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CAPACITY THEORY IN BANACH SPACES

PETER A. FOWLER

In classical potential theory one way of defining capacity
of a compact K c Rn puts cap K equal to the total mass of
μ, where μ is the measure associated with the inferior envelope
of the family of nonnegative superharmonic functions majoriz-
ing the characteristic function Iκ. A second (equivalent)
definition puts cap K = ll\\γo\\e where γ0 is the projection of
the null measure onto the set of positive Radon measures γ

supported by K, satisfying \dγ^l and having finite energy:

In the axiomatic Hubert space setting of Dirichlet spaces
Beurling and Deny have shown that equivalence of definitions
of the two above types leads to a rich capacity theory. In
this article all of these results are extended to the family of
Banach-Dirichlet (BD) spaces, i.e., uniformly convex Banach
spaces of (equivalence classes of) functions satisfying the
Dirichlet space axioms. This is accomplished by using a capa-
city of the first type in the BD space D, and of the second
type in the dual space Df.

THEOREM 1. The two types of capacity are equal.
THEOREM 2. Exterior capacity is a true capacity in the

sense of Brelot.
THEOREM 3. A set E has zero exterior capacity iff E is

capacitable and μE = 0 for all measures μ generating a pure
potential uμeD''.

THEOREM 4. For every quasi-continuous representative
u* of ueD and every μ generating a pure potential uμ, the

formula (u,uμ)= I u*dμ holds, where ( , •) is the bi-linear

form on D x Dr.

The reader will be aided by familiarity with [6]. Some defini-
tions therein will be reiterated in § 2.

1Φ Preliminary lemmas concerning certain Banach spaces* Let
{Ei}ieI be a nonvoid family of nonvoid subsets of a set A.

DEFINITION 1.1. The family {Ei}ieI is directed downward by inclu-
sion if for each pair i, j e I there exists k e I with Ek c Et Π E5.

The family {E{} is also called a filter base.

DEFINITION 1.2. The family {Ei}ieI is directed upward by con-
tainment if for each pair i,jel there exists ke I wi th EkZ) Ei U E3-.
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N O T E . If {!£<}< e / is directed downward by inclusion (upward by
containment) and xteEt for each iel, then {Xi}ieI is a net in A
when I is directed by the rule i^j iff E{ c i?y (2^- ID ^ ) .

LEMMA 1.3. Iw a Banach space B with norm || || Zeί
a family of closed convex sets directed downward by inclusion such
that the set of numbers {inf {|| z || | z e Ei}}ieZ has a supremum M < oo.

( i ) If B is reflexive, then E = Γ\ieIEi Φ 0 and there exists ze E
with \\z\\ ̂  M.

(ii) If B is uniformly convex and for each ie I, xt is the unique
element of minimum norm of Ei9 then the net {Xi}ieI is Cauchy and
x = limieIXi is the unique element of minimum norm of E.

Proof. ( i ) Let BM = {z e B \ \\ z || ^ M). The family {Ei n BM}ieI

is directed downward by inclusion. Each E{ Γ) BM is closed and convex,
t h u s weakly closed. Since B is reflexive, BM is weakly compact*
Hence f\ieI Eif] BM Φ 0 , i.e., there exists ze E w i th \\z\\ ̂  M.

( i i ) Since each E{ is closed and convex, E is also. By uniform
convexity there exists a unique x e E of minimum norm and (i) assures
|| x || ^ M . Moreover, xe Ei for each ie / a n d M— sup{ | | xt \\ \ie 1} entail
| |a? | |^Λf. Thus | |a?| | = M.

The net {#i} ί6J is Cauchy. In fact, it is clear t h a t l i m ί e Γ \\xi\\ = Mr

i.e., for ε > 0 there exists iel such t h a t j*zί implies |[ xά || > M— ε/2.
Moreover, for all j , k ^ i,

But xk, Xj e Ei so convexity assures (xk + x3)j2 e Et. Since α?f is the
unique element of minimum norm in Eif we have

2M^2\\(xk + Xj)/2\\ ̂ 2 | | α ; , | | > 2M - ε.

This shows \imj}keI\\xk + -̂H = 2M. The fact that {Xi}iei is Cauchy
follows directly from the definition of uniform convexity. Put y —
lim Xi. Then \\y\\ = lim || xt \\ = ikί. Since {^Kei is directed downward
by inclusion and each Ei is closed, we have yeΓ\ieiEi — E. But a?
is the unique element of minimum norm in E, so y = x.

LEMMA 1.4. Let B be a uniformly convex Banach space and
{Ei}ieI a family of closed convex subsets of B directed upward by con-
tainment. Let KaB be closed and convex with KID {JieIEi. Denote
by x^ x the unique elements of minimum norm of Eif K respectively.
If (I a?|| = in f {|| Xi\\\ie I}, then l i m ί e I ^ = x .

Proof. To see that {Xi}i6l is Cauchy, first observe that lim || x{ || =
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inf {(I Xi\\ I i 6 1} = || x\\. Given ε > 0 choose n e I such that m ^> n
implies || α || + ε/2 ^ || & J | . Then for i, j ^ n,

2 || α? || + 6^11^11 + [j xs \\ ̂  \\ xt + x, \\

for any m^ί, j since m'Zt i, j implies Em Z) ̂  U -£7, and i?m is convex.
Thus limitj eJ\\Xi + xά\\ = 2|[a?|| and uniform convexity assure {x{} is
Cauchy. Put y = lim α?*. As in the proof of Lemma 1.3, y = #•

COROLLARY 1.5. Let B, {Ei}ieI, {Xi}iei be as in Lemma 1.4. Then
H = (JEi is the closed convex hull of \JEO and liτnXi - x where x
denotes the unique element of minimum norm in H.

Proof. Since each E{ is convex and family is directed upward
by containment, \JEi is convex. Thus H = \JEt is the closed convex
hull of \JEi. Given ε > 0 there exists iel and zeEζ with ||cc[[ ^
I! z [| - ε ^ || Xi\\ - ε, so || x\\ •= ϊnf {|| a?* || \iel} and Lemma 1.4 applies.

2. Review of definitions and basic facts* Much of the below is
expanded upon in [6].

A normal contraction T: R —> R of the line verifies T(0) = 0 and
I T(x) - T(y) I ^ I x - y \ . A duality map S:N-*N' of a smooth
normed linear space iVto its dual is the unique map satisfying \\S(u) \\ =
|[ u|! and | (u, S(u)) \ — \\u\\2. Also, for nonzero ue N

t-*o t

for all x e N. Let X denote a locally compact Hausdorff space,
<g* = r(f{X) the continuous real valued functions φ on X with support
S^{φ) compact supplied with the inductive limit topology, ξ a positive
Radon measure on X. Let F = F(X, ξ) denote a Banach space with
norm || I! of equivalence classes of real valued, locally f-integrable
functions on X. As with Lp spaces, we assume each equivalence class
contains all functions which are equal f-a.e. to a given representative
of that class. (A departure from this convention is suggested in § 10,
where "refinements" of classes are considered.)
The three Dίrichlet axioms are

(a) For any compact KaX there exists a constant A(K) Ξ> 0
such that for ue F

( b ) The measure f is everywhere dense in X, and F Π & is
dense in F and in ^ .
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(c) For any normal contraction T and ueF we have the com-
position TueF and || Tu\\ ̂  \\u\\.

A Banach-Dirichlet (BD) space is a Banach space D — D(X, ζ) of
equivalence classes of real valued locally f-integrable functions which
satisfies the three Dirichlet axioms. Several examples of BD spaces
are given in [6]. Pure potentials are elements of the positive dual
cone F'+ where the natural order is assumed on F. If F is uniformly
convex and satisfies axioms (a) and (c), then S(u) eFf+ implies u >̂ 0
a.e. f. If fe Df+ where D is a BD space, there exists a unique Radon
measure μ ^ 0 such that

(1) (<P,f)=\<Pdμ for all

The measure associated with f is μ and μ generates f. Write / = uμ,
or in case μ — g ξ, write / ' = u9. A potential f satisfies (1) where μ
need not be positive.

3* Capacity and dual capacity of open sets* Throughout the
remainder of this article it is assumed that F(X, ζ) is uniformly con-
vex and verifies axiom (a).

DEFINITION 3.1. Let ω c l b e an open set.
( i ) ^ ω c F i s defined

<%Sω = {% e FI u ^ 1 a.e. ξ on ω) .

(ii) The capacity of ω is a nonnegative real number or + co
given by

capω = inf {\\u\\ \ue^ω} .

(iii) If %fω Φ 0 , the unique element of minimum norm of ^ ω

is called the capacitary element associated with co.
Using axiom (a) it is easy to show ^ ω is closed and convex,

thus (iii) follows. In case ^ω — 0, then cap ω = + °°. If o)1 c ω2,
then ^ωι z) ̂ ω £ so cap ωx ^ cap ω2.

DEFINITION 3.2. For open ωaX, the set Pω c F' is the closure
of the set of pure potentials uf where / ^ 0 is a bounded measurable

function with compact support contained in α>, and with \ fdζ — 1.

It is immediate that Pω is closed and convex.

DEFINITION 3.3. For open ω c X, the dual capacity of ω is

ίsup{l/| |s | | |*ePω} for Pω Φ 0
dualcap co = \

(0 for Pω= 0
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(Convention 1/0 = +00.)

REMARK. Definitions 3.1 and 3.3 are slightly different from their
analogs used by Deny [4]. The change is required by technical
problems due to the weaker assumptions. The change is not serious
since it is clear that sets of zero exterior capacity are the same with
either definition. Further, the exterior capacity herein is a true
capacity in the sense of Brelot [2], (see § 4).

LEMMA 3.4. Let {ωj ί e7 be a family of open subsets of X directed
upward by containment, with {cap ce>JίeI a bounded set of real numbers.
For each ie I denote by Ui^F the capacitary element associated with
(ϋi Then

( i ) a) — \Ji&Icoi has a capacitary element u>
(ii) u is the limit of the net {Ui}ieI.

Proof. By Lemma 1.3 with Et = ^ω.f xt = ui9 and x = u, it fol-
lows that Γiiei^ωϊ Φ 0 . Now ̂ ω = f l ίe/^V In fact, ve f[^ω.
entails v^l a.e. ξ on ω̂  for each ie I, i.e., if A{ == {xeω{ \ v(x) < 1},
then ξ(Ai) = 0 for each i e I. Let A = {x e ω \ v(x) < 1}, and compact
KczA. Since Ka ω = \Jωi9 there is a finite subcover: K(Z \J%i(θij9

Since the family {α>i}iβJ is directed upward, there exists iel with
Kdωi9 so KaA, and ξ(K) = 0. Thus ξ(A) = 0 and n ^ c ^ ω .
The reverse containment is immediate. Lemma 1.3 gives the result.

In the proof of the following theorem it will be made clear that
ς(ω) = 0 entails cap ω = 0 for open ω. Let T:Fr —> F denote the
duality map. Since F is uniformly convex, Ff is smooth so T is
unique.

THEOREM 3.5. For open ω c X,
( i ) dualcap ω = cap ω,

(ii) if 0 < dualcap ω < oo, the set

E = {v e Pω 11/11 v || = dualcap α>}

is α nonvoid subset of F\ Moreover,

where ueF is the capacitary element associated with ω.

Proof. Case 1. ξ(ω) = 0. Here 0 e F is Ξ> 1 a.e. ξ on ft) so
cap ω = 0; any bounded measurable function / supported by ω verifies
\fdξ = 0, so Pω = 0 , thus dualcapω = 0. Hence capo) = dualcapω.
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In preparation for Cases 2 and 3, suppose ξ(ω) > 0. Let Kaω
be compact with ξ{K) > 0. Then / = l/i(K)-Iκ is an element of Pω,
so Pω Φ 0 . Since Pω is closed and convex and F' is reflexive, it
follows that Pω has at least one element of minimum norm. Denote
by E the set of all such elements. Let v e E and consider T(v) e F.
For any f:X—+R which generates a pure potential ufePω we have
(T(v), uf - v) ^ 0. In fact, if v = 0, then Tv = 0 so (Γy, ^ - v) = 0.
If v Φ 0,

- M 2 V , ^ - v) = lim ^ + * ( * / - ^ ) l l " l l ^ l

i ivir «
(1 -t)v + W\\ -\\v\

The limit exists by smoothness of F' and the inequality holds because
(1 — t)v + tufePω by convexity and the fact that \\v\\ is minimal
over Pω. Thus for all such uf e Pω,

(Tv9uf) ^ (Tvfv) = \\v\\2 .

This inequality implies

( 2 ) (Tv)(x) ^ il i; ||2 a.e. f o n α ) .

2. ξ(ω) > 0 and cap ω — + °°. This entails ^ ω — 0 .
Recall ΐ ; e P ω and l/|[t;| | = dualcap ft). If | |v | | 2 > 0, then

{u e FI u ^ || v ||2 a.e. f on α>} — 0

because %fω = 0 . Hence (2) implies | |v | | 2 = 0, so 0 = vePω. Thus,
dualcap ω = + oo.

Case 3. £(a>) > 0 and 0 < capω < + °o. Here %SωΦ 0. Let w

be the capacitary element associated with ω. For any ufePω we

have \ /df = 1, then since u ^ 1 a.e. f on ω,

/(if = (tt, ^0 .

But any vePω with l/[|v| | = dualcap ω is the limit of a sequence of
such elements uf, so

Thus, | | ι ; | | Φ 0 and
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But Tv ^ || v ||2 a.e. on ω implies Tv/\\ v [|2 e ι2Sω. Thus by the unique-
ness of u as the element of minimum norm in ^ ω , (3) implies
Tv/\\v\\2 = u, which verifies (ii). Finally,

c a p ω = \\u\\ = || Tv\\/\\ v\\2 — l/\\v\\ = d u a l c a p ω

which verifies (i).

4* Exterior capacity and capacitability*

DEFINITION 4.1. For any EaX, the exterior capacity of E is
defined by

cape E = inf {cap ω\ωz> E,ω open} .

Observe that cap, is defined on all subsets of X, and that for ω
open, cap ω = cape ω.

DEFINITION 4.2. Any EczX is cape-capacitable or merely capaci-

table, if

cap, E = sup {cape K\ Ez) K, K compact} .

It will be shown that cap, verifies
(i ) cap, is increasing, i.e., E1d E2 implies cap, E1 ίg cape E2.
(ii) For any increasing sequence of sets {En},

lim cape En = cape Q En .
%->co 71 = 1

(iii) For any decreasing sequence of compact sets {Kn},

CO

lim capc Kn = cap, Π Kn .

These are precisely the three conditions which must be verified in
order that cap, be true capacity; it then follows that Z-analytic
subsets of (/-compact sets in X are capacitable, see [2, Chapter I
part II] and [3, Chapter VI]. In this section (i) and (iii) are indicated
for cap,. That (ii) holds is shown in § 7.

PROPOSITION 4.3. The set function cap, verifies condition (i) for
true capacity.

The proof follows immediately from the fact that cap is increasing
on open sets.

DEFINITION 4.4. A set function G is continuous on the right on
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compact sets if for any compact K and e > 0 there is an open neigh-
borhood TJ-DK such that K' compact and KaK'aU imply G{K') ^
G(K) + e.

The notion "continuity on the right" is due to Choquet [3, pp.
147, 174]. The following lemma is from [2, p. 12].

LEMMA 4.5. Let G be an increasing set function on the subsets
of a Hausdorff space. If G is continuous on the right on compact
sets, then G satisfies condition (iii) for true capacity.

PROPOSITION 4.6. The set function cape verifies condition (iii) for
true capacity.

Proof. Let KaX be compact and ε > 0. By definition of capβ

there exists an open ω ID K with cap ω ^ cape K + s. Let a compact
K' satisfy KaK' aω. Then cap, Kr ^ cap ω ^ cape K + e. Lemma 4.5
now applies with G — cap,.

5. Some properties of cape* Capacitability of open sets* The
lemmas of this section lead to the proposition that open sets are
capacitable. Moreover, the results of these lemmas are used in § 7.

DEFINITION 5.1. For any EczX, the set % c F is defined by

^ * = (U ^ ) ~

the union being over all open supersets of E. (Here the bar denotes
closure.)

o o #LEMMA 5.2. ( i ) % ^ 0 f cape E <
(ii) For any EczX9 ^/E is closed and convex.
(iii) In case E—V is open, then ^E is identical to ^/v of Defini-

tion 3.1.

Proof. ( i ) <ZfE Φ 0 iff for some open ω 3 E, ^ω Φ 0 iff for
some open ω Z) E, oo > cap ω iff oo > cape E.

(ii) Corollary 1.5 applies with {Ei}ieI = {%}ωD£, Thus <%rE is
the closed convex hull of \J ^/ω.

(iii) If E = V is open, then ^V => ̂ » for all open ωz) V. Thus

Conversely, ^ Z) U^i,^ ̂ ω 3 ^V

As a result of (ii) of the above lemma, we can give the following
definition.
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DEFINITION 5.3. For any EaX with <2SEΦ<Z, the exterior
capacitary element associated with E, uE e F, is the unique element
of minimum norm of <%fE.

LEMMA 5.4. Let EaX with <%sE Φ 0 . Then

( i ) | | t t * | | = c a p β # .
(ii) If {ωj ί 6 l is any family of open sets in X directed downward

by inclusion with each o)i Z) E, cap α^ < 00 and capg E — inf {cap o)i\ie I},
£&ew ^ = lim ui9 where 6̂ί denotes the capacitary element associated
with o)iΛ

Proof. ( i ) Apply Corollary 1.5 with {E,} = {^ω}, H = <2SE.
(ii) Apply Lemma 1.4 with K= %?E. By (i) above, | |.τ| | = \\uE\\ =

cap, .&. By hypothesis,

cape E = inf {cap ̂  | i e /} — inf {|| xt \\\ ie 1}

in the notation of Lemma 1.4,

uE = x — lim Xi — lim Uι .

LEMMA 5.5. For any EaX with cape E < ©o, ίfeerβ β.τisίs α
decreasing sequence of open sets {(on}n=i with each ωn~D E and uE —
lim un, where {un}ζ=1 is the corresponding sequence of capacitary
elements.

Proof. From the family of all open supersets of E with finite
capacity, one uses an easy induction argument to construct a decreas-
ing sequence {ωn} with the property cap, E = lim cap ωn. The result
follows by Lemma 5.4.

For the purposes of the next corollary, we assume ξ(E Π K) — 0
for all compact K implies ξE = 0.

COROLLARY 5.6. For EaX with cap, E < 00, uE ^ 1 a.e. ξ on E.
In case cap, E — 0, then ζ(E) = 0.

Proof. Let {ωn}, {wΛ} be as in Lemma 5.5. Then lim %„ = %£.

Let K a E be compact. Axiom (a) assures lim^co I \un — uE\dζ = 0.

Thus for some subsequence um, lim um — uE pointwise a.e. ξ on K.
But i£m ̂  1 a.e. <J on ωn, and hence a.e. ξ on K. But ^ m ^ 1 a.e. f
on ωmJ hence on E a com. Thus uE = lim um^l a.e. f on ί? Π K, i.e.,
^ Γ ^ 1 a.e. ξ on £7.

In case cap, E — 0, we have 11 ^ 11 — 0, so for any compact KaX,
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osί uEdξ ^A(Ef]K)\\uE\\ =0

(here A(E f] K) is the constant of axiom (a)). Thus, since uE^
a.e. ξ on E Π K, it follows that ξ(E Π K) = 0.

PROPOSITION 5.7. Awj/ opew ω c l i s capacitable.

In view of the fact that cape is increasing, for any EaX if
sup {cap* K\ Ez) K compact} = + oo, then cape E = + oo, so 1? is capaci-
table. Thus it suffices to consider open ω satisfying sup {cape K \ ω z)
iΓ compact} < oo. Using Lemmas 1.3 and 3.4 and Corollary 5.6, a
proof similar to that given by Deny [4, pp 1-05, 1-06] for the Hubert
space case will suffice.

6* Denumerable sub-additivity of cap and cape* In this section
and the remainder of the article we assume that the uniformly convex
space F(X, ξ) satisfies axiom (c) as well as axiom (a). In this section
the normal contraction "modulus", i.e., u—>\u\9 is the only contraction
needed, so the full strength of axiom (c) is not required.

LEMMA 6.1. For any finite family of open subsets of X we have

n n

cap U α>; ^ Σ cap ωi .

Proof. Without loss of generality, each <%fωi Φ 0 . Let u t € F
be the capacitary element associated with coiy i = 1, , n. By axiom
(c) u€ ^ ς . implies \u\e %Sωi and || | u \ \\ ^ | | u | | . Thus w4 = |u ζ \ ^ 0
a.e. ξ. Hence Σ?=i ui ^ 1 a.e. f on U?= 1 α), so Σ ? ^ < e ̂ ϋ ω ^ and

cap U ω ί ^ II Σ ^ II ^ Σ II ut i| = Σ cap ω, .

REMARK. It is the last inequality in the above proof which makes
our modified definition of capacity desirable.

LEMMA 6.2. For any denumerable family of open subsets of X,

cap 0 ωi ^ Σ cap ω* .

Proof. Assume ^ . Φ 0 . Put 0% = U?=i ωn, % = 1, 2, . Then
{0n} is strictly increasing. If lim cap 0̂  = oo, then

oo = lim cap 0n = lim% cap U ω̂

^ limn Σ cap a)< = Σ cap ^ ,
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the inequality holds by Lemma 6.1. The result follows.
If lim capθw < oo, the hypotheses of Lemma 3.4 are satisfied by

{0.}. Thus,
oo oo

cap U Q)i = cap U 0 K = lim cap 0n .
i=ί n=l

But
n

lim cap 0n — limΛ cap U ω{

n oo

<̂  limΛ Σ c a P ωi = Σ cap a),. ,

the inequality holds by Lemma 6.1.

PROPOSITION 6.3. The set function cape is denumerably sub-
additive, i.e., for a sequence of sets {En}~=1

cape 0 En £ Σ cape En .
ί ln=l

Proof. For each n, choose an open ωn z> En with cap ωn <;
cape En + ε/2n, ε > 0 preassigned. Then

cap, U En ^ cap U ωn ^ Σ cap α>w ,

the first inequality holds since cape is increasing, the second by
Lemma 6.2. By choice of ωn, Σ c a P ωn ^ Σ caP« -E'w + ε

7Φ Quasi-continuous functions; exterior capacity is a true
capacity. In this section definitions and results which lead to Theorem
7.12 are listed. Several proofs are omitted, but using the earlier
results in this article, proofs similar to those in [4] can readily be
supplied.

DEFINITION 7.1. A function /: X-+R is quasi-continuous if for
each ε > 0 there exists an open ωaX with cap ω < ε and the restric-
tion f\x-ω is continuous.

DEFINITION 7.2. A statement is true quasi-everywhere (quasi-
everywhere on a subset A c X) if it is true for all x e X — E (x e A — E)
and cape E — 0. The abbreviation is q.e. (q.e. on A).

By Corollary 5.6, q.e. implies a.e. ξ. It is emphasized that "q.e."
depends not merely on the measure space (X, ξ), but on the function
space F(X, ξ). Examples are given in §8.

PROPOSITION 7.3. Let f: X—* R be quasi-continuous, VcX open,
and a e R constant. Then f ^ a a.e. ξ on V implies f t=== a Q e. on V.
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The proof requires axioms (a) and (c), uniform convexity of F,
and relies heavily on Theorem 3.5.

COROLLARY 7.4. Let f, g be quasi-continuous functions. Then
ί = g a.e. ξ implies/ — g q.e. Consequently, since q.e. always implies
a.e. ζ, f and g are quasi-continuous representatives of the same
element ueF iff f" = g q.e.

Proof. Since f = g a.e. ζ implies / — g ^ 0 a.e. ξ and g — / <; 0
a.e. ξ, Proposition 7.3 gives f—g^O q.e. and g—ft^O q.e., so
f=g q.e.

DEFINITION 7.5. An element ueF is continuous if u has a con-
tinuous representative.

LEMMA 7.6. Let u denote any continuous representative of a
continuous element of F and \\u\\ the norm of that element of F.
Then for any a > 0,

cap {x I u(x) > a > 0} ^ || u \\/a .

NOTE. In [4], the right hand side of the above inequality is
\\u\\2/a2, due to the different definition of capacity.

At this point axiom (b) is assumed. Consequently, from here on
we will be concerned with a uniformly convex BD space, D(X, ξ).
Observe that because axiom (b) requires ζ to be dense in X, i.e.,
ξ(ft>) > 0 for nonvoid open ft), each continuous ue D has exactly one
continuous representative, which is also denoted u.

PROPOSITION 7.7. Every ueD has a quasi-continuous represen-
tative (q = c rep).

Proof. By axiom (b) there exists a sequence {uk} in ^ Π D con-
verging to u. By passing to a subsequence we may assume

( 4 ) Σ 2 f c | | % + i - ^ l l < + ~ .
fc = l

For each k = 1, 2, put

ek = {# I I wΛ+1(α?) - uk(x) \ > 2"k} .

By Lemma 7.6 and axiom (c)

c a p e , ^ 2 k \ \ \ u k + ι - uk\\\ ^2k\\uk+1 - uh\\ .

Put ωό = (J?=; β* Then {(us\f=1 is a decreasing sequence of open sets
and by (4)
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c a p ω , ^ Σ 2fc | | uk+ί - uk || > 0

k=j

as j —> oo cap, (Π >̂i) = 0 a s a result, so ζ(Π α>i) = 0.

Clearly {%(#)} is a convergent sequence of reals for x e X — ΠΓ=i ω iPut

(lim%*(») for a e l - Π ω i

(0 for xefiω, .

The convergence uk —• w* is uniform on the complement of any ω3, so
u* is continuous there; thus u* is quasi-continuous since cap ω3- —> 0.

Finally, if w denotes any representative otueD, we show u* = u
a.e. f. It suffices to show that for all j , u* — u a.e. ξ on X — o)3.
To this end, let / be a bounded measurable function with compact
Sf{f) c X - ύ)j. Then

ufdξ = limfc I ukfdξ =

the first equality holds since uk —>uinD and I ( )fdζe Df by axiom (a);
j

the second equality follows from the uniform convergence uk —• u* on
X — ω3. Thus u = u* a.e. ζ on X = ω0 and %* is a q — c rep of u.

LEMMA 7.8. If u* is any quasi-continuous representative of an
element ueD, then for any a > 0,

cape [x I u*(x) ^ a > 0} ^ || u ||/α .

PROPOSITION 7.9. Leέ {vn} be a sequence in D converging to v e D;
let vn*, v* be any quasi-continuous representatives of vn, v respectively.
Then there exists a subsequence {vn}c*} of {vn*} converging to v*
quasi-everywhere.

LEMMA 7.10. Let EaX with c a p e £ ' < + c>o. If ueD has a
quasi-continuous representative u* ^ 1 q.e. on E and u Ξ> 0 a.e. ξ on
X, then ue^E {Definition 5.1).

Proof. Let ueD satisfy the hypothesis, and u* be a q = c rep
of u. By adjusting w* on a set of exterior capacity zero and observ-
ing that lim% (1 + (l/ri))u = w and <%fE is closed, we see that the lemma
will be proved if we assume u* > 1 everywhere on E, ^ 0 a.e. f on
X, and show w e ^ E .

Let ε > 0, ωεcX open with c a p α ) £ < ε and u* | x _ ω e continuous.
Consider the open set
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Ωε = {x I u*(x) > 1} U ωε ,

and the capacitary element vε associated wi th ωε. Since vε^ 1 a.e.

ξ on ωε and by axiom (c) vε ^ 0 a.e. f on X, it follows t h a t u + vε Ξ> 1

a.e. f on β£, i.e., i& + vε e %SΩε. But ΩεZD E so % + vβ e ^fE. Let t ing

ε —»0 we have || vε || = cap α>e —• 0 so u = limε w + ve e <?SE.

LEMMA 7.11. Let EaX with cap e£
τ< °o. Then uE} the exterior

capacitary element associated with E, is ^ 0 a.e. ζ on X. Moreover,
any quasi-continuous representative verifies uE* ̂  1 q.e. on E.

Proof. By axiom (c), the capacitary element associated with an
open set is ^ 0 a.e. ξ. Thus in the notation of Lemma 5.5, limun =
uE and un ^ 0 a.e.f. Axiom (a) assures that the cone of nonnegative
elements in D is closed. Therefore, uE ;> 0 a.e. ξ.

Let uE*, un* be q — c reps of uE, un respectively, n = 1, 2, . By
Proposition 7.3, un* ^ 1 a.e. ζ on con implies un* ^ 1 q.e. on ωn.
Proposition 7.9 implies uE*(x) = limkun}c*(x) q.e., so uE* ̂  1 q.e. on

THEOREM 7.12. The set function cape is a true capacity.

Proof. In view of Propositions 4.3 and 4.6, it remains to show
that cape verifies condition (ii) for a true capacity (see § 4). Let a
sequence {En} of sets verify En c En+1, n = 1, 2, and put E =
U"=i En. Clearly cape E :> limw cap, En. We prove the reverse
inequality.

If lim% cape En= + oo, equality holds. Assume cape En^ M < + °°
for n — 1,2, . Lemma 7.11 assures u% ̂> 0 a.e. ζ where un denotes the
exterior capacitary element associated with En. Put <%s = f|"=i ^ Λ

Since {^J is increasing, {^EJ is decreasing; further || un \\ = cape j&» ^
ikf Thus Lemma 1.3 applies: u — \imun is the unique element of
minimum norm of ^/. Observe that u >̂ 0 a.e. ζ since wΛ ̂ > 0 a.e. ί.
If un* is a g = c rep of t&n, by applying Lemma 7.11 and adjusting
u«* on a set of exterior capacity zero, we assume un* ̂  1 everywhere
on En. Proposition 7.9 assures u* = lim^^^.* q.e., so u* ̂  1 q.e. on
E = \Jk E%k. Thus by Lemma 7.10, u e %SE, so

cap.JS' = inf {ll̂ jl | ve^E} ^\\u\\ = l imcape^ .

8. Conditions under which ξ(E) = 0 implies cape (E) — 0* In
this section and the next we investigate the nature of sets of exterior
capacity zero. In this section a connection is made with quasi-con-
tinuous functions; § 9 deals with measures μ e Dr. The results of this
section were motivated in part by the work of Thomas [7]; it is not
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hard to show that the union of the equivalence classes of a space
F{X, ζ) which is reflexive and satisfies axioms (a) and (c) forms a
semi-norm space if (JSΓ, p) of [7].

To emphasize that "cape E = 0" depends on the functions in D(X, ξ)
and not merely on ξ, we give two brief examples of BD spaces over
the same measure space but with diverse notions of capacity. In
both examples X = (0,1), ζ is Lebesgue measure, and 1 <p < <χ>.

EXAMPLE 8.1. D = LP(X, ζ). We show that ξE = 0 implies

cape E = 0 for Ea(0,1). In fact, given ξE = 0, cover E with an

open ω verifying ξω < ε, ε > 0 preassigned. The indicator Iω is an

Lp function, and clearly

Ijdξ J < s1" .

Thus, cape E = inf {capω\ωzD E, ωopen} = 0.

EXAMPLE 8.2. D(X, ξ) is the space of equivalence classes of
E-valued functions on (0,1), each class containing an absolutely con-
tinuous representative satisfying lim^o u(x) = l i m ^ u(x) — 0. The
norm is defined by

= \ u'\'dζ<

Here the prime denotes derivative which may be taken in the ordinary
sense in the case of the absolutely continuous representatives, or
generally taken in the sense of distributions.

That D is a BD space is an easy exercise. We show any open
interval o) = (a, b) with 0 < a < b < 1 verifies cap ω > 21/2), from which
it follows that cap, E ^ 21!p for all nonvoid Ea(0,l). In fact, let
ue%Sω, i.e., ueD, u^l on (α, &). (Here we are actually consider-
ing the absolutely continuous representative of u.) Then

|| u \\* - [ \ u f \p dζ^\a\ u f \* d ξ + [ \ v ! Y dζ .
Jo Jo Jb

By Holder's inequality, (q = p/p — 1)

/Γa \l/p Γa

f\ \u'\p dή ^ a~llq \ I v! I dζ = α~1/? Vl(u) ^ a~llq > 1 .

Here the variation Vo(u) ^ 1 since u(a) ^ 1 and lim^̂ o u(x) = 0. Simi-

larly [\u'\dζ> 1. Thus || u || > 21/?, so cap ω > 2llP.
Jb

It is clear from this example that ξE = 0 does not generally
imply cape E — 0. Conversely, Corollary 5.6 assures cape E = 0 does
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entail ξE = 0. The next proposition gives one condition under which
ξE = 0 and cape E = 0 are equivalent. We consider a uniformly
convex BD space D(X, ξ), and the indicator IE for EaX. (In Proposi-
tions 8.3 and 8.4 it is assumed that ξ(E Π K) = 0 for all compact K
implies ξE — 0; thus Corollary 5.6 applies.)

PROPOSITION 8.3. If IE is quasi-continuous, then ξE = 0 iff
cape E — 0.

Proof. Assume IE quasi-continuous and ζE — 0. Then IE is a
q — c rep of 0 e D. Since the null function is a q = c rep of 0 e D,
Corollary 7.4 assures IE = 0 q.e., so cape E — 0. Corollary 5.6 gives
the converse.

As the following result indicates, in 8.1 all representatives of all
elements in the space are quasi-continuous, but in 8.2 the only q = c
reps are the absolutely continuous representatives of each element.

PROPOSITION 8.4. In order that for all EaX ξ E = 0 implies
cape E, it is necessary and sufficient that all representatives of all
elements of D be quasi-continuous.

Proof. Necessity. Assume ξE = 0 implies cape E = 0. Let u
and π* be two representatives of the same element of D, u* quasi-
continuous (u* exists by Proposition 7.7). Put E = {x \ u(x) Φ u*(x)}.
We have ξE — 0 so the hypothesis entails cape E = 0. Thus, u = u*
q.e., so u is quasi-continuous because u* is.

Sufficiency. If ?2£ = 0, then IE is a representative of 0 € D, so
by hypothesis I^ is quasi-continuous. Proposition 8.3 applies.

9* Sets of exterior capacity zero and pure potentials* It has
been shown in previous sections that, roughly speaking, sets of zero
capacity are smaller than sets of f-measure zero: cape E = 0 implies
ξE = 0. In this section we consider the question "how small is a set
of zero exterior capacity?" More precisely, we give the following
analog to a classical result: cape E = 0 iff E is cape-capacitable and
μE = 0 for all pure potentials uμ. It is assumed D(X, ξ) is a uniformly
convex BD space.

For any open ωaX, the characteristic function Iω is lower semi-
continuous. Consequently, for any Radon measure μ ^ 0, we have
by definition

μ(ω) - μ*(Iω) = sup {μ{φ) \ <P e <έ?9 <P ^ Iω} .
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The next lemma shows that the supremum can be taken over a smaller
set. We use the normal contraction Tε:R—>R defined for ε > 0 by
Tε(x) = x - e if x ^ ε, Tε(x) = x + ε i t x ^ - ε and T(x) = 0 if | x \ < ε.

LEMMA 9.1. For any open ω c X and any Radon measure μ ^ 0

μ(ω) = sup {μ(φ) \ φ e <£f Π D, 0 g φ £ I ω , S^(φ) c ω} .

Proo/. Let Γ = {ζP I ψ e ^ Π A 0 ^ ζP ̂  Iω, S^{φ)aω}. It suffices
to show that Γ is upward directed and Iω — sup Γ (see, for example,
[5], Proposition 4. 5.1). That Γ is upward directed is immediate:
φ,ψeΓ i m p l i e s φ V ψ = lβ{φ Λ- ψ + \ φ — f \ ) e Γ b e c a u s e <& n D i s
a vector space closed under normal contractions (axiom (c)).

To see Iω = sup Γ, let j ) e ω , f e ^ with ψ(p) = 1, 0 <£ α/r ̂  1 on
X and S^{ψ) c ω. Such a τ/r exists since {p} is compact and X is
locally compact. Since ^ Π D is dense in ^% given ε, 0 < s < 1/2,
there exists φe^ Π D with | <p — ψ | < ε on X. An easy calcula-
tion shows TεφeΓ. Finally,

~ Tεφ(p)

ε < 2ε .

Letting ε tend to 0,

Iω(p) = sup

so Iω — sup Γ1.

For open ω c X, recall Pω c D' given in Definition 3.2.

LEMMA 9.2. For any open ω c X α^d μ ^ 0 /or which u!i e Pω,
holds.

Proof. We show that any p e X — ώ has a /^-negligible neighbor-
hood. Let U be an open neighborhood of p not meeting ώ. Let
^ e ^ Π ΰ with φ <; /^, ^(?>) c £7. By definition of ^ € Pω, there
exists a sequence fn of bounded measurable functions supported by ω
such that

- l i m n J 9>/n(25 - 0 .

Lemma 9.1 applied to U gives μ(U) = 0.

THEOREM 9.3. Lei EczX. The following two conditions are
equivalent:
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( i ) E is o,&$e-capacitable and μE = 0 for every Radon measure
μ ^ 0 generating a pure potential uμ e D'.

(ii) caveE = 0.

Proof, (i) implies (ii). First, we prove the contrapositive for
compact E. Suppose cape E > 0, i.e., for some a > 0, cap ω ;> a for
every open ω D E. For every such ω

a <; dualcap ω = 1/inf {|[ z \\ \ z e Pω)

and therefore I/a ^ inf {|| z\\ \ zePω}. Now Pω is convex and closed
in D' and ωaΩ implies Pω c PΩ for open β. Thus {Pω \ ωzD E, ω open}
satisfies the hypothesis of Lemma 1.3 (i) (here D' is reflexive because
D is uniformly convex), so there exists z0 e Π ω D £ P ω

Now ô =£ 0. In fact, .E is compact so some open ωzD E is rela-
tively compact. Therefore, since zQePω,

+ oo > cap ω = dualcap ω ^ 1/|| z0 \\ ,

so \\zQ\\ ̂  I/cap a) > 0. Thus since z0 e Pω, it follows that z0 = ^ for
some Radon measure μ > 0. We show ^ΐ/ ^ 1. That ^ f] D is dense
in ^ assures the existence of φ e & Π D verifying 0 ^ 1 — φ < ε
on the compact ώ. Let UaX be open with

EdUcϋcω.

Such Z7 exists because i? is compact and X is locally compact Haus-
dorff. For all uf e Pω with 0 ^ / measurable, bounded and &*{f) c U,
we have

( Ψffl ^ (1 - ε) [
JZ7 JET

= 1 - ε ,

since φ ^ 1 — ε on ω. By definition of z0 = uμ e Puy there exists a
sequence {fn} of such functions so that

1 - ε ^ limn ( φfndξ = \_ φdμ

by Lemma 9.2, thus

1 - ε £ \ φdμ ^ I Iωdμ = μ(ω) .

Therefore,

1 — ε ^ inf {^(ω) \Eaωopen} =

so /̂ J57 ̂  1, and our result holds for compact sets E.
For the general case, E capacitable means
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cap, E = sup {cap, K\ EZD K compact} = 0

since μ{E) = 0 assures μ{K) = 0 for Ka E.
(ii) implies (i). For any open ωcX and any pure potential u!\

we establish the inequality

(7) μ(ω) ^ || 2^ || cap ω .

In fact, by Lemma 9.1,

μ(ω) = sup {μ(φ) \ φ e & Π D, 0 £ φ ^ Iω, &*(φ) c ω} .

If capω = + °°, the inequality holds. Assume cap ω < + °o, let
ue D denote the capacitary element associated with ω; then Iω ^ u
a.e. f. Since uμ is a positive form on D, we have for any φ e Γ (see
Lemma 9»1),

μ(φ) = (<py u

μ) S (u, Uμ)

^\\u\\ \\uμ\\ = I! u" || cap ω .

Taking the supremum over all μ(φ), ψ e Γ, inequality (7) is proved.
Now, assume cap, E = 0. Since cap, K = 0 for all compact Kcz Ef

it is immediate that £7 is capacitable. By definition,

0 = cape E = inf {cap ω\ Eaω open} .

By (7)

μ{E) = inf {μ(ω) \ Eaω open}

<; 11 ^/( 11 inf {cap ω\ E aω open} = 0

for all pure potentials ^/f.

10• Quasi-continuous representatives and pure potentials* In
this section we indicate that by considering only the quasi-continuous
representatives from each equivalence class [u] e D, we get a "refined"
space of equivalence classes of functions, the new equivalence relation
being equality q.e. rather than equality a.e. ς. An application of
Theorems 9.3 and 10.1 give the important Corollary 10.2. Every
representative in the "refined" space is measurable and summable
with respect to any measure generating a pure potential and the
"correct" integral formula holds. Our measure theoretic notation
follows that of [5, §§4.5,4.6],

THEOREM 10.1. Every ue D has a quasi-continuous representative
u* such that

( i ) there exists some σ-compact subset of X outside of ivhich u*
vanishes, and
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(ii) for every pure potential uμ e D\ we have u* e Jzfι(X, μ) and

{u9 uμ) = [u*dμ .

Proof. Refer to Proposition 7.7; we show that u* constructed in
that proof verifies (i) and (ii). We have

ek = {x e XI uk+1(x) - uk{x) I > 2"fe}

and

μ(ek) ^ μ(2* I uk+1 - uk\) = 2k(\ uk+1 - uk|, W)
} ^ 2 » | | | w * + i - « * I H l l^l l ^ 2 * | | ^ i - ^ l l l l ^ l h

where uμ is an arbitrary pure potential. The last quantity tends to
zero as k increases because

(9) Σ 2 * | | t t * + i - ^ l l < + oo .

Further, since ωό = U"=i e >̂ we have μ{ω3) ^ Σ ~ = i μ(ek) which tends
to zero as j increases by (8) and (9). Thus μ(Γ\7=ιωj) = 0. Also

Jlim,uk(x) for xeX- Γ\
(0 for xef\a)j .

Hence,

{α; I M*(αO ^ 0}c U {̂  I uk(x) Φ 0} c 0
fc=l fc=l

which establishes (i).

For (ii), let E = flΓ=i ^- ^£7 = 0. Then

μ*(\u* - u, |) ^ Λ*(|^* - ^ | . / x ^ ) + μ*(\u* - ^ | JΛ)

because the upper integral μ*( ) is sub-additive. But μE = 0, so
μ*(|u* - Wtl J^) = 0. Thus

μ*(\ u* - uk I) ^ /ί*(limi | % - ^ | -/x-^)

^ ^*(lim i I % - t641) ^ limy JM*(| % - uk |)

by Fatau's lemma. But | % — uk \ e <& Π D, so μ*(|% — ufc |) = μ(\ u3- —
uk\). Therefore,

μ*(\u* - uk\) ^ lί

- limyfl uj - uk I, UP) ^ limy || % - uk || || ^ ||

which tends to zero as k increases because {uk} is Cauchy in D. Thus
u* € Se\X, μ) and
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I u*dμ = limfc 1 ukdμ = limΛ (uk, u
μ) = (u, uμ) .

COROLLARY 10.2. Every quasi-continuous representative v of every

ue D verifies v e £fι{X> μ) and (u, uμ) — \ vdμ for every pure potential

uμ.

Proof. Let u* be as in Theorem 10.1. Then u* = v a.e. ξ and
both are quasi-continuous. Thus Corollary 7.4 implies that u* — v
q.e. Let

J57 = {xeX\u*(x) Φ v(x)}

then cap, £7—0. According to Theorem 9e3, μE = 0, so

\ vdμ = I u*dμ = (u, uμ) .

REMARK. The theorem and corollary give a very strong result.
For an arbitrary representative u of u, the formula

(u, uμ) = \ udμ

does not hold in general unless μ is absolutely continuous with respect
to ξ. However, we can select any quasi-continuous representative u*
of u and the formula does hold, not just for one μ, but for all μ
simultaneously.
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