous
representatives from each equivalence class [u] ¢ D, we get a “refined”
space of equivalence classes of functions, the new equivalence relation
being equality gq.e. rather than equality a.e. . An application of
Theorems 9.3 and 10.1 give the important Corollary 10.2. Every
representative in the “refined” space is measurable and summable
with respect to any measure generating a pure potential and the
“correct” integral formula holds. Our measure theoretic notation
follows that of [5, §§ 4.5, 4.6].

THEOREM 10.1. Every we D has a quasi-continuous representative
u* such that

(1) there exists some g-compact subset of X outside of which w*
vanishes, and
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(ii) for every pure potential u* e D', we have u* e F' (X, ) and

(u, u¥) = Su*dﬂ .

Proof. Refer to Proposition 7.7; we show that w* constructed in
that proof verifies (i) and (ii). We have

e, = {T € X|upn(@) — uu(@)| > 277
and

tler) = P2 | Uy — U l) = 25( Uprr — Ui |, u¥)
S 25 | s — g [+ [] 0 || < 2% (| e — wa [[+[] 0]

(8)

where * is an arbitrary pure potential. The last quantity tends to
zero as k increases because

(9) 52 s — el < + o
Further, since w; = Ur-;e, we have p(w;) < Sir; tt(e,) which tends
to zero as j increases by (8) and (9). Thus (N, ®;) = 0. Also

w*(x) = lim, u,(x) for xe X — N w;
0 for zeNo;.
Hence,

(2| w*(x) = O}CQ{x | u(x) = 0} Q S (uy)

which establishes (i).
For (ii), let £ = N, w;; tE = 0. Then
er(u —wl) S 2w — upl-Lrog) + #*(u* — w |- Ip)
because the upper integral p*(.) is sub-additive. But g#E = 0, so
v u* — u,l-I) = 0. Thus
L u* —w, ) < primg | u; — U |- Tep)
= pr(lim; [ w; — w,[) = lim; p*(lw; — %)

by Fatau’s lemma. But|u; — u,| €& N D, so u*(u; — u,|) = p(| u; —
#%,]). Therefore,

p*(u* — ) < lim, pelu; — wg)
= lmy(uy — w,, w?) < limy [y — ||+ f e |

which tends to zero as k increases because {u,} is Cauchy in D. Thus
u*e FYX, 1) and
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S wdpe = lim, S wdpt = lim, (uy, ) = (u, w") .

COROLLARY 10.2. Ewvery quasi-continuous representative v of every

we D verifies ve ZFN(X, 1) and (u, ") = S vdpe for every pure potential

u*.

Proof. Let u* be as in Theorem 10.1. Then u* = v a.e. £ and
both are quasi-continuous. Thus Corollary 7.4 implies that u* = v
g.e. Let

E={veX|u ) = v@)};
then cap, £ = 0. According to Theorem 9.3, #E = 0, so

S vap = S wrdp = (u, u) .

REMARK. The theorem and corollary give a very strong result.

For an arbitrary representative # of u, the formula
(u, u*) = gﬂdpe

does mot hold in general unless £ is absolutely continuous with respect
to &. However, we can select any quasi-continuous representative u*
of % and the formula does hold, not just for one g, but for all g
simultaneously.
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