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TAME Z:-ACTIONS ON E™*

P. F. DuvALL, JR. AND J. W. MAXWELL

Let SZ(E") denote the group of homeomorphisms of eu-
clidean n-space, and G a subgroup isomorphic to Z&H Z. G is
said to be a Z2-action on E” and two such actions are said to
be equivalent if they are conjugate in SZ°(E"). In §2, the
notion of a tame Z%-action is introduced and for » = 5 tame
Z*-actions are shown to be classified by #,(SO,-,) = Z,. In §3,
tameness is shown to be inherited by a subaction of a tame
Z*action and an example of a nontame Z2-action with tame
subactions is given.

1. Introduction. Let U be an #n-dimensional manifold and let
57 (U) denote the group of homeomorphisms of U onto itself with the
compact open topology. If G is a subgroup of 5#(U), we say that
G acts on U and refer to G as an action. If K is a topological group
which is isomorphic to G, we refer to G as a K-action. Two actions
are (topologically) equivalent if they are conjugate in 52(U). We say
that G satisfies Sperner’s condition if for each compact set X U the
set {ge G| g(X) N X +# @} is finite. Unless otherwise stated, all actions
on E™ will be assumed to be orientation preserving, i.e., we require
that each member of an action be orientation preserving.

If Z* denotes the free abelian group on ¢ generators, we have,
for © < n, the standard Zi-action on E™, generated by the maps h;,
j=1,---,%, where hjx, - --,2,)=(x, -+-,2; +1,--+, 2,) Itis a
classical result that a Z-action on E* is equivalent to the standard
action if and only if it satisfies Sperner’s condition, and Duvall and
Husch [3] showed that for n =4, a Z™action on E" is equivalent to
the standard action if and only if it satisfies Sperner’s condition. In
general, however, Sperner’s condition is not sufficient to insure that
a Z*-action is equivalent to the standard action. Examples of non-
standard actions which satisfy Sperner’s condition may be found in [9],
[10], [6], and [3]. Husch [6], and Husch and Row [7] have shown that
the standard Z-action for » > 4 and the standard Z and Z*-actions for
n = 3 are characterized by Sperner’s condition together with an ad-
ditional homotopy condition.

In this note, we define the notion of a tame action (inspired by
[6]) and show that the tame Z*-actions on E*, n = 5, are classified by
7(S0,_.) = Z,. We also give examples of some nonstandard Z*-actions.
We will often use the fact that if G satisfies Sperner’s condition and
has no elements of finite order, then the orbit space U/G is a (T,)
manifold and the natural projection U— U/G is a regular covering
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map [8]. We use the symbol = to denote homeomorphism or isomor-
phism, depending on the context. For equivalent formulations of
Sperner’s condition and any notation not specifically explained here,
the reader is referred to [3].

2. Tame actions. Recall that a sequence {G;, &},

a a.
G, — Gy —— ..

of groups and homomorphisms is stable if for some subsequence

we have
Bn | image s, .+ iIMage B, — image B,

is an isomorphism for each n, where B, = a; @; 4+,-+-a;,, .. We omit
the proof of the following proposition. One implication is proved in
[7]; the other may be verified by a routine diagram chase.

PROPOSITION 1. In the commutative diagram

1 1 1 1
|
— A, 4, A, A,
By, zii B, ,— -+ — B,
"Cons — C; 255 Ciy i — G,
[
1 1 1 1

of groups and homomorphisms, suppose that the colummns are exact and
that the v; are isomorphisms. Then, {4;, a;}z, is stable if and only
if {B;, Bi}. is stable. If either sequence is stable, the induced sequence
1——-»1(i_IpAi-—->1<i_I_nB,-——>l<i£1 C; —1 is exact.

Let G be a Z*action on E*. For each X ¢ E*, let GX denote the
set {9(X)|geG}. We say that G is tame provided that:

(1) G satisfies Sperner’s condition and

(2) For each compact set C < E*, there is a compact set D c E”
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containing C such that the inclusion induced map [l,: 7 (E" — GD)—
w/(E" — GC) is the zero map for j =0, 1.

We assume now that G is a tame Z®action and that » = 5. Let
O; be the orbit space E"/G. Then O, is a manifold and the projection
p: E*— O, is a covering map. Since O, is an Eilenberg-McLane
K(Z* 1) space, it follows [15] that O, has the homotopy type of the
torus 7% = S§' x S*. Since H,(0;) = H,_.(0;) =0, it follows that O,
is noncompact and has one end [14].

Let {D;, be a collection of compact subsets of O, such that
UD;=0, D,.,>DD,; for each ¢, and O, — D, is connected for each 1.
Using (2) above, we can find a nested sequence {C;};2, of compact subsets
of E™ such that GC; D> »~'D; and l,: n,(E™ — GC;,,) — w{(E” — GC)) is
zero for each 7 and 7 = 0,1. By choosing a subsequence of D,’s if
necessary, we can assume without loss of generality that GC; = p™'D,.

PROPOSITION 2. 7,(04, Oy, — D,) = 0 for each i, and E* — GC; 1s
connected.

Proof. Let x be a base point for O, — D;, and assume without
loss of generality that xe O, — D,,,. Let % be a point in E* — GC;,,
such that p(Z) = 2. Let a: (I, {0, 1}, {0}) — (O, Oy — D;, x) be a map,
and assume (without loss of generality) that a(l)e O, — D;,,. Let &
be the lift of a based at #Z. We have %, @(1)e E* — GC;,, so by (2)
there is 2 path B8 in E* — GC; joining # and &@(1). Since & and B are
homotopic with endpoints fixed in E*, @ and pB are homotopic in O,
so that [¢] = 0in 7,(Og, O, — D;). The second conclusion follows from
the first by a covering space argument.

PRrOPOSITION 3. If ¢ is the end of O, 7, s stable at € and the
natural projection w(e) — w,(04) is an isomorphism.

Proof. For each 4, let x;¢ E* — GC; be a base point, y; = p(x,),
and let «;, pa; be connecting paths between «;, x;,, and v;, ¥;.,. We
have the following diagram from the exact homotopy sequences of a
fibration

1

11— n(E" — GC,, ;) — 7,(0g — D;, y;) — m(p~"(y:)) —> 1
AN /!
AN =~ J/
/

7,(Og, ¥:)

in
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which gives rise to the commutative diagram

1— n(E" — GC,, x;) —— (O — Dy, y;) ~—— (O, ¥;) — 1
Ti

1— m(E" — GC;yyy %iry) = T(0g — Diyyy Yirr) — 7(Og, Yir,) — 1

N

where the columns are change of base point maps and each v; is an
isomorphism. We apply Proposition 1 to see that 7, is stable at ¢ and
that

1— lim {7 (E" — GC;, @)} — lim {7(0s — D, y:)}
— lim {7,(0;, y.)} —> 1

is exact. This translates into 1 —1— 7,(¢) — 7,(04) — 1, and the proof
is complete.

Now by [11], we may assume that O, has a (unique) PL structure.
There is a map f: T? — O, which is a homotopy equivalence. We may
assume f to be an embedding by general position. Let 7, = f(T%. By
a theorem of Hudson [5], 7, is unique up to concordance, hence, up
to ambient isotopy [4].

THEOREM 4. If G is a tame Z’-action on E™, m =5, then O, is
PL-homeomorphic to the interior of a regular meighborhood of .

Proof. Let N be a regular neighborhood of 7, in O;. From the
exact sequence of the triad (Og4 Oz — 74, int N) [1], we have

« —— (O — Ty, Int N — 75) — 7,(Og, int N)
—— (Og; Og — Tg, it N) —> w;_(Oy — 7o, It N — 75) —> -+ -
—— (Og, Og — Tg, int N) — 7,(Og — 74, int N — 74)
—— 7,(Og, int N) .

Since 7;(Og, int N) = 0 for all 4, we can apply [4, Lemma 12.4]
to get 70,4, Os — T4, int N) = 0 for all ¢, and thus (0, — 74, int N —
7g) = 0 for all 7. It follows that the inclusion int N — 74— O — 74
is a homotopy equivalence and hence the inclusion bdy N— O; — int N
is a homotopy equivalence. General position gives an inclusion induced
isomorphism 7,(0; — int N) = ,(O,) so the projection () — 7, (Og —
int N) is an isomorphism by Proposition 3. Applying Siebenmann’s Open
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Collar Theorem [14], we have that O, — int N is PL homeomorphic to
bdy N x [0,1). Thus, O, = int N.

COROLLARY 5. There are exactly two topological types of tame
Z*-actions on E*, n = 5.

Proof. Two tame Z*-actions are equivalent if and only if their
orbit spaces are homeomorphic [3]. By a theorem of T. Price [13,
p. 336] and uniqueness of PL structures [11], orientable regular neigh-
borhoods of T? in codimension three or greater are SO,_, bundles and
are classified up to homeomorphism by 7,(SO,._.) = Z,, n = 5.

3. Subactions.

PROPOSITION 6. Suppose G is a Z*action on E*, n=2 and HC G
is a subgroup of index two. Then G is a tame action if and only if
H is a tame action.

Proof. Suppose first that G is a tame action. Since G satisfies
Sperner’s condition, clearly H does. Now let {C;} be a sequence of
compact sets in E” such that C;c Cj;, for each j and the inclusion
E* — GC;,, into E* — GC; is zero on 7, and 7,. Since H is a subgroup
of index two, one can find a homeomorphism % in G such that GC; = HD;
where D; = C; U k(C;). Hence, H is tame.

Now suppose H is tame and suppose G fails to satisfy Sperner’s
condition. Then for some compact set C < E", the set

M={geG|g(C)nC= 0}

is infinite. We can find a basis {&, k} for G such that {i, k*} is a basis
for H. Since H satisfies Sperner’s condition, M must contain an infi-
nite number of elements of the form A’k**'. Let D = k(C) U C. Then
if Bk e M, RWE*(D) = BE*(C) U h'E*(C) so that RE*(D)ND # @.
But then H does not satisfy Sperner’s condition, a contradiction. Thus,
G satisfies Sperner’s condition.

Now let {C;} be a sequence of compact sets in E" such that
C;c Cj,,foreachjand |J C; = E*. Asabove there is a homeomorphism
k in G such that GC; = HD; where D; = C; U k(C;) (the homeomorphism
k in the above basis will suffice). Taking a subsequence of the C,’s
we find that inclusion E* — HD;,, = E* — GC;, into E* — HD; =
E" — GC; is zero on 7, and 7,. Thus, G is a tame action.

PROPOSITION 7. Suppose that X is the total space of an orientable
0(q) bundle over T*, ¢ = 3 and p: X— X is a double cover of X. Then
X 1s the total space of the trivial O(q) bundle over T:.
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Proof. Orientable O(q) bundles over T* are classified by 7,(SO,)
which is Z, for ¢ = 3. Applying the classification described by Price
in [13] yields the proposition.

THEOREM 8. Suppose that H is a tame Z*-action on E", n = 5.
Then H is topologically equivalent to the standard Z*-action if and
only if there exists a Z*-action G on E™ such that H is a subgroup of
G and G/H = Z,.

Proof. If H is equivalent to the standard action, the required G
clearly exists.

Now suppose H is tame and G is given such that G/H = Z*. By
Proposition 6, one has that G is tame. Thus, O, is homeomorphic to
the interior of a orientable regular neighborhood of T? and, therefore,
is the total space of an orientable O(¢) bundle over 7% But the natural
covering projection of O onto O is a double cover of O,. The theorem
follows from Proposition 7.

COROLLARY 9. Suppose G is a tame Z*-action on E*, n = 5. Then
every homeomorphism in G except the tdentity is topologically equiva-
lent to a translation of E™.

Proof. Suppose f is a member of G. Then one can find a basis
{h, k} for G such that there is a positive integer » for which 2" = f.
Clearly if h is topologically equivalent to a translation then so is f.
Let H be the subgroup of G generated by {&, k’}. Then H is a subgroup
of index two and by Proposition 6 is tame. Applying Theorem 8, one
gets H topologically equivalent to the standard Z*-action and, hence,
h is topologically equivalent to a translation.

REMARK. Proposition 6 is true whenever H is a subgroup of finite
index. This together with Corollary 9 says that every subaction of a
tame Z’-action is tame.

ExampLE. For n = 5, let W™ be a contractible open manifold
and let Q"= S'x S*x W»2 Then the universal cover of Q" is
E*x W= E" [12], so that if G is the corresponding group of covering
transformations, G is a Z%action satisfying Sperner’s condition. Let
¢ and ¢, denote the ends of Q" and W"* respectively. It follows by
applying Proposition 1 that if m(ey) is stable so is 7,(¢,) and there is
a short exact sequence 1 — 7w(e,) — w(eq) — Z*— 1. If W™ is the
Whitehead example [17] for » = 5 or the interior of a contractible
manifold with nonsimply connected boundary for n > 5 [2], the above
shows that Q" is not the interior of a regular neighborhood of 772, so
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that G is not a tame action. However, if h,, &, are the generators of G
corresponding to the standard cover of S* x S* the orbit space of the
subgroup generated by #; is homeomorphic to S* x E*~, so that h, and
h, are both topologically equivalent to translations.
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